Effect of the Soil and Ripening Stage in Capsicum chinense var. Jaguar on the Content of Carotenoids and Vitamins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growing Conditions of the Habanero Pepper
2.2. Sample Preparation
2.3. Extraction of Carotenoids
2.4. Extraction of Vitamins
2.5. Total Carotenoids by Spectrometry UV-VIS
2.6. Determination of Antioxidant Activity
2.7. Chromatographic Analysis of Carotenoids
2.8. Chromatographic Analysis of Vitamins
2.9. Statistical Analysis
3. Results
3.1. Quantification of Carotenoids and Vitamins by UPLC
3.2. Total Carotenoids and Antioxidant Activity by Spectroscopy
3.3. Statistical Analysis
3.4. Analysis of the Ripening Stage Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
PTD | Temperature (°C) | Humidity (%) | Light (cd/m2) |
---|---|---|---|
320 | 41.8 ± 2.0 | 87.6 ± 1.7 | 4787.3 ± 320.3 |
334 | 38.7 ± 1.3 | 90.1 ± 1.5 | 4223.0 ± 273.0 |
Ripeness Degree | L | a | b | Humidity (%) | Length (mm) | Width (mm) |
---|---|---|---|---|---|---|
Unripe | 43.77 ± 1.72 b | −12.0 ± 0.9 c | 27.08 ± 3.24 c | 85.8 ± 1.1 a | 30.8 ± 2.1 a | 23.7 ± 2.8 a |
Half ripe | 49.93 ± 4.95 ab | 2.4 ± 2.8 b | 37.41 ± 3.81 b | 81.0 ± 2.3 b | 31.3 ± 1.8 a | 22.7 ± 1.6 a |
Ripe | 54.19 ± 2.06 a | 23.4 ± 4.4 a | 43. 9 ± 2.92 a | 76.8 ± 4.8 c | 32.0 ± 2.0 a | 23.2 ± 2.6 a |
Appendix B
References
- Nass, L.L.; Souza, K.R.; Ribeiro, C.S.; Reifschneider, F.J. Synthesis of a base population of Habanero pepper. Hortic. Bras. 2015, 33, 530–532. [Google Scholar] [CrossRef] [Green Version]
- Soares, R.S.; da Costa Ribeiro, C.S.; Ragassi, C.F.; de Carvalho, S.I.C.; Maldonade, I.R.; da Silva Filho, J.G.; Braz, L.T.; Reifschneider, F.J.B. New Brazilian lines of Habanero pepper (Capsicum chinense): Morpho-agronomic and biochemical characterization in different environments. Sci. Hortic. 2020, 261, 108941. [Google Scholar] [CrossRef]
- Ramírez-Meraz, M.; Arcos-Cavazos, G.; Méndez-Aguilar, R. Jaguar: Cultivate habanero pepper for Mexico. Rev. Mex. Cienc. Agríc. 2018, 9, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Noh-Medina, J.; Borges-Gómez, L.; Soria-Fregoso, M. Composición nutrimental de biomasa y tejidos conductores en chile Habanero. Trop. Subtrop. Agroecosyst. 2010, 12, 219–228. [Google Scholar]
- Medina-Torres, N.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T.; Patrón-Vázquez, J.A.; Rodríguez-Buenfil, I.; Pacheco, N. Changes in the physicochemical, rheological, biological, and sensorial properties of habanero chili pastes affected by ripening stage, natural preservative and thermal processing. Rev. Mex. Ing. Quim. 2021, 20, 195–212. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding. Phytochemistry 2011, 72, 1358–1370. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharmacother. 2004, 58, 100–110. [Google Scholar] [CrossRef]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015, 76, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, D.; Dugo, P.; Torre, G.; Bignardi, C.; Cavazza, A.; Corradini, C.; Dugo, G. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem. 2013, 140, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Troconis-Torres, I.G.; Rojas-López, M.; Hernández-Rodríguez, C.; Villa-Tanaca, L.; Maldonado-Mendoza, I.E.; Dorantes-Álvarez, L.; Tellez-Medina, D.; Jaramillo-Flores, M.E. Biochemical and molecular analysis of some commercial samples of chilli peppers from Mexico. J. Biomed. Biotechnol. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.J.; Crawford, S.G.; Field, C.J.; Simpson, J.S.A. Vitamins, Minerals, and Mood. Psychol. Bull. 2007, 133, 747–760. [Google Scholar] [CrossRef]
- De Sá Mendes, N.; de Branco Andrade Gonçalves, É.C. The role of bioactive components found in peppers. Trends Food Sci. Technol. 2020, 99, 229–243. [Google Scholar] [CrossRef]
- Kantar, M.B.; Anderson, J.E.; Lucht, S.A.; Mercer, K.; Bernau, V.; Case, K.A.; Le, N.C.; Frederiksen, M.K.; DeKeyser, H.C.; Wong, Z.Z.; et al. Vitamin variation in Capsicum spp. Provides opportunities to improve nutritional value of human diets. PLoS ONE 2016, 11, e0161464. [Google Scholar] [CrossRef] [PubMed]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Secondary metabolites of Capsicum species and their importance in the human diet. J. Nat. Prod. 2013, 76, 783–793. [Google Scholar] [CrossRef] [PubMed]
- del Gómez-García, M.R.; Ochoa-Alejo, N. Biochemistry and molecular Biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int. J. Mol. Sci. 2013, 14, 19025–19053. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Keum, Y.S. Significance of Genetic, Environmental, and Pre- and Postharvest Factors Affecting Carotenoid Contents in Crops: A Review. J. Agric. Food Chem. 2018, 66, 5310–5325. [Google Scholar] [CrossRef] [PubMed]
- Tamaoki, M.; Mukai, F.; Asai, N.; Nakajima, N.; Kubo, A.; Aono, M.; Saji, H. Light-controlled expression of a gene encoding L-galactono-γ-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Sci. 2003, 164, 1111–1117. [Google Scholar] [CrossRef]
- Chennupati, P.; Seguin, P.; Liu, W. Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations. J. Agric. Food Chem. 2011, 59, 13081–13088. [Google Scholar] [CrossRef]
- Kanwischer, M.; Porfirova, S.; Bergmüller, E.; Dörmann, P. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol. 2005, 137, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Zúñiga, F.; Jiménez-Osornio, J.; Navarro-Alberto, J.; Manu, A.; Lozano, R. Micro-Relief and Soil Color as Diagnostic Properties in Carstic Leptosols. Terra 2003, 21, 1–11. [Google Scholar]
- Palma-López, D.J.; Bautista, F. Technology and local wisdom: The Maya soil classification app. Boletín de la Sociedad Geológica Mexicana 2019, 71, 249–260. [Google Scholar] [CrossRef]
- Oney-Montalvo, J.E.; Uc-Varguez, A.; Ramírez-Rivera, E.; Ramírez-Sucre, M.; Rodríguez-Buenfil, I.M. Influence of Soil Composition on the Profile and Content of Polyphenols in Habanero Peppers (Capsicum chinense Jacq.). Agronomy 2020, 10, 1234. [Google Scholar] [CrossRef]
- Medina-Lara, F.; Souza-Perera, R.; Martínez-Estévez, M.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M.; MacHado, I.E. Red and brown soils increase the development and content of nutrients in habanero pepper subjected to irrigation water with high electrical conductivity. HortScience 2019, 54, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Oney-Montalvo, J.E.; López-Domínguez, C.; Zamacona-Ruiz, M.; Gómez-Rincón, E.; Ramirez-Sucre, M.; Rodriguez-Buenfil, I.M. Metabolites present in Capsicum chinense in two stages of maturation cultivated in different types of soils in Yucatán, México. Bionatura 2018, 1, 1–13. [Google Scholar]
- Ye, J.; Feng, L.; Xiong, J.; Xiong, Y. Ultrasound-assisted extraction of corn carotenoids in ethanol. Int. J. Food Sci. Technol. 2011, 46, 2131–2136. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem Publisher: Teddington, Middlesex, UK, 2014; pp. 1–70. Available online: www.eurachem.org (accessed on 6 June 2021).
- Chel-Guerrero, D.L.; Oney-Montalvo, J.E.; Rodriguez-Buenfil, I.M. Phytochemical Characterization of By-Products of Habanero Pepper Grown in Two Different Types of Soils from Yucatán, Mexico. Plants 2021, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Delpino-Rius, A.; Eras, J.; Marsol-Vall, A.; Vilaró, F.; Balcells, M.; Canela-Garayoa, R. Ultra performance liquid chromatography analysis to study the changes in the carotenoid profile of commercial monovarietal fruit juices. J. Chromatogr. A 2014, 1331, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Gledhill, A. Analysis of Fat-Soluble Vitamins Using UPLC with PDA and the SQ Detector. Application Note: Waters. 2009. Available online: https://www.waters.com/webassets/cms/library/docs/720002021en.pdf (accessed on 6 June 2021).
- Rosa, A.; Deiana, M.; Casu, V.; Paccagnini, S.; Appendino, G.; Ballero, M.; Dessí, M.A. Antioxidant activity of capsinoids. J. Agric. Food Chem. 2002, 50, 7396–7401. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Gómez, K.R.; Ordoñez, Y.M.; Ancona, D.B. Polyphenols, Ascorbic Acid and Carotenoids Contents and Antioxidant Properties of Habanero Pepper (Capsicum chinense) Fruit. Food Nutr. Sci. 2013, 4, 47–54. [Google Scholar]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Gapper, N.E.; McQuinn, R.P.; Giovannoni, J.J. Molecular and genetic regulation of fruit ripening. Plant Mol. Biol. 2013, 82, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Matsufuji, H.; Ishikawa, K.; Nunomura, O.; Chino, M.; Takeda, M. Anti-oxidant content of different coloured sweet peppers, white, green, yellow, orange and red (Capsicum annuum L.). Int. J. Food Sci. Technol. 2007, 42, 1482–1488. [Google Scholar] [CrossRef]
- Oney-Montalvo, J.E.; Morozova, K.; Ferrentino, G.; Ramirez Sucre, M.O.; Rodríguez-Buenfil, I.M.; Scampicchio, M. Effects of local environmental factors on the spiciness of habanero chili peppers (Capsicum chinense Jacq.) by coulometric electronic tongue. Eur. Food Res. Technol. 2021, 247, 101–110. [Google Scholar] [CrossRef]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef]
- Topuz, A.; Ozdemir, F. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J. Food Compos. Anal. 2007, 20, 596–602. [Google Scholar] [CrossRef]
- Bae, H.; Jayaprakasha, G.K.; Jifon, J.; Patil, B.S. Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars. Food Chem. 2012, 134, 1912–1918. [Google Scholar] [CrossRef]
- Menichini, F.; Tundis, R.; Bonesi, M.; Loizzo, M.R.; Conforti, F.; Statti, G.; De Cindio, B.; Houghton, P.J.; Menichini, F. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chem. 2009, 114, 553–560. [Google Scholar] [CrossRef]
- Saha, S.; Walia, S.; Kundu, A.; Kaur, C.; Singh, J.; Sisodia, R. Capsaicinoids, tocopherol, and sterols content in chili (Capsicum sp.) by gas chromatographic-mass spectrometric determination. Int. J. Food Prop. 2015, 18, 1535–1545. [Google Scholar] [CrossRef] [Green Version]
- Bae, G.; Choi, G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu. Rev. Plant Biol. 2008, 59, 281–311. [Google Scholar] [CrossRef] [Green Version]
- Fanciullino, A.L.; Bidel, L.P.R.; Urban, L. Carotenoid responses to environmental stimuli: Integrating redox and carbon controls into a fruit model. Plant Cell Environ. 2014, 37, 273–289. [Google Scholar] [CrossRef] [PubMed]
Vitamins | Carotenoids | ||||||
---|---|---|---|---|---|---|---|
PTD | Soil | Ripening Stage | Vitamin C (mg/100 g) | Vitamin E (mg/100 g) | Lutein (mg/100 g) | β-Carotene (mg/100 g) | β-Cryptoxanthin (mg/100 g) |
320 | Red | Unripe | 72.44 ± 1.74 e | 4.24 ± 0.01 g | 29.13 ± 0.04 c | 63.59 ± 0.36 c | 14.65 ± 0.10 b |
Half ripe | 86.01 ± 3.72 c | 8.00 ± 0.04 c | 10.22 ± 0.15 f | 12.39 ± 0.36 f | 2.56 ± 0.04 d | ||
Ripe | 119.44 ± 4.72 a | 8.96 ± 0.03 b | 1.43 ± 0.06 i | 0.49 ± 0.00 i | 1.44 ± 0.05 e | ||
Black | Unripe | 66.61 ± 3.85 f | 3.67 ± 0.01 h | 25.43 ± 0.37 d | 56.08 ± 0.35 d | 10.76 ± 0.15 c | |
Half ripe | 73.43 ± 1.88 e | 7.06 ± 0.03 e | 7.43 ± 0.29 g | 7.30 ± 0.36 g | 1.52 ± 0.01 e | ||
Ripe | 103.89 ± 3.44 b | 9.69 ± 0.02 a | 1.55 ± 0.06 i | 0.00 ± 0.00 i | 1.54 ± 0.04 e | ||
334 | Red | Unripe | 67.99 ± 0.79 f | 5.57 ± 0.01 f | 49.47 ± 0.34 a | 99.92 ± 0.69 a | 20.93 ± 0.04 a |
Half ripe | 70.51 ± 4.27 e | 7.40 ± 0.01 d | 14.78 ± 0.14 e | 16.71 ± 0.00 e | 10.62 ± 0.02 c | ||
Ripe | 77.99 ± 0.45 d | 8.96 ± 0.01 b | 1.97 ± 0.02 h | 1.99 ± 0.00 h | 14.85 ± 0.05 b | ||
Black | Unripe | 48.36 ± 0.01 g | 5.66 ± 0.01 f | 43.95 ± 0.36 b | 82.63 ± 1.78 b | 19.34 ± 0.36 a | |
Half ripe | 51.27 ± 0.37 g | 6.94 ± 0.04 e | 14.09 ± 0.11 e | 15.52 ± 0.71 e | 10.23 ± 0.30 c | ||
Ripe | 72.91 ± 0.79 e | 9.44 ± 0.19 a | 2.15 ± 0.19 h | 1.76 ± 1.07 hi | 15.08 ± 0.02 b |
PTD | Soil | Ripening Stage | Antioxidant Activity (%) | Total Carotenoids (mg/100 g) |
---|---|---|---|---|
320 | Red | Unripe | 86.42 ± 0.21 d | 402.31 ± 0.62 g |
Half ripe | 87.18 ± 0.10 c | 373.01 ± 0.50 h | ||
Ripe | 84.43 ± 0.15 e | 294.19 ± 0.75 i | ||
Black | Unripe | 86.18 ± 0.10 d | 722.19 ± 0.84 a | |
Half ripe | 91.12 ± 0.06 a | 545.09 ± 1.10 d | ||
Ripe | 80.01 ± 0.06 f | 559.73 ± 1.71 d | ||
334 | Red | Unripe | 87.82 ± 0.17 c | 735.31 ± 0.84 a |
Half ripe | 88.14 ± 0.17 bc | 633.42 ± 1.31 b | ||
Ripe | 89.49 ± 0.05 ab | 474.68 ± 0.76 e | ||
Black | Unripe | 85.90 ± 0.10 d | 600.40 ± 0.87 c | |
Half ripe | 89.21 ± 0.22 ab | 473.59 ± 0.50 e | ||
Ripe | 88.07 ± 0.21 bc | 446.91 ± 1.24 f |
A: Ripening Stage | B: Soil | AxB | PTD | |
---|---|---|---|---|
Lutein | <0.0001 * | 0.2991 | 0.6118 | 0.0004 * |
β-cryptoxanthin | <0.0001 * | 0.1175 | 0.2195 | <0.0001 * |
β-carotene | <0.0001 * | 0.1234 | 0.3143 | 0.0009 * |
Vitamin C | <0.0001 * | 0.9946 | 0.2075 | <0.0001 * |
Vitamin E | <0.0001 * | 0.5503 | 0.0928 | 0.0896 |
Total carotenoids | 0.0204 * | 0.1457 | 0.6010 | 0.0999 |
Antioxidant activity (DPPH) | 0.0089 * | 0.5315 | 0.4010 | 0.0117 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oney Montalvo, J.E.; de Silva Madrigal, A.C.; Ramírez Sucre, M.O.; Rodríguez-Buenfil, I.M. Effect of the Soil and Ripening Stage in Capsicum chinense var. Jaguar on the Content of Carotenoids and Vitamins. Horticulturae 2021, 7, 442. https://doi.org/10.3390/horticulturae7110442
Oney Montalvo JE, de Silva Madrigal AC, Ramírez Sucre MO, Rodríguez-Buenfil IM. Effect of the Soil and Ripening Stage in Capsicum chinense var. Jaguar on the Content of Carotenoids and Vitamins. Horticulturae. 2021; 7(11):442. https://doi.org/10.3390/horticulturae7110442
Chicago/Turabian StyleOney Montalvo, Julio Enrique, Adriana Cristina de Silva Madrigal, Manuel Octavio Ramírez Sucre, and Ingrid Mayanin Rodríguez-Buenfil. 2021. "Effect of the Soil and Ripening Stage in Capsicum chinense var. Jaguar on the Content of Carotenoids and Vitamins" Horticulturae 7, no. 11: 442. https://doi.org/10.3390/horticulturae7110442
APA StyleOney Montalvo, J. E., de Silva Madrigal, A. C., Ramírez Sucre, M. O., & Rodríguez-Buenfil, I. M. (2021). Effect of the Soil and Ripening Stage in Capsicum chinense var. Jaguar on the Content of Carotenoids and Vitamins. Horticulturae, 7(11), 442. https://doi.org/10.3390/horticulturae7110442