Genome-Wide Identification, Characterization and Expression Profiling of Aluminum-Activated Malate Transporters in Eriobotrya japonica Lindl.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Characterization of ALMT Genes
2.2. Phylogenetic Analyses
2.3. Gene Structure, Conserved Motif and Promoter Region Analyses of ALMT Genes
2.4. Chromosomal Mapping and Syntenic Analysis of ALMTs in Loquat
2.5. Ka and Ks Calculation
2.6. RNA Isolation and Quantitative RT-PCR Analysis
3. Results
3.1. Identification and Characterization of ALMT Gene Family in Loquat
3.2. Phylogenetic Analysis of ALMT Genes in Four Rosacea Species and A. thaliana
3.3. Gene Structure and Conserved Motif Analyses of EjALMT Genes
3.4. Promoter Region Analysis of ALMTs in Loquat
3.5. Chromosomal Mapping and Syntenic Analysis of ALMTs in Loquat
3.6. Expression Patterns of EjALMT Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Badenes, M.L.; Canyamas, T.; Romero, C.; Soriano, J.M.; Martínez, J.; Llácer, G. Genetic diversity in european collection of loquat (Eriobotrya japonica Lindl.). Acta Hortic. 2003, 620, 169–174. [Google Scholar] [CrossRef]
- Tian, S.; Qin, G.; Li, B. Loquat. In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Woodhead Publishing Limited: Oxford, UK, 2011; p. 444. [Google Scholar]
- LaRue, R.G. Loquat Fact Sheet. Available online: http://fruitsandnuts.ucdavis.edu/dsadditions/Loquat_Fact_Sheet/ (accessed on 30 January 2020).
- Tian, S.; Li, B.; Ding, Z. Physiological properties and storage technologies of loquat fruit. Fresh Prod. 2007, 1, 76–81. [Google Scholar]
- Lu, Z.M.; Zhang, Z.L.; Wu, W.X.; Li, W.H. Effect of low temperatures on postharvest loquat fruit. Acta Hortic. 2007, 750, 483–486. [Google Scholar] [CrossRef]
- Sharma, T.; Dreyer, I.; Kochian, L.; Piñeros, M.A. The ALMT Family of Organic Acid Transporters in Plants and Their Involvement in Detoxification and Nutrient Security. Front. Plant Sci. 2016, 7, 1488. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Yuan, Y.; Gao, M.; Qi, T.; Li, M.; Ma, F. Genome-Wide Identification, Molecular Evolution, and Expression Divergence of Aluminum-Activated Malate Transporters in Apples. Int. J. Mol. Sci. 2018, 19, 2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wei, X.; Ali, M.M.; Rizwan, H.M.; Li, B.; Li, H.; Jia, K.; Yang, X.; Ma, S.; Li, S.; et al. Changes in the Content of Organic Acids and Expression Analysis of Citric Acid Accumulation-Related Genes during Fruit Development of Yellow (Passiflora edulis f. flavicarpa) and Purple (Passiflora edulis f. edulis) Passion Fruits. Int. J. Mol. Sci. 2021, 22, 5765. [Google Scholar] [CrossRef]
- Meyer, S.; De Angeli, A.; Fernie, A.R.; Martinoia, E. Intra- and extra-cellular excretion of carboxylates. Trends Plant Sci. 2010, 15, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, P.R.; Skerrett, M.; Findlay, G.P.; Delhaize, E.; Tyerman, S.D. Aluminum activates an anion channel in the apical cells of wheat roots. Proc. Natl. Acad. Sci. USA 1997, 94, 6547–6552. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Liao, L.; Zheng, H.; Chen, J.; Wu, B.; Ogutu, C.; Li, S.; Korban, S.S.; Han, Y. Genes Encoding Aluminum-Activated Malate Transporter II and their Association with Fruit Acidity in Apple. Plant Genome 2015, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delhaize, E.; Craig, S.; Beaton, C.D.; Bennet, R.J.; Jagadish, V.C.; Randall, P.J. Aluminum Tolerance in Wheat (Triticum aestivum L.) (I. Uptake and Distribution of Aluminum in Root Apices). Plant Physiol. 1993, 103, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Delhaize, E.; Ryan, P.R.; Randall, P.J. Aluminum Tolerance in Wheat (Triticum aestivum L.) (II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices). Plant Physiol. 1993, 103, 695–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.F.; Zheng, S.J.; Matsumoto, H. Specific Secretion of Citric Acid Induced by Al Stress in Cassia tora L. Plant Cell Physiol. 1997, 38, 1019–1025. [Google Scholar] [CrossRef]
- Hoekenga, O.A.; Maron, L.G.; Pineros, M.A.; Cancado, G.M.A.; Shaff, J.; Kobayashi, Y.; Ryan, P.R.; Dong, B.; Delhaize, E.; Sasaki, T.; et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 9738–9743. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Kobayashi, Y.; Sugimoto, M.; Lakshmanan, V.; Iuchi, S.; Kobayashi, M.; Bais, H.P.; Koyama, H. Characterization of the Complex Regulation of AtALMT1 Expression in Response to Phytohormones and Other Inducers. Plant Physiol. 2013, 162, 732–740. [Google Scholar] [CrossRef] [Green Version]
- Kovermann, P.; Meyer, S.; Hörtensteiner, S.; Picco, C.; Scholz-Starke, J.; Ravera, S.; Lee, Y.; Martinoia, E. The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J. 2007, 52, 1169–1180. [Google Scholar] [CrossRef]
- Meyer, S.; Scholz-Starke, J.; De Angeli, A.; Kovermann, P.; Burla, B.; Gambale, F.; Martinoia, E. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J. 2011, 67, 247–257. [Google Scholar] [CrossRef] [Green Version]
- De Angeli, A.; Zhang, J.; Meyer, S.; Martinoia, E. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat. Commun. 2013, 4, 1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angeli, A.; Baetz, U.; Francisco, R.; Zhang, J.; Chaves, M.M.; Regalado, A. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta 2013, 238, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.M.; Anwar, R.; Shafique, M.W.; Yousef, A.F.; Chen, F. Exogenous Application of Mg, Zn and B Influences Phyto-Nutritional Composition of Leaves and Fruits of Loquat (Eriobotrya japonica Lindl.). Agronomy 2021, 11, 224. [Google Scholar] [CrossRef]
- Ali, M.M.; Li, B.; Zhi, C.; Yousef, A.F.; Chen, F. Foliar-Supplied Molybdenum Improves Phyto-Nutritional Composition of Leaves and Fruits of Loquat (Eriobotrya japonica Lindl.). Agronomy 2021, 11, 892. [Google Scholar] [CrossRef]
- Jiang, S.; An, H.; Xu, F.; Zhang, X. Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome. Gigascience 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Daccord, N.; Celton, J.-M.; Linsmith, G.; Becker, C.; Choisne, N.; Schijlen, E.; van de Geest, H.; Bianco, L.; Micheletti, D.; Velasco, R.; et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 2017, 49, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Chagné, D.; Crowhurst, R.N.; Pindo, M.; Thrimawithana, A.; Deng, C.; Ireland, H.; Fiers, M.; Dzierzon, H.; Cestaro, A.; Fontana, P.; et al. The Draft Genome Sequence of European Pear (Pyrus communis L. ‘Bartlett’). PLoS ONE 2014, 9, e92644. [Google Scholar] [CrossRef] [PubMed]
- Verde, I.; Jenkins, J.; Dondini, L.; Micali, S.; Pagliarani, G.; Vendramin, E.; Paris, R.; Aramini, V.; Gazza, L.; Rossini, L.; et al. The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 2017, 18, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, R.D.; Mistry, J.; Tate, J.; Coggill, P.; Heger, A.; Pollington, J.E.; Gavin, O.L.; Gunasekaran, P.; Ceric, G.; Forslund, K.; et al. The Pfam protein families database. Nucleic Acids Res. 2010, 38, D211–D222. [Google Scholar] [CrossRef] [PubMed]
- Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, X.; Jing, Y.; Shahid, M.Q.; He, Y.; Baloch, F.S.; Lin, S.; Yang, X. Identification, phylogenetic analysis, and expression patterns of the SAUR gene family in loquat (Eriobotrya japonica). Turkish J. Agric. For. 2020, 44, 15–23. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genomics. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Akhunov, E.D.; Sehgal, S.; Liang, H.; Wang, S.; Akhunova, A.R.; Kaur, G.; Li, W.; Forrest, K.L.; See, D.; Šimková, H.; et al. Comparative Analysis of Syntenic Genes in Grass Genomes Reveals Accelerated Rates of Gene Structure and Coding Sequence Evolution in Polyploid Wheat. Plant Physiol. 2012, 161, 252–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligaba, A.; Katsuhara, M.; Ryan, P.R.; Shibasaka, M.; Matsumoto, H. The BnALMT1 and BnALMT2 Genes from Rape Encode Aluminum-Activated Malate Transporters That Enhance the Aluminum Resistance of Plant Cells. Plant Physiol. 2006, 142, 1294–1303. [Google Scholar] [CrossRef] [Green Version]
- Nakano, T.; Suzuki, K.; Fujimura, T.; Shinshi, H. Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Plant Physiol. 2006, 140, 411–432. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhou, H.; Ma, B.; Owiti, A.; Korban, S.S.; Han, Y. Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots. Sci. Rep. 2016, 6, 29153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriano, J.M.; Romero, C.; Vilanova, S.; Llácer, G.; Badenes, M.L. Genetic diversity of loquat germplasm ( Eriobotrya japonica (Thunb) Lindl) assessed by SSR markers. Genome 2005, 48, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shahid, M.Q.; Lin, S.; Chen, C.; Hu, C. Footprints of domestication revealed by RAD-tag resequencing in loquat: SNP data reveals a non-significant domestication bottleneck and a single domestication event. BMC Genomics 2017, 18, 354. [Google Scholar] [CrossRef] [Green Version]
- Linlin, X.; Xin, Q.; Mingyue, Z.; Shaoling, Z. Genome-Wide analysis of aluminum-activated malate transporter family genes in six rosaceae species, and expression analysis and functional characterization on malate accumulation in Chinese white pear. Plant Sci. 2018, 274, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Friedman, R.; Hughes, A.L. Pattern and Timing of Gene Duplication in Animal Genomes. Genome Res. 2001, 11, 1842–1847. [Google Scholar] [CrossRef]
- Moore, R.C.; Purugganan, M.D. The early stages of duplicate gene evolution. Proc. Natl. Acad. Sci. USA 2003, 100, 15682–15687. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, X.; Paterson, A.H. Genome and gene duplications and gene expression divergence: A view from plants. Ann. N. Y. Acad. Sci. 2012, 1256, 1–14. [Google Scholar] [CrossRef]
- Zhou, H.; Qi, K.; Liu, X.; Yin, H.; Wang, P.; Chen, J.; Wu, J.; Zhang, S. Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species. Mol. Genet. Genomics 2016, 291, 1727–1742. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhang, H.; Li, J.; Tao, S.; Qiao, X.; Korban, S.S.; Zhang, S.; Wu, J. Genome-wide analysis and characterization of molecular evolution of the HCT gene family in pear (Pyrus bretschneideri). Plant Syst. Evol. 2017, 303, 71–90. [Google Scholar] [CrossRef]
- Freeling, M. Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-Genome, Segmental, or by Transposition. Annu. Rev. Plant Biol. 2009, 60, 433–453. [Google Scholar] [CrossRef]
- Du, D.; Hao, R.; Cheng, T.; Pan, H.; Yang, W.; Wang, J.; Zhang, Q. Genome-Wide Analysis of the AP2/ERF Gene Family in Prunus mume. Plant Mol. Biol. Report. 2013, 31, 741–750. [Google Scholar] [CrossRef]
- Guo, C.; Guo, R.; Xu, X.; Gao, M.; Li, X.; Song, J.; Zheng, Y.; Wang, X. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J. Exp. Bot. 2014, 65, 1513–1528. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Z.; Shi, Z.; Zhang, S.; Ming, R.; Zhu, S.; Khan, M.A.; Tao, S.; Korban, S.S.; Wang, H.; et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013, 23, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Li, M.; Li, L.; Yin, H.; Wu, J.; Zhang, S. Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biol. 2015, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.G.; Li, X.L.; Xing, W.W.; He, Q.; Liang, G.L. Occurence of natural triploids in loquat. Acta Hortic. 2007, 125–128. [Google Scholar] [CrossRef]
- Wen, G.; Dang, J.; Xie, Z.; Wang, J.; Jiang, P.; Guo, Q.; Liang, G. Molecular karyotypes of loquat (Eriobotrya japonica) aneuploids can be detected by using SSR markers combined with quantitative PCR irrespective of heterozygosity. Plant Methods 2020, 16, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Martinoia, E.; De Angeli, A. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9. J. Biol. Chem. 2014, 289, 25581–25589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, S.; Mumm, P.; Imes, D.; Endler, A.; Weder, B.; Al-Rasheid, K.A.S.; Geiger, D.; Marten, I.; Martinoia, E.; Hedrich, R. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J. 2010, 63, 1054–1062. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Yamamoto, Y.; Ezaki, B.; Katsuhara, M.; Ahn, S.J.; Ryan, P.R.; Delhaize, E.; Matsumoto, H. A wheat gene encoding an aluminum-activated malate transporter. Plant J. 2004, 37, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Sasaki, T.; Sivaguru, M.; Yamamoto, Y.; Osawa, H.; Ahn, S.J.; Matsumoto, H. Evidence for the Plasma Membrane Localization of Al-activated Malate Transporter (ALMT1). Plant Cell Physiol. 2005, 46, 812–816. [Google Scholar] [CrossRef] [Green Version]
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
EVM0037970.1 | TGATGCAGTCGATCGAAGAG | TGGTCCAAACTTGGAAGGAG |
EVM0000569.1 | AAAGGGTAGGATGCGAAGGT | AATCTCCCAGCTTTCCGAAT |
EVM0022757.1 | GCGGTGATAACCGTGGTAGT | AAAGATCCCAAGCACAATGG |
EVM0040588.1 | ATGAGACGATGCAACCAACA | TCCTTTGCCAATTCTTCCAC |
EVM0036194.1 | GGCTTCAAGGAAATGACCAA | AGCAGAAGCGAACCAACTGT |
EVM0025487.1 | GTGGGAGCCTAGACATGGAA | TTTGTTGCTTTGGATGGTCA |
EVM0013481.1 | CTAGCATCCCTGGCACATTT | CGAATTCTCACTTCCGGGTA |
EVM0010307.1 | GCCGCAGAACTGGTAAGAAG | GGTGACATCGGAGAAGGTGT |
EVM0044994.1 | AATGCCATGTGGGCAGTTAT | ATCAAATCGGGCTTTCACTG |
EVM0024781.1 | CAAGAGAAGGAAGCGATTGG | CCAACTTTGAGGCAATGGAT |
EVM0001186.1 | TGCAGGTATGGAAATGGACA | CCAACTTTCAAGGCATGGAT |
EVM0008191.1 | GACTTGGGCTTCAACAGCTC | TTTTCGAGGATCCGAATGAC |
EVM0017192.1 | ATTTGCAGTCTGGGAACCAC | TCTCCACTTTCTTGGCGAGT |
EVM0037785.1 | GGAGCTCCAGAGAGTTGGTG | TTCCCTGGGACGTACTTCAG |
EVM0008737.1 | AGTACGGCTTTCGGGTTTTT | CAGATCCTCTCCCGACCATA |
EVM0028408.1 | TGGGAAAGCATTGAAGGAAC | GTGTGCCAGGGATGCTAGTT |
EVM0021601.1 | GGAAGGTTTTGGGGATGAAT | GGTGAGGTTTCCGATCTTGA |
EVM0017728.1 | TGTGATAGTGCCCGAATTGA | CCAGCAAGCTTTCCAAGTTC |
EVM0022795.1 | AACTATTCCGGCAGATGTGG | ACTAGGGCAACTCCCACCTT |
EVM0016148.1 | GAAGTTCTTGAGGCCACAGC | CAATCCTCCCCAACTCTTCA |
EVM0043758.1 | ACCCGATTAGGACAGCATTG | CTATAGGCAGGCTCGTCTGG |
EVM0012726.1 | GGTGCCATGATCTTCATCCT | TGAAATAATCCGCCACACAA |
EVM0012851.1 | TATTGAACGCGGATGATGAA | AAACACCTGTGGGCAAGTTC |
EVM0040195.1 | CGATGGTATTGGTGTTGCAG | AAAGATCCCAAGCACAATGG |
Gene | Amino Acids | MW (kDa) | pI | GRAVY | Instability Index | Aliphatic Index |
---|---|---|---|---|---|---|
EVM0037970.1 | 380 | 41.99 | 6.27 | 0.301 | 35.99 | 108.47 |
EVM0000569.1 | 597 | 66.76 | 6.82 | −0.053 | 37.35 | 89.82 |
EVM0022757.1 | 494 | 53.99 | 8 | 0.24 | 36.62 | 108.97 |
EVM0040588.1 | 423 | 46.96 | 8.05 | 0.128 | 39.83 | 105.77 |
EVM0036194.1 | 426 | 46.54 | 6.39 | 0.245 | 36.49 | 105.96 |
EVM0025487.1 | 484 | 53.45 | 8.73 | 0.06 | 39.54 | 95.7 |
EVM0013481.1 | 472 | 51.73 | 8.59 | 0.111 | 46.41 | 101.46 |
EVM0010307.1 | 544 | 60.78 | 8.32 | −0.066 | 35.92 | 92.48 |
EVM0044994.1 | 497 | 54.54 | 7.06 | 0.17 | 30.79 | 96.38 |
EVM0024781.1 | 318 | 34.57 | 9.14 | 0.347 | 26.76 | 98.46 |
EVM0001186.1 | 532 | 59.84 | 8.23 | 0.005 | 33.64 | 96.99 |
EVM0008191.1 | 568 | 63.94 | 6.07 | −0.001 | 37.76 | 93.71 |
EVM0017192.1 | 428 | 47.86 | 8.51 | 0.038 | 28.94 | 93.41 |
EVM0037785.1 | 568 | 63.99 | 5.92 | −0.038 | 37.89 | 91.81 |
EVM0008737.1 | 521 | 58.57 | 8.3 | 0.072 | 22.76 | 91.69 |
EVM0028408.1 | 472 | 51.74 | 8.65 | 0.198 | 43.07 | 101.04 |
EVM0021601.1 | 485 | 53.74 | 9.34 | 0.052 | 33.31 | 96.72 |
EVM0017728.1 | 433 | 48.09 | 8.05 | 0.117 | 36.82 | 104.46 |
EVM0022795.1 | 430 | 47.55 | 6.29 | 0.225 | 36.57 | 107.42 |
EVM0016148.1 | 532 | 59.57 | 8.22 | −0.008 | 32.81 | 95.71 |
EVM0043758.1 | 525 | 58.76 | 6.52 | −0.112 | 39.43 | 92.48 |
EVM0012726.1 | 472 | 51.76 | 6.99 | 0.216 | 31.96 | 97.94 |
EVM0012851.1 | 602 | 67.57 | 7.9 | −0.086 | 42.21 | 89.07 |
EVM0040195.1 | 494 | 53.73 | 7.21 | 0.248 | 33.36 | 107.98 |
Gene 1 | Gene 2 | Ka | Ks | Ka/Ks (ω) | Selection | Mode of Duplication |
---|---|---|---|---|---|---|
EVM0008191.1 | EVM0037785.1 | 0.041208 | 0.190842 | 0.215929 | Purifying-selection | Segmental |
EVM0017192.1 | EVM0008737.1 | 0.055098 | 0.212041 | 0.259844 | Purifying-selection | Segmental |
EVM0000569.1 | EVM0012851.1 | 0.039116 | 0.149982 | 0.260807 | Purifying-selection | Segmental |
EVM0010307.1 | EVM0043758.1 | 0.040579 | 0.210939 | 0.192371 | Purifying-selection | Segmental |
EVM0001186.1 | EVM0016148.1 | 0.030189 | 0.229507 | 0.131536 | Purifying-selection | Segmental |
EVM0037970.1 | EVM0022795.1 | 0.002296 | 0.011293 | 0.203339 | Purifying-selection | Tandem |
EVM0044994.1 | EVM0012726.1 | 0.067889 | 0.210349 | 0.322745 | Purifying-selection | Segmental |
EVM0022757.1 | EVM0040195.1 | 0.051023 | 0.101209 | 0.504133 | Purifying-selection | Segmental |
EVM0025487.1 | EVM0021601.1 | 0.067461 | 0.205104 | 0.328911 | Purifying-selection | Segmental |
EVM0013481.1 | EVM0028408.1 | 0.064163 | 0.17317 | 0.370524 | Purifying-selection | Segmental |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.M.; Alam, S.M.; Anwar, R.; Ali, S.; Shi, M.; Liang, D.; Lin, Z.; Chen, F. Genome-Wide Identification, Characterization and Expression Profiling of Aluminum-Activated Malate Transporters in Eriobotrya japonica Lindl. Horticulturae 2021, 7, 441. https://doi.org/10.3390/horticulturae7110441
Ali MM, Alam SM, Anwar R, Ali S, Shi M, Liang D, Lin Z, Chen F. Genome-Wide Identification, Characterization and Expression Profiling of Aluminum-Activated Malate Transporters in Eriobotrya japonica Lindl. Horticulturae. 2021; 7(11):441. https://doi.org/10.3390/horticulturae7110441
Chicago/Turabian StyleAli, Muhammad Moaaz, Shariq Mahmood Alam, Raheel Anwar, Sajid Ali, Meng Shi, Dangdi Liang, Zhimin Lin, and Faxing Chen. 2021. "Genome-Wide Identification, Characterization and Expression Profiling of Aluminum-Activated Malate Transporters in Eriobotrya japonica Lindl." Horticulturae 7, no. 11: 441. https://doi.org/10.3390/horticulturae7110441
APA StyleAli, M. M., Alam, S. M., Anwar, R., Ali, S., Shi, M., Liang, D., Lin, Z., & Chen, F. (2021). Genome-Wide Identification, Characterization and Expression Profiling of Aluminum-Activated Malate Transporters in Eriobotrya japonica Lindl. Horticulturae, 7(11), 441. https://doi.org/10.3390/horticulturae7110441