Influence of Ecklonia maxima Extracts on Growth, Yield, and Postharvest Quality of Hydroponic Leaf Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leaf Lettuce Hydroponic Cultivation
2.2. Agronomical and Morpho-Physiological Parameters
2.3. Minimal Processing and Cold Storage
2.4. Physico-Chemical and Quality Parameters
2.5. Statistics and Principal Component Analyses
3. Results
3.1. Leaf Lettuce Yield and Quality
3.2. Storage of Fresh-Cut Leaf Lettuce
3.3. Principal Components Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Corbo, M.; Campaniello, D.; Speranza, B.; Bevilacqua, A.; Sinigaglia, M. Non-conventional tools to preserve and prolong the quality of minimally-processed fruits and vegetables. Coatings 2015, 5, 931–961. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, I.; Chattopadhyay, A. Pre- and post-harvest losses in vegetables. In Advances in Postharvest Technologies of Vegetable Crops; Postharvest Biology and Technology Series; Apple Academic Press: Waretown, NJ, USA, 2018; pp. 25–87. [Google Scholar]
- Miceli, A.; Settanni, L. Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Ann. Microbiol. 2019, 69, 185–199. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M.; Dar, B.N.; Greiner, R.; Roohinejad, S. Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control 2018, 85, 235–244. [Google Scholar] [CrossRef]
- Al-Chalabi, M. Vertical farming: Skyscraper sustainability? Sustain. Cities Soc. 2015, 18, 74–77. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Despommier, D. The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J. Verbrauch. Lebensm. 2011, 6, 233–236. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and challenges in sustainability of vertical farming: A review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Moncada, A.; D’Anna, F. Effect of salt stress in lettuce cultivation. Acta Hortic. 2003, 609, 371–375. [Google Scholar] [CrossRef]
- Moncada, A.; Miceli, A.; D’Anna, F. Evaluation of strawberry cultivars in soilless cultivation in sicily. Acta Hortic. 2008, 801, 1121–1127. [Google Scholar] [CrossRef]
- Settanni, L.; Miceli, A.; Francesca, N.; Cruciata, M.; Moschetti, G. Microbiological investigation of Raphanus sativus L. grown hydroponically in nutrient solutions contaminated with spoilage and pathogenic bacteria. Int. J. Food Microbiol. 2013, 160, 344–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moncada, A.; Miceli, A.; Sabatino, L.; Iapichino, G.; D’Anna, F.; Vetrano, F. Effect of molybdenum rate on yield and quality of lettuce, escarole, and curly endive grown in a floating system. Agronomy 2018, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- D’Anna, F.; Miceli, A.; Vetrano, F. First results of floating system cultivation of Eruca sativa L. Acta Hortic. 2003, 609, 361–364. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; Vetrano, F.; D’Anna, F. First results on yield and quality response of Basil (Ocimum basilicum L.) grown in a floating system. Acta Hortic. 2003, 609, 377–381. [Google Scholar] [CrossRef]
- Moncada, A.; Miceli, A.; Vetrano, F. Use of plant growth-promoting rhizobacteria (PGPR) and organic fertilization for soilless cultivation of basil. Sci. Hortic. 2021, 275, 109733. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Zandi, P.; Basu, S.K. Role of plant growth-promoting rhizobacteria (PGPR) as Biofertilizers in stabilizing agricultural ecosystems. In Organic Farming for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 71–87. [Google Scholar]
- Aremu, A.O.; Masondo, N.A.; Rengasamy, K.R.R.; Amoo, S.O.; Gruz, J.; Bíba, O.; Šubrtová, M.; Pěnčík, A.; Novák, O.; Doležal, K.; et al. Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. Planta 2015, 241, 1313–1324. [Google Scholar] [CrossRef]
- Kavipriya, R.; Dhanalakshmi, P.K.; Jayashree, S.; Thangaraju, N. Seaweed extract as a biostimulant for legume crop, green gram. J. Ecobiotechnol. 2011, 3, 16–19. [Google Scholar]
- Verkleij, F.N. Seaweed extracts in agriculture and horticulture: A review. Biol. Agric. Hortic. 1992, 8, 309–324. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Papenfus, H.B.; Stirk, W.A.; Finnie, J.F.; Van Staden, J. Seasonal variation in the polyamines of Ecklonia maxima. Bot. Mar. 2012, 55, 539–546. [Google Scholar] [CrossRef]
- Stirk, W.A.; Van Staden, J. Comparison of cytokinin-and auxin-like activity in some commercially used seaweed extracts. J. Appl. Phycol. 1996, 8, 503–508. [Google Scholar] [CrossRef]
- Stirk, W.A.; Tarkowská, D.; Turečová, V.; Strnad, M.; Van Staden, J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 2014, 26, 561–567. [Google Scholar] [CrossRef]
- Khan, W.; Zhai, R.; Souleimanov, A.; Critchley, A.T.; Smith, D.L.; Prithiviraj, B. Commercial extract of Ascophyllum nodosum improves root colonization of alfalfa by its bacterial symbiont Sinorhizobium meliloti. Commun. Soil Sci. Plant Anal. 2012, 43, 2425–2436. [Google Scholar] [CrossRef]
- González, A.; Castro, J.; Vera, J.; Moenne, A. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J. Plant Growth Regul. 2013, 32, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Mooney, P.A.; Van Staden, J. Effect of seaweed concentrate on the growth of wheat under condition of water fern. S. Afr. J. Sci. 1985, 8, 632–633. [Google Scholar]
- Featonby-Smith, B.C.; Van Staden, J. The effect of seaweed concentrate and fertilizer on growth and the endogenous cytokinin content of Phaseolus vulgaris. S. Afr. J. Bot. 1984, 3, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Crouch, I.J.; Van Staden, J. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul. 1993, 13, 21–29. [Google Scholar] [CrossRef]
- El Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Ghaderiardakani, F.; Collas, E.; Damiano, D.K.; Tagg, K.; Graham, N.S.; Coates, J.C. Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Sci. Rep. 2019, 9, 1983. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.J.; Bolton, J.J.; Molloy, F.J.; Rotmann, K.W.G. Commercial seaweeds in southern Africa. In Proceedings of the 17th International Seaweed Symposium, Cape Town, South Africa, 28 January–2 February 2001; Oxford University Press: Oxford, UK, 2003; pp. 1–12. [Google Scholar]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Papenfus, H.B.; Kulkarni, M.G.; Stirk, W.A.; Finnie, J.F.; Van Staden, J. Effect of a commercial seaweed extract (Kelpak®) and polyamines on nutrient-deprived (N, P and K) okra seedlings. Sci. Hortic. 2013, 151, 142–146. [Google Scholar] [CrossRef]
- Stirk, W.A.; Arthur, G.D.; Lourens, A.F.; Novák, O.; Strnad, M.; van Staden, J. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J. Appl. Phycol. 2004, 16, 31–39. [Google Scholar] [CrossRef]
- Pitts, R.J.; Cernac, A.; Estelle, M. Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J. 1998, 16, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Basra, A. Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses; CRC Press: Boca Raton, FL, USA, 2000; ISBN 1560228911. [Google Scholar]
- De Smet, I.; Lau, S.; Voß, U.; Vanneste, S.; Benjamins, R.; Rademacher, E.H.; Schlereth, A.; De Rybel, B.; Vassileva, V.; Grunewald, W.; et al. Bimodular auxin response controls organogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2010, 107, 2705–2710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhang, X.; Zhao, Y.; Li, Y.; Zhang, G.; Peng, Z.; Zhang, J. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol. J. 2018, 16, 86–99. [Google Scholar] [CrossRef]
- Ko, D.; Helariutta, Y. Shoot–root communication in flowering plants. Curr. Biol. 2017, 27, R973–R978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-90-481-2531-9. [Google Scholar]
- Feller, C.; Bleiholder, H.; Buhr, L.; Hack, H.; Hess, M.; Klose, R.; Meier, U.; Stauss, R.; van den Boom, T.; Weber, E. Phanologische Entwicklungsstadien von Gemusepflanzen I. Zwiebel-, Wurzel-, Knollen-und Blattgemuse. Nachr. Dtsch. Pflanzenschutzd. 1995, 47, 193–205. [Google Scholar]
- Goto, E.; Both, A.-J.; Albright, L.D.; Langhans, R.W.; Leed, A.R. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. In Proceedings of the International Symposium on Plant Production in Closed Ecosystems (ISHS Acta Horticulturae 440), Narita, Japan, 26–29 August 1996; pp. 205–210. [Google Scholar]
- Baligar, V.C.; Fageria, N.K. Nutrient use efficiency in plants: An overview. Nutr. Use Effic. Basics Adv. 2015, 32, 921–950. [Google Scholar] [CrossRef]
- Easlon, H.M.; Bloom, A.J. Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2014, 2, 1400033. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Miceli, C. Effect of nitrogen fertilization on the quality of Swiss chard at harvest and during storage as minimally processed produce. J. Food Qual. 2014, 37, 125–134. [Google Scholar] [CrossRef]
- Rodrigo, M.C.; Ramos, C. Nitrate sap analysis as a tool to assess nitrogen nutrition in artichoke. In Proceedings of the VI International Symposium on Artichoke, Cardoon and Their Wild Relatives 730, Lorca, Spain, 28–31 March 2006; pp. 251–256. [Google Scholar]
- Caracciolo, G.; D’Anna, E.; Moncada, A.; D’Anna, F. Evaluation of the quality and antioxidant capacity of woodland strawberry biotypes in Sicily. J. Food Agric. Environ. 2013, 11, 522–525. [Google Scholar]
- Mukherjee, A.; Patel, J.S. Seaweed extract: Biostimulator of plant defense and plant productivity. Int. J. Environ. Sci. Technol. 2019, 17, 553–558. [Google Scholar] [CrossRef]
- Begum, M.; Bordoloi, B.C.; Singha, D.D.; Ojha, N.J. Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agric. Rev. 2018, 39, 321–326. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Finnie, J.F.; van Staden, J. Effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. J. Plant Physiol. 1985, 120, 215–222. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of vegetal- and seaweed extract-based biostimulants on agronomical and leaf quality traits of plastic tunnel-grown baby lettuce under four regimes of nitrogen fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; El-Nakhel, C.; Leone, V.; Mori, M. Effect of seaweed (Ecklonia maxima) extract and legume-derived protein hydrolysate biostimulants on baby leaf lettuce grown on optimal doses of nitrogen under greenhouse conditions. Aust. J. Crop Sci. 2020, 14, 1456–1464. [Google Scholar] [CrossRef]
- Rouphael, Y.; De Micco, V.; Arena, C.; Raimondi, G.; Colla, G.; De Pascale, S. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol. 2017, 29, 459–470. [Google Scholar] [CrossRef]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Gruz, J.; Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef]
- Crouch, I.J.; Van Staden, J. Effect of seaweed concentrate from Ecklonia maxima (Osbeck) Papenfuss on Meloidogyne incognita infestation on tomato. J. Appl. Phycol. 1993, 5, 37–43. [Google Scholar] [CrossRef]
- Featonby-Smith, B.C.; Van Staden, J. The effect of seaweed concentrate on the growth of tomato plants in nematode-infested soil. Sci. Hortic. 1983, 20, 137–146. [Google Scholar] [CrossRef]
- Krouk, G.; Lacombe, B.; Bielach, A.; Perrine-Walker, F.; Malinska, K.; Mounier, E.; Hoyerova, K.; Tillard, P.; Leon, S.; Ljung, K.; et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 2010, 18, 927–937. [Google Scholar] [CrossRef]
- Castaings, L.; Marchive, C.; Meyer, C.; Krapp, A. Nitrogen signalling in Arabidopsis: How to obtain insights into a complex signalling network. J. Exp. Bot. 2011, 62, 1391–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Pitorre, D.; Poretska, O.; Marizzi, C.; Winter, N.; Poppenberger, B.; Sieberer, T. Altered meristem program1 suppresses ectopic stem cell niche formation in the shoot apical meristem in a largely cytokinin-independent manner. Plant Physiol. 2015, 167, 1471–1486. [Google Scholar] [CrossRef] [Green Version]
- Guenot, B.; Bayer, E.; Kierzkowski, D.; Smith, R.S.; Mandel, T.; Žádníková, P.; Benková, E.; Kuhlemeier, C. Pin1-independent leaf initiation in Arabidopsis. Plant Physiol. 2012, 159, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Blein, T.; Hasson, A.; Laufs, P. Leaf development: What it needs to be complex. Curr. Opin. Plant Biol. 2010, 13, 75–82. [Google Scholar] [CrossRef]
- Gonzalez, N.; Vanhaeren, H.; Inzé, D. Leaf size control: Complex coordination of cell division and expansion. Trends Plant Sci. 2012, 17, 332–340. [Google Scholar] [CrossRef]
- DeMason, D.A.; Chawla, R. Roles for auxin during morphogenesis of the compound leaves of pea (Pisum sativum). Planta 2004, 218, 435–448. [Google Scholar] [CrossRef]
- Wang, S.; Tiwari, S.B.; Hagen, G.; Guilfoyle, T.J. Auxin response factor7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell 2005, 17, 1979–1993. [Google Scholar] [CrossRef] [Green Version]
- Barkoulas, M.; Hay, A.; Kougioumoutzi, E.; Tsiantis, M. A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat. Genet. 2008, 40, 1136–1141. [Google Scholar] [CrossRef]
- Koenig, D.; Bayer, E.; Kang, J.; Kuhlemeier, C.; Sinha, N. Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 2009, 136, 2997–3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Immanen, J.; Nieminen, K.; Smolander, O.P.; Kojima, M.; Alonso Serra, J.; Koskinen, P.; Zhang, J.; Elo, A.; Mähönen, A.P.; Street, N.; et al. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Curr. Biol. 2016, 26, 1990–1997. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.S.; Sitapara, H.H.; Patel, K.A. Influence of plant growth regulators on growth, yield and quality of tomato and brinjal. Int. J. For. Crop Improv. 2012, 3, 116–118. [Google Scholar]
- Kolachevskaya, O.O.; Lomin, S.N.; Arkhipov, D.V.; Romanov, G.A. Auxins in potato: Molecular aspects and emerging roles in tuber formation and stress resistance. Plant Cell Rep. 2019, 38, 681–698. [Google Scholar] [CrossRef] [PubMed]
- Wadas, W.; Dziugieł, T. Changes in assimilation area and chlorophyll content of very early potato (Solanum tuberosum L.) cultivars as influenced by biostimulants. Agronomy 2020, 10, 387. [Google Scholar] [CrossRef] [Green Version]
- Peer, W.A.; Murphy, A.S. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 2007, 12, 556–563. [Google Scholar] [CrossRef]
- De Klerk, G.-J.; Guan, H.; Huisman, P.; Marinova, S. Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul. 2011, 63, 175–185. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.A.T.; Dobránszki, J.; Ross, S. Phloroglucinol in plant tissue culture. Vitr. Cell. Dev. Biol. 2013, 49, 1–16. [Google Scholar] [CrossRef]
- Gaspar, T.; Kevers, C.; Penel, C.; Greppin, H.; Reid, D.M.; Thorpe, T.A. Plant hormones and plant growth regulators in plant tissue culture. Vitr. Cell. Dev. Biol. 1996, 32, 272–289. [Google Scholar] [CrossRef]
- Wilson, P.; van Staden, J. Rhizocaline, rooting co-factors, and the concept of promoters and inhibitors of adventitious rooting—A review. Ann. Bot. 1990, 66, 479–490. [Google Scholar] [CrossRef]
- Crouch, I.J.; Van Staden, J. Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. J. Plant Physiol. 1991, 137, 319–322. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Critchley, A.T.; Prithiviraj, B. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun. Soil Sci. Plant Anal. 2013, 44, 1873–1884. [Google Scholar] [CrossRef]
- Nelson, W.R.; Van Staden, J. The effect of seaweed concentrate on growth of nutrient-stressed, greenhouse cucumbers. HortScience 1984, 19, 81–82. [Google Scholar]
- Nair, P.; Kandasamy, S.; Zhang, J.; Ji, X.; Kirby, C.; Benkel, B.; Hodges, M.D.; Critchley, A.T.; Hiltz, D.; Prithiviraj, B. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genom. 2012, 13, 643. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Vetrano, F.; Sabatino, L.; D’Anna, F.; Moncada, A. Influence of preharvest gibberellic acid treatments on postharvest quality of minimally processed leaf lettuce and rocket. Horticulturae 2019, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Roura, S.I.; Davidovich, L.A.; Del Valle, C.E. Quality loss in minimally processed Swiss chard related to amount of damaged area. LWT-Food Sci. Technol. 2000, 33, 53–59. [Google Scholar] [CrossRef]
- Roura, S.I.; Davidovich, L.A.; Del Valle, C.E. Postharvest changes in fresh Swiss chard (Beta vulgaris, type cycla) under different storage conditions. J. Food Qual. 2000, 23, 137–147. [Google Scholar] [CrossRef]
- Hodges, D.M.; Toivonen, P.M.A. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biol. Technol. 2008, 48, 155–162. [Google Scholar] [CrossRef]
- Watada, A.E.; Qi, L. Quality of fresh-cut produce. Postharvest Biol. Technol. 1999, 15, 201–205. [Google Scholar] [CrossRef]
- Hare, P.D.; Van Staden, J. The molecular basis of cytokinin action. Plant Growth Regul. 1997, 23, 41–78. [Google Scholar] [CrossRef]
- Veerasamy, M.; He, Y.; Huang, B. Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. J. Am. Soc. Hortic. Sci. 2007, 132, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Mok, M.C. Cytokinins: Chemistry, activity, and function. In Cytokinins: Chemistry, Activity and Function; Mok, W.D., Mok, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 155–166. ISBN 978-1315892184. [Google Scholar]
- Zhang, X.; Ervin, E.H. Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci. 2008, 48, 364–370. [Google Scholar] [CrossRef]
- Wally, O.S.D.; Critchley, A.T.; Hiltz, D.; Craigie, J.S.; Han, X.; Zaharia, L.I.; Abrams, S.R.; Prithiviraj, B. Regulation of phytohormone biosynthesis and accumulation in arabidopsis following treatment with commercial extract from the marine macroalga ascophyllum nodosum. J. Plant Growth Regul. 2013, 32, 324–339. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; Sabatino, L.; Vetrano, F. Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy 2019, 9, 382. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Vetrano, F.; Moncada, A. Effects of foliar application of gibberellic acid on the salt tolerance of tomato and sweet pepper transplants. Horticulturae 2020, 6, 93. [Google Scholar] [CrossRef]
- Alfonzo, A.; Gaglio, R.; Miceli, A.; Francesca, N.; Di Gerlando, R.; Moschetti, G.; Settanni, L. Shelf life evaluation of fresh-cut red chicory subjected to different minimal processes. Food Microbiol. 2018, 73, 298–304. [Google Scholar] [CrossRef]
- Miceli, A.; Gaglio, R.; Francesca, N.; Ciminata, A.; Moschetti, G.; Settanni, L. Evolution of shelf life parameters of ready-to-eat escarole (Cichorium endivia var. latifolium) subjected to different cutting operations. Sci. Hortic. 2019, 247, 175–183. [Google Scholar] [CrossRef]
- Miceli, A.; Romano, C.; Moncada, A.; D’Anna, F.; Vetrano, F. Effect of cold storage on the quality of minimally processed cauliflower. Carpathian J. Food Sci. Technol. 2015, 7, 70–74. [Google Scholar]
- La Scalia, G.; Aiello, G.; Miceli, A.; Nasca, A.; Alfonzo, A.; Settanni, L. Effect of vibration on the quality of strawberry fruits caused by simulated transport. J. Food Process Eng. 2016, 39, 140–156. [Google Scholar] [CrossRef]
- Miceli, C.; Moncada, A.; Vetrano, F.; D’Anna, F.; Miceli, A. Suitability of borago officinalis for minimal processing as fresh-cut produce. Horticulturae 2019, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Ihl, M.; Shene, C.; Scheuermann, E.; Bifani, V. Correlation for pigment content through colour determination using tristimulus values in a green leafy vegetable, Swiss chard. J. Sci. Food Agric. 1994, 66, 527–531. [Google Scholar] [CrossRef]
- Madeira, A.C.; Ferreira, A.; de Varennes, A.; Vieira, M.I. SPAD Meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Commun. Soil Sci. Plant Anal. 2003, 34, 2461–2470. [Google Scholar] [CrossRef]
- Aharoni, N. Interrelationship between ethylene and growth regulators in the senescence of lettuce leaf discs. J. Plant Growth Regul. 1989, 8, 309–317. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Gaglio, R.; Miceli, A.; Sardina, M.T.; Francesca, N.; Moschetti, G.; Settanni, L. Evaluation of microbiological and physico-chemical parameters of retail ready-to-eat mono-varietal salads. J. Food Process. Preserv. 2019, 43, 13955. [Google Scholar] [CrossRef]
- Cefola, M.; Carbone, V.; Minasi, P.; Pace, B. Phenolic profiles and postharvest quality changes of fresh-cut radicchio (Cichorium intybus L.): Nutrient value in fresh vs. stored leaves. J. Food Compos. Anal. 2016, 51, 76–84. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; Vetrano, F. Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants. Agronomy 2021, 11, 1143. [Google Scholar] [CrossRef]
- Vetrano, F.; Moncada, A.; Miceli, A. Use of gibberellic acid to increase the salt tolerance of leaf lettuce and rocket grown in a floating system. Agronomy 2020, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Moncada, A.; Vetrano, F.; Miceli, A. Alleviation of salt stress by plant growth-promoting bacteria in hydroponic leaf lettuce. Agronomy 2020, 10, 1523. [Google Scholar] [CrossRef]
Ecklonia maxima Extract (mL L−1) | ||||
---|---|---|---|---|
0 | 1 | 2 | 4 | |
Plant height (cm) | 10.7b 1 | 12.2ab | 13.1a | 13.2a |
Stem diameter (mm) | 5.4a | 5.7a | 5.8a | 5.8a |
Plant fresh weight | ||||
Whole plant (g) | 4.7b | 5.5ab | 6.2a | 6.5a |
Leaves (g) | 3.5b | 4.2ab | 4.8a | 4.8a |
Stem (g) | 0.32b | 0.38ab | 0.36ab | 0.43a |
Roots (g) | 0.9b | 0.9b | 1.1ab | 1.3a |
Ratio shoot/roots | 4.4a | 5.0a | 5.0a | 4.1a |
Plant dry weight | ||||
Whole plant (mg) | 267.8b | 296.5ab | 345.7a | 343.3a |
Leaves (mg) | 189.6b | 210.4ab | 250.4a | 248.2a |
Stem (mg) | 17.1a | 16.4a | 17.1a | 19.3a |
Roots (mg) | 61.1a | 69.7a | 78.2a | 75.8a |
Ratio shoot/roots | 20.4a | 19.5a | 20.4a | 22.6a |
Epigeal dry matter (%) | 5.4a | 5.0a | 5.1a | 5.2a |
Root dry matter (%) | 7.0a | 7.6a | 7.4a | 6.0a |
Yield (kg m−2) | 1.15b | 1.37ab | 1.55a | 1.56a |
Fresh cut leaves yield (%) | 91.5b | 91.8b | 93.1a | 91.8b |
Fresh cut leaves yield (kg m−2) | 1.05b | 1.25ab | 1.45a | 1.43a |
WUE (g DW L−1 H2O) | 1.4c | 1.6b | 1.7ab | 1.8a |
NUE (g DW g−1 N) | 5.1c | 6.0b | 6.2ab | 6.6a |
Ecklonia maxima Extract (mL L−1) | ||||
---|---|---|---|---|
0 | 1 | 2 | 4 | |
Number of leaves | 7.9b 1 | 8.5ab | 8.6ab | 8.8a |
Leaf width (cm) | 4.5c | 5.1b | 5.6a | 5.6a |
Leaf area (cm2 plant−1) | 142.0b | 196.5a | 199.8a | 192.4a |
Leaf area (cm2 leaf−1) | 18.4b | 23.9a | 23.9a | 22.1ab |
SLA (cm2 g DW−1) | 763.7b | 898.0a | 818.5b | 790.6b |
Stomatal conductance (mmol m−2 s−1) | 150.5b | 207.1a | 198.4a | 227.8a |
L* | 55.2a | 55.2a | 54.8a | 54.7a |
Chroma | 45.4a | 45.4a | 45.0a | 45.2a |
Hue° | 121.2a | 121.5a | 121.5a | 121.7a |
SST (°Brix) | 2.6a | 2.7a | 2.7a | 2.6a |
TA 2 | 42.3a | 38.4a | 38.4a | 38.4a |
Ascorbic acid (mg 100 g−1 FW) | 55.0a | 57.3a | 57.6a | 58.0a |
NO3− (mg kg−1 FW) | 3120.0a | 2540.0b | 2891.7ab | 2875.3ab |
E. maxima Extract (mL L−1) | Storage (d a 4 °C) | Weight Loss (g 100 g−1 FW) | SSC (°Brix) | TA 3 | Ascorbic Acid (mg 100 g−1 FW) | NO3− (mg kg−1 FW) |
---|---|---|---|---|---|---|
0 | 0 | 2.6 | 42.3c | 55.0 | 3120.0 | |
7 | 0.63c 1 | 2.7 | 42.3c | 52.5 | 2545.0 | |
14 | 1.00bc | 2.6 | 46.1bc | 52.5 | 2875.0 | |
21 | 2.14a | 2.9 | 53.8b | 53.0 | 2787.5 | |
1 | 0 | 2.7 | 38.4c | 57.3 | 2540.0 | |
7 | 0.64c | 2.7 | 38.4c | 51.2 | 2485.0 | |
14 | 0.72c | 3.0 | 50.0bc | 63.2 | 2720.0 | |
21 | 1.15bc | 2.5 | 61.5ab | 62.5 | 2720.0 | |
2 | 0 | 2.7 | 38.4c | 57.6 | 2925.0 | |
7 | 0.65c | 2.7 | 46.1bc | 59.2 | 2548.3 | |
14 | 0.73c | 3.0 | 50.0bc | 61.4 | 2585.0 | |
21 | 1.54b | 2.5 | 59.6ab | 59.1 | 2885.0 | |
4 | 0 | 2.6 | 38.4c | 58.0 | 2875.3 | |
7 | 0.64c | 2.5 | 36.5c | 51.6 | 2650.0 | |
14 | 0.81c | 2.7 | 48.0bc | 61.4 | 2895.0 | |
21 | 1.53b | 2.8 | 65.3a | 59.5 | 2740.0 | |
E. maxima (mL L−1) | ||||||
0 | 1.26 | 2.7 | 46.11 | 53.25 | 2831.9a | |
1 | 0.84 | 2.7 | 47.07 | 57.00 | 2616.3b | |
2 | 0.97 | 2.7 | 48.51 | 59.90 | 2735.8b | |
4 | 0.99 | 2.7 | 47.07 | 57.63 | 2790.1b | |
Storage (d a 4 °C) | ||||||
0 | 2.7 | 39.4 | 56.8 | 2865.1 | ||
7 | 0.64 | 2.7 | 40.8 | 53.6 | 2557.1 | |
14 | 0.81 | 2.8 | 48.5 | 58.4 | 2768.8 | |
21 | 1.59 | 2.7 | 60.0 | 58.5 | 2783.1 | |
E. maxima | ** 2 | ns | ns | ns | ** | |
Storage | *** | ns | *** | ns | ns | |
E. maxima × Storage | * | ns | * | ns | ns |
E. maxima Extract (mL L−1) | Storage (d a 4 °C) | L* | Chroma | Hue | ∆E | OQ |
---|---|---|---|---|---|---|
0 | 0 | 55.2 | 45.4 | 121.2ab | 0.0d | 5.00 |
7 | 54.8 | 44.3 | 120.9b | 1.3bc | 4.33 | |
14 | 55.7 | 43.6 | 120.4bc | 1.0c | 3.83 | |
21 | 57.5 | 44.9 | 118.8d | 2.9a | 2.67 | |
1 | 0 | 55.2 | 45.4 | 121.5ab | 0.9c | 5.00 |
7 | 55.0 | 44.1 | 120.3bc | 1.3bc | 5.00 | |
14 | 55.2 | 43.8 | 120.3bc | 0.8c | 4.37 | |
21 | 55.9 | 43.9 | 119.8c | 1.3bc | 3.17 | |
2 | 0 | 54.8 | 45.0 | 121.5a | 1.1c | 5.00 |
7 | 54.1 | 43.3 | 121.1ab | 1.1c | 5.00 | |
14 | 54.8 | 43.2 | 120.9b | 1.5bc | 4.67 | |
21 | 56.1 | 43.3 | 119.9c | 1.5bc | 3.67 | |
4 | 0 | 54.7 | 45.2 | 121.7a | 0.8c | 5.00 |
7 | 54.3 | 43.7 | 120.6b | 1.1c | 5.00 | |
14 | 55.0 | 43.2 | 120.8b | 1.5bc | 4.45 | |
21 | 56.7 | 43.8 | 119.5c | 1.9b | 3.00 | |
E. maxima (mL L−1) | ||||||
0 | 55.8 | 44.5a | 120.3 | 1.31 | 3.96b | |
1 | 55.3 | 44.3ab | 120.5 | 1.08 | 4.46a | |
2 | 54.9 | 43.7c | 120.9 | 1.30 | 4.58a | |
4 | 55.2 | 44.0bc | 120.7 | 1.33 | 4.42a | |
Storage (d a 4 °C) | ||||||
0 | 55.0b 1 | 45.2a | 121.5 | 0.69 | 5.00a | |
7 | 54.5b | 43.8b | 120.7 | 1.20 | 4.83ab | |
14 | 55.2b | 43.5c | 120.6 | 1.21 | 4.46b | |
21 | 56.6a | 44.0b | 119.5 | 1.91 | 3.13c | |
E. maxima | ns 2 | *** | *** | ns | *** | |
Storage | * | *** | *** | *** | *** | |
E. maxima × Storage | ns | ns | *** | *** | ns |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
Plant height | 0.997 | 0.017 | 0.072 |
Stem diameter | 0.988 | 0.156 | 0.018 |
Plant FW | 0.986 | −0.158 | 0.049 |
Leaves FW | 0.989 | −0.027 | 0.145 |
Stem FW | 0.830 | −0.200 | −0.520 |
Roots FW | 0.794 | −0.607 | 0.002 |
S/R FW | 0.054 | 0.932 | 0.358 |
Plant DW | 0.955 | −0.147 | 0.256 |
Leaves DW | 0.948 | −0.164 | 0.273 |
Stem DW | 0.500 | −0.835 | −0.227 |
Root DW | 0.968 | 0.049 | 0.247 |
S/R DW | 0.480 | −0.860 | −0.173 |
Epigeal DM | −0.640 | −0.753 | 0.150 |
Root DM | −0.298 | 0.900 | 0.319 |
Yield | 0.992 | −0.035 | 0.125 |
Leaf yield (%) | 0.553 | 0.284 | 0.783 |
Leaf yield (kg) | 0.980 | −0.023 | 0.195 |
WUE | 0.988 | −0.134 | −0.073 |
NUE | 0.986 | −0.043 | −0.159 |
Leaf N. | 0.987 | 0.033 | −0.155 |
Leaf width | 0.990 | −0.021 | 0.141 |
Plant area | 0.907 | 0.418 | −0.040 |
Leaf area | 0.788 | 0.616 | 0.019 |
SLA | 0.282 | 0.895 | −0.347 |
Stomatal conductance | 0.928 | 0.054 | −0.368 |
L* | −0.835 | 0.487 | −0.256 |
Chroma | 0.315 | 0.408 | −0.857 |
Hue° | 0.831 | −0.523 | 0.190 |
SSC | 0.315 | 0.909 | 0.274 |
TA | −0.927 | −0.352 | 0.127 |
Ascorbic acid | 0.982 | 0.145 | −0.124 |
NO3− | −0.440 | −0.747 | 0.498 |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
Weight loss | 0.976 | −0.020 | 0.066 |
SSC | 0.155 | 0.827 | 0.300 |
TA | 0.819 | −0.074 | 0.283 |
Ascorbic acid | −0.267 | 0.516 | 0.674 |
NO3− | −0.155 | −0.610 | 0.724 |
L* | 0.934 | 0.027 | −0.182 |
Chroma | −0.419 | −0.252 | 0.259 |
Hue | −0.946 | 0.011 | −0.143 |
∆E | 0.936 | 0.078 | −0.124 |
OQ | −0.912 | 0.218 | −0.228 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miceli, A.; Vetrano, F.; Moncada, A. Influence of Ecklonia maxima Extracts on Growth, Yield, and Postharvest Quality of Hydroponic Leaf Lettuce. Horticulturae 2021, 7, 440. https://doi.org/10.3390/horticulturae7110440
Miceli A, Vetrano F, Moncada A. Influence of Ecklonia maxima Extracts on Growth, Yield, and Postharvest Quality of Hydroponic Leaf Lettuce. Horticulturae. 2021; 7(11):440. https://doi.org/10.3390/horticulturae7110440
Chicago/Turabian StyleMiceli, Alessandro, Filippo Vetrano, and Alessandra Moncada. 2021. "Influence of Ecklonia maxima Extracts on Growth, Yield, and Postharvest Quality of Hydroponic Leaf Lettuce" Horticulturae 7, no. 11: 440. https://doi.org/10.3390/horticulturae7110440
APA StyleMiceli, A., Vetrano, F., & Moncada, A. (2021). Influence of Ecklonia maxima Extracts on Growth, Yield, and Postharvest Quality of Hydroponic Leaf Lettuce. Horticulturae, 7(11), 440. https://doi.org/10.3390/horticulturae7110440