Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree
Abstract
:1. Introduction
2. Occurrence and Role of Sterols in Plants
3. Molecular Structure of Sterols and Triterpene Diols
4. Sterol and Triterpene Diol Biosynthesis in Plants
5. Health Benefits of Sterols and Triterpene Diols
5.1. Plant Sterols and Cholesterol
5.2. Other Beneficial Effects of Sterols and Triterpene Diols
6. Sterols and Triterpene Diols in Olive Oil
6.1. Sterols and Triterpene Diols as Parameters of Authenticity
6.2. Methods of Analysis of Sterols and Triterpene Diols
- Saponification and extraction of the unsaponifiable fraction of olive oil by liquid–liquid extraction with diethyl ether, followed by additional dealkalization and dehydration of the extract;
- Separation of sterols and triterpene diols from other groups of compounds of the unsaponifiable fraction (aliphatic and triterpenic alcohols, tocopherols, polyphenols) by thin layer chromatography (TLC) using silica gel plates;
- Elution of sterols and triterpene diols from the corresponding silica band by organic solvent, derivatization into trimethylsilyl ethers, and gas chromatographic (GC) separation;
- Detection of sterols and triterpene diols using a gas chromatograph with a flame ionization detector and identification by comparison with a reference chromatogram from the official method and retention times relative to an internal standard;
- Quantification based on an internal standard (α-cholestanol or betulin) added into the sample at the beginning of analysis, assuming a response factor equal to one.
7. Factors Affecting the Content and Composition of Sterols and Triterpene Diols in Olive Oil
7.1. Influence of Variety
7.2. Influence of Ripening Degree
7.3. Influence of Other Factors
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oliveras-López, M.-J.; Berná, G.; Jurado-Ruiz, E.; La López-García de Serrana, H.; Martín, F. Consumption of extra-virgin olive oil rich in phenolic compounds has beneficial antioxidant effects in healthy human adults. J. Funct. Foods 2014, 10, 475–484. [Google Scholar] [CrossRef]
- Rallo, L.; Díez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive oil consumption and human health: A narrative review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef] [PubMed]
- International Olive Council: Madrid, Spain: World Olive Oil Figures. Olive Oil Production. Issue November 2020. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2020/12/HO-W901-23-11-2020-P.pdf (accessed on 10 September 2021).
- International Olive Council, Madrid, Spain: EU Olive Oil Figures: Olive Oil Production. Issue November 2020. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2020/12/HO-CE901-23-11-2020-P-2.pdf (accessed on 10 September 2021).
- Rossi, R. The EU Olive and Olive Oil Sector. Main Features, Challenges and Prospects; European Parliamentary Research Service: Brussels, Belgium, 2017; Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2017/608690/EPRS_BRI(2017)608690_EN.pdf (accessed on 7 October 2021).
- Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Di Maio, I.; Selvaggini, R.; Taticchi, A. biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2013, 3, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.-M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- Manai-Djebali, H.; Oueslati, I. Olive Oil Phytosterols and Human Health. In Olive Oil Sensory Characteristics, Composition and Importance in Human Health; Fritjof, T., Henning, B., Eds.; Nova Biomedical: New York, NY, USA, 2017; pp. 39–74. ISBN 978-1-53612-563-4. [Google Scholar]
- European Economic Community. Commission Regulation (EEC) No 2568/91 of 11 July 1991 (and later modifications) on the characteristics of olive oil and olive-residue oil and the relevant methods of analysis. Off. J. Eur. Union 1991, L248, 1–83. [Google Scholar]
- European Union. Regulation (EU) No 1151/2012 of the European parliament and of the Council of 21 November 2012 (and later modifications) on quality schemes for agricultural products and foodstuffs. Off. J. Eur. Union 2012, L343, 1–29. [Google Scholar]
- Koutsaftakis, A.; Kotsifaki, F.; Stefanoudaki, E. Effect of extraction system, stage of ripeness, and kneading temperature on the sterol composition of virgin olive oils. J. Am. Oil Chem. Soc. 1999, 76, 1477–1481. [Google Scholar] [CrossRef]
- Guillaume, C.; Ravetti, L.; Ray, D.L.; Johnson, J. Technological factors affecting sterols in Australian olive oils. J. Am. Oil Chem. Soc. 2012, 89, 29–39. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Louadj, L.; Poiana, M.; Macario, A. Composition en stérols des huiles extraites d’olives de cultivars de la province de Reggio Calabria (Sud d’Italie). Riv. Ital. Sostanze Grasse 2012, 89, 177–183. [Google Scholar]
- Schaller, H. New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol. Biochem. 2004, 42, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Lukić, M.; Lukić, I.; Sladonja, B.; Piližota, V. Variability of 4-monomethylsterols and 4,4′-dimethylsterols in olive oil and their use as indicators of olive variety, ripening degree, and oil storage temperature. J. Agric. Food Chem. 2015, 63, 5499–5508. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Belwal, T.; Li, L.; Limwachiranon, J.; Liu, X.; Luo, Z. Phytosterols and their derivatives: Potential health-promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1243–1267. [Google Scholar] [CrossRef]
- Mongrand, S.; Stanislas, T.; Bayer, E.M.F.; Lherminier, J.; Simon-Plas, F. Membrane rafts in plant cells. Trends Plant Sci. 2010, 15, 656–663. [Google Scholar] [CrossRef]
- Oklestkova, J.; Rárová, L.; Kvasnica, M.; Strnad, M. Brassinosteroids: Synthesis and biological activities. Phytochem. Rev. 2015, 14, 1053–1072. [Google Scholar] [CrossRef]
- Valitova, J.N.; Sulkarnayeva, A.G.; Minibayeva, F.V. Plant sterols: Diversity, biosynthesis, and physiological functions. Biochemistry 2016, 81, 819–834. [Google Scholar] [CrossRef]
- Wojciechowski, Z.A. Biochemistry of phytosterol conjugates. In Physiology and Biochemistry of Sterols; Patterson, G.W., Nes, D.W., Eds.; American Oil Chemists’ Society: Champaign, IL, USA, 1991; pp. 361–395. ISBN 9781003041023. [Google Scholar]
- Goodwin, T.W. Biosynthesis of sterols. In The Biochemistry of Plants; Stumpf, P.K., Conn, E.E., Eds.; Academic Press: London, UK, 1980; pp. 485–507. ISBN 0-12-675404-7. [Google Scholar]
- International Union of Pure and Applied Chemistry and International Union of Biochemistry Joint Commission on Biochemical Nomenclature. Nomenclature of steroids (recommendations 1989). Pure Appl. Chem. 1989, 61, 1783–1822. [Google Scholar] [CrossRef]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Food Chemistry, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 224–225. ISBN 3-540-40818-5. [Google Scholar]
- McCaskill, D.; Croteau, R. Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol. 1998, 16, 349–355. [Google Scholar] [CrossRef]
- Hartmann, M. Plant sterols and the membrane environment. Trends Plant Sci. 1998, 3, 170–175. [Google Scholar] [CrossRef]
- Rufino-Palomares, E.E.; Perez-Jimenez, A.; Reyes-Zurita, F.J.; Garcia-Salguero, L.; Mokhtari, K.; Herrera-Merchan, A.; Medina, P.; Peragon, J.; Lupianez, A.J. Anti-cancer and anti-angiogenic properties of various natural pentacyclic tri-terpenoids and some of their chemical derivatives. Curr. Org. Chem. 2015, 19, 919–947. [Google Scholar] [CrossRef]
- Berger, A.; Jones, P.J.H.; Abumweis, S.S. Plant sterols: Factors affecting their efficacy and safety as functional food ingredients. Lipids Health Dis. 2004, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Woyengo, T.A.; Ramprasath, V.R.; Jones, P.J.H. Anticancer effects of phytosterols. Eur. J. Clin. Nutr. 2009, 63, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Ramprasath, V.R.; Awad, A.B. Role of phytosterols in cancer prevention and treatment. J. AOAC Int. 2015, 98, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.W. Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks. Proc. Soc. Exp. Biol. Med. 1951, 78, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.B.; Grundy, S.M.; Jones, P.; Law, M.; Miettinen, T.; Paoletti, R. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin. Proc. 2003, 78, 965–978. [Google Scholar] [CrossRef] [Green Version]
- Ostlund, R.E. Phytosterols in human nutrition. Annu. Rev. Nutr. 2002, 22, 533–549. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Executive summary of the third report of the National Cholesterol Education Program (NCEP). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Cabral, C.E.; Klein, M.R.S.T. Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arq. Bras. Cardiol. 2017, 109, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Franczyk, B.; Olszewski, R.; Banach, M.; Gluba-Brzozka, A. The use of plant sterols and stanols as lipid-lowering agents in cardiovascular disease. Curr. Pharm. Des. 2017, 23, 2488–2495. [Google Scholar] [CrossRef]
- Othman, R.A.; Moghadasian, M.H. Beyond cholesterol-lowering effects of plant sterols: Clinical and experimental evidence of anti-inflammatory properties. Nutr. Rev. 2011, 69, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Nashed, B.; Yeganeh, B.; HayGlass, K.T.; Moghadasian, M.H. Antiatherogenic effects of dietary plant sterols are associated with inhibition of proinflammatory cytokine production in Apo E-KO mice. J. Nutr. 2005, 135, 2438–2444. [Google Scholar] [CrossRef] [Green Version]
- Rocha, V.Z.; Ras, R.T.; Gagliardi, A.C.; Mangili, L.C.; Trautwein, E.A.; Santos, R.D. Effects of phytosterols on markers of inflammation: A systematic review and meta-analysis. Atherosclerosis 2016, 248, 76–83. [Google Scholar] [CrossRef]
- Radika, M.K.; Viswanathan, P.; Anuradha, C.V. Nitric oxide mediates the insulin sensitizing effects of β-sitosterol in high fat diet-fed rats. Nitric Oxide 2013, 32, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Sharma, A.K.; Dobhal, M.P.; Sharma, M.C.; Gupta, R.S. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J. Diabetes 2011, 3, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Saeidnia, S.; Manayi, A.; Gohari, A.R.; Abdollahi, M. The story of beta-sitosterol—A review. Eur. J. Med. Plants 2014, 4, 590–609. [Google Scholar] [CrossRef]
- Bin Sayeed, M.S.; Karim, S.M.R.; Sharmin, T.; Morshed, M.M. Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: A plant-derived orphan phytosterol. Medicines 2016, 3, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, M.E.; Wenzel, U.; Daniel, H.; Planas, J.M. Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells. Mol. Nutr. Food Res. 2008, 52, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wesemann, S.; Krenn, L.; Ladurner, A.; Heiss, E.H.; Dirsch, V.M.; Atanasov, A.G. Erythrodiol, an olive oil constituent, increases the half-life of ABCA1 and enhances cholesterol efflux from THP-1-derived macrophages. Front. Pharmacol. 2017, 8, 375. [Google Scholar] [CrossRef]
- Carmo, J.; Cavalcante-Araújo, P.; Silva, J.; Ferro, J.; Correia, A.C.; Lagente, V.; Barreto, E. Uvaol improves the functioning of fibroblasts and endothelial cells and accelerates the healing of cutaneous wounds in mice. Molecules 2020, 25, 4982. [Google Scholar] [CrossRef] [PubMed]
- Du, S.-Y.; Huang, H.-F.; Li, X.-Q.; Zhai, L.-X.; Zhu, Q.-C.; Zheng, K.; Song, X.; Xu, C.-S.; Li, C.-Y.; Li, Y.; et al. Anti-inflammatory properties of uvaol on DSS-induced colitis and LPS-stimulated macrophages. Chin. Med. 2020, 15, 43. [Google Scholar] [CrossRef]
- Bonel-Pérez, G.C.; Pérez-Jiménez, A.; Gris-Cárdenas, I.; Parra-Pérez, A.M.; Lupiáñez, J.A.; Reyes-Zurita, F.J.; Siles, E.; Csuk, R.; Peragón, J.; Rufino-Palomares, E.E. Antiproliferative and pro-apoptotic effect of uvaol in human hepatocarcinoma HepG2 cells by affecting G0/G1 cell cycle arrest, ROS production and AKT/PI3K signaling pathway. Molecules 2020, 25, 4254. [Google Scholar] [CrossRef]
- International Olive Council, Madrid, Spain: Trade Standard Applying to Olive Oils and Olive Pomace Oils; International Olive Council (COI/T.15/NC No 3/Rev. 16 June 2021). Available online: https://www.internationaloliveoil.org/wp-content/uploads/2021/07/COI-T15-NC3-REV-16-2021-_ENG.pdf (accessed on 7 October 2021).
- Codex Alimentarius Commission, Geneva, Switzerland: Codex Standard for Named Vegetable Oils (Codex Stan 210-1999). Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf (accessed on 7 October 2021).
- Manai-Djebali, H.; Oueslati, I.; Martínez-Cañas, M.A.; Zarrouk, M.; Sánchez-Casas, J. Improvement of the sterol and triacylglycerol compositions of chemlali virgin olive oils through controlled crossing with mediterranean cultivars. J. Oleo Sci. 2018, 67, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, F.; Jímenez, B.; Ruíz, A.; Albi, M.A. Effect of olive ripeness on the oxidative stability of virgin olive oil extracted from the varieties Picual and Hojiblanca and on the different components involved. J. Agric. Food Chem. 1999, 47, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Ranalli, A.; Angerosa, F. Integral centrifuges for olive oil extraction. The qualitative characteristics of products. J. Am. Oil Chem. Soc. 1996, 73, 417–422. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Varona, I.; Albi, M.A. Relation of acidity and sensory quality with sterol content of olive oil from stored fruit. J. Agric. Food Chem. 2000, 48, 1106–1110. [Google Scholar] [CrossRef]
- Abu-Alruz, K.; Afaneh, I.A.; Quasem, J.M.; Hmidat, M.A.; Abbady, J.; Mazahreh, A.S. Factors affecting D-7-stigmastenol in Palestinian olive oil. J. Appl. Sci. 2011, 11, 797–805. [Google Scholar] [CrossRef]
- Goudjil, H.; Torrado, S.; Fontecha, J.; Martínez-Castro, I.; Fraga, M.; Juárez, M. Composition of cholesterol and its precursors in ovine milk. Lait 2003, 83, 153–160. [Google Scholar] [CrossRef]
- Mozzon, M.; Pacetti, D.; Frega, N.G.; Lucci, P. Crude palm oil from interspecific hybrid Elaeis oleifera × E. guineensis: Alcoholic constituents of unsaponifiable matter. J. Am. Oil Chem. Soc. 2015, 92, 717–724. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Capocasale, M. Sterol composition of tomato (Solanum lycopersicum L.) seed oil: The effect of cultivar. Int. Food Res. J. 2016, 23, 116–122. [Google Scholar]
- Grob, K.; Giuffré, A.M.; Leuzzi, U.; Mincione, B. Recognition of adulterated oil by direct analysis of the minor components. Eur. J. Lipid Sci. Technol. 1994, 8, 286–290. [Google Scholar] [CrossRef]
- Alonso, L.; Fontecha, J.; Lozada, L.; Juárez, M. Determination of mixtures in vegetable oils and milk fat by analysis of sterol fraction by gas chromatography. J. Am. Oil Chem. Soc. 1997, 74, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Al-Ismail, K.M.; Alsaed, A.K.; Ahmad, R.; Al-Dabbas, M. Detection of olive oil adulteration with some plant oils by GLC analysis of sterols using polar column. Food Chem. 2010, 121, 1255–1259. [Google Scholar] [CrossRef]
- Aparicio, R.; Morales, M.T.; Aparicio-Ruiz, R.; Tena, N.; García-González, D.L. Authenticity of olive oil: Mapping and comparing official methods and promising alternatives. Food Res. Int. 2013, 54, 2025–2038. [Google Scholar] [CrossRef]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2020, 105, 483–493. [Google Scholar] [CrossRef]
- Azadmard-Damirchi, S.; Dutta, P.C. Novel solid-phase extraction method to separate 4-desmethyl-, 4-monomethyl-, and 4,4′-dimethylsterols in vegetable oils. J. Chromatogr. A 2006, 1108, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Mariani, C.; Bellan, G.; Morchio, G.; Pellegrino, A. Free and esterified minor components of olive and hazelnut oils. Their possible use in detecting blends. Note III. Riv. Ital. Sostanze Grasse 1999, 76, 297–305. [Google Scholar]
- Cercaci, L.; Rodriguez-Estrada, M.; Lercker, G. Solid-phase extraction-thin-layer chromatography–gas chromatography method for the detection of hazelnut oil in olive oils by determination of esterified sterols. J. Chromatogr. A 2003, 985, 211–220. [Google Scholar] [CrossRef]
- International Olive Council. Determination of the Sterol Composition and Content and Alcoholic Compounds by Capillary Gas Chromatography (COI/T.20/ Doc. No 26/Rev., 5 June 2020); International Olive Council: Madrid, Spain, 2020. [Google Scholar]
- Codex Alimentarius Commission, Geneva, Switzerland. Codex Standard for Olive Oils and Olive Pomace Oils (Codex Stan 33. 1981). Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B33-1981%252FCXS_033e.pdf (accessed on 7 October 2021).
- International Organization for Standardization. Determination of Individual and Total Sterols Contents, Gas Chromatographic Method, Part 2: Olive Oils and Olive Pomace Oils (ISO 12228-2:2014); International Organisation for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- American Oil Chemists’ Society. Determination of the composition of the sterol fraction of animal and vegetable oils and fats by TLC and capillary GLC (AOCS Official Method Ch 6–91). In Methods and Recommended Practices of the AOCS, 6th ed.; Firestone, D., Ed.; AOCS Press: Champaign, IL, USA, 1997; pp. 1–5. [Google Scholar]
- Bianchi, G.; Giansante, L.; Shaw, A.; Kell, D.B. Chemometric criteria for the characterisation of Italian protected denomination of origin (DOP) olive oils from their metabolic profiles. Eur. J. Lipid Sci. Technol. 2001, 103, 141–150. [Google Scholar] [CrossRef]
- Giacometti, J. Determination of aliphatic alcohols, squalene, alpha-tocopherol and sterols in olive oils: Direct method involving gas chromatography of the unsaponifiable fraction following silylation. Analyst 2001, 126, 472–475. [Google Scholar] [CrossRef]
- Giacometti, J.; Milin, Č.; Giacometti, F.; Ciganj, Z. Characterisation of monovarietal oolive oils obtained from Croatian cvs. Drobnica and Buza during the ripening period. Foods 2018, 7, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navas-López, J.F.; Cano, J.; La Rosa, R.; de Velasco, L.; León, L. Genotype by environment interaction for oil quality components in olive tree. Eur. J. Agron. 2020, 119, 126115. [Google Scholar] [CrossRef]
- Olmo-García, L.; Polari, J.J.; Li, X.; Bajoub, A.; Fernández-Gutiérrez, A.; Wang, S.C.; Carrasco-Pancorbo, A. Deep insight into the minor fraction of virgin olive oil by using LC-MS and GC-MS multi-class methodologies. Food Chem. 2018, 261, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.A.S.; Baggio, S.R.; Mariutti, L.R.B.; Bragagnolo, N. One-step rapid extraction of phytosterols from vegetable oils. Food Res. Int. 2020, 130, 108891. [Google Scholar] [CrossRef] [PubMed]
- Purcaro, G.; Barp, L.; Beccaria, M.; Conte, L.S. Fingerprinting of vegetable oil minor components by multidimensional comprehensive gas chromatography with dual detection. Anal. Bioanal. Chem. 2015, 407, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Aloisi, I.; Zoccali, M.; Dugo, P.; Tranchida, P.Q.; Mondello, L. Fingerprinting of the unsaponifiable fraction of vegetable oils by using cryogenically-modulated comprehensive two-dimensional gas chromatography-high resolution time-of-flight mass spectrometry. Food Anal. Methods 2020, 13, 1523–1529. [Google Scholar] [CrossRef]
- Olmo-García, L.; Carrasco-Pancorbo, A. Chromatography-MS based metabolomics applied to the study of virgin olive oil bioactive compounds: Characterization studies, agro-technological investigations and assessment of healthy properties. Trends Anal. Chem. 2021, 135, 116153. [Google Scholar] [CrossRef]
- Cert, A.; Moreda, W.; García-Moreno, J. Determination of sterols and triterpenic dialcohols in olive oils using HPLC separation and GC analysis. Standardization of the analytical method. Grasas Aceites 1997, 48, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Cañabate-Díaz, B.; Segura Carretero, A.; Fernández-Gutiérrez, A.; Belmonte Vega, A.; Garrido Frenich, A.; Martínez Vidal, J.L.; Duran Martos, J. Separation and determination of sterols in olive oil by HPLC-MS. Food Chem. 2007, 102, 593–598. [Google Scholar] [CrossRef]
- Lerma-García, M.J.; Concha-Herrera, V.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F. Classification of extra virgin olive oils produced at La Comunitat Valenciana according to their genetic variety using sterol profiles established by high-performance liquid chromatography with mass spectrometry detection. J. Agric. Food Chem. 2009, 57, 10512–10517. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Dong, L.; Hurst, W.J.; van Breemen, R.B. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. Lipids 2013, 48, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.; Vergara-Barberán, M.; Lerma-García, M.J.; Herrero-Martínez, J.M.; Zarrouk, M.; Guerfel, M.; Simó-Alfonso, E.F. Sterol profiles of Tunisian virgin olive oils: Classification among different cultivars and maturity indexes. Eur. Food Res. Technol. 2018, 244, 675–684. [Google Scholar] [CrossRef]
- Lerma-García, M.J.; Simó-Alfonso, E.F.; Méndez, A.; Lliberia, J.L.; Herrero-Martínez, J.M. Classification of extra virgin olive oils according to their genetic variety using linear discriminant analysis of sterol profiles established by ultra-performance liquid chromatography with mass spectrometry detection. Food Res. Int. 2011, 44, 103–108. [Google Scholar] [CrossRef]
- Ghisoni, S.; Lucini, L.; Angilletta, F.; Rocchetti, G.; Farinelli, D.; Tombesi, S.; Trevisan, M. Discrimination of extra-virgin-olive oils from different cultivars and geographical origins by untargeted metabolomics. Food Res. Int. 2019, 121, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.B.; Rocchetti, G.; Montesano, D.; Ali, S.B.; Guasmi, F.; Grati-Kamoun, N.; Lucini, L. Discrimination of Tunisian and Italian extra-virgin olive oils according to their phenolic and sterolic fingerprints. Food Res. Int. 2018, 106, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Nestola, M.; Schmidt, T.C. Fully automated determination of the sterol composition and total content in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection. J. Chromatogr. A 2016, 1463, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Hatzakis, E.; Dagounakis, G.; Agiomyrgianaki, A.; Dais, P. A facile NMR method for the quantification of total, free and esterified sterols in virgin olive oil. Food Chem. 2010, 122, 346–352. [Google Scholar] [CrossRef]
- Özdemir, İ.S.; Dağ, Ç.; Özinanç, G.; Suçsoran, Ö.; Ertaş, E.; Bekiroğlu, S. Quantification of sterols and fatty acids of extra virgin olive oils by FT-NIR spectroscopy and multivariate statistical analyses. LWT 2018, 91, 125–132. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.M.; Tsimidou, M. Solid phase extraction: Applications to the chromatographic analysis of vegetable oils and fats. Grasas Aceites 2002, 53, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Verleyen, T.; Forcades, M.; Verhe, R.; Dewettinck, K.; Huyghebaert, A.; De Greyt, W. Analysis of free and esterified sterols in vegetable oils. J. Am. Oil Chem. Soc. 2002, 79, 117–122. [Google Scholar] [CrossRef]
- Grob, K.; Lanfranchi, M.; Mariani, F. Determination of free and esterified sterols and of wax esters in oils and fats by coupled liquid chromatography-gas chromatography. J. Chromatogr. A 1989, 471, 397–405. [Google Scholar] [CrossRef]
- Mariani, C.; Bellan, G.; Lestini, E.; Aparicio, R. The detection of the presence of hazelnut oil in olive oil by free and esterified sterols. Eur. Food Res. Technol. 2006, 223, 655–661. [Google Scholar] [CrossRef]
- Cunha, S.S.; Fernandes, J.O.; Oliveira, M.B.P.P. Quantification of free and esterified sterols in Portuguese olive oils by solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2006, 1128, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Valli, E.; Milani, A.; Srbinovska, A.; Moret, E.; Moret, S.; Bendini, A.; Moreda, W.; Toschi, T.G.; Lucci, P. In-house validation of an SPE-GC-FID method for the detection of free and esterified hydroxylated minor compounds in virgin olive oils. Foods 2021, 10, 1260. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Coca, R.B.; del Pérez-Camino, C.M.; Moreda, W. On the glucoside analysis: Simultaneous determination of free and esterified steryl glucosides in olive oil. Detailed analysis of standards as compulsory first step. Food Chem. 2013, 141, 1273–1280. [Google Scholar] [CrossRef] [Green Version]
- Rivera del Álamo, R.M.; Fregapane, G.; Aranda, F.; Gómez-Alonso, S.; Salvador, M.D. Sterol and alcohol composition of Cornicabra virgin olive oil: The campesterol content exceeds the upper limit of 4% established by EU regulations. Food Chem. 2004, 84, 533–537. [Google Scholar] [CrossRef]
- Sánchez Casas, J.; Osorio Bueno, E.; Montaño García, A.M.; Martinez Cano, M. Sterol and erythrodiol + uvaol content of virgin olive oils from cultivars of Extremadura (Spain). Food Chem. 2004, 87, 225–230. [Google Scholar] [CrossRef]
- Galeano Diaz, T.; Durán Merás, I.; Sánchez Casas, J.; Alexandre Franco, M.F. Characterization of virgin olive oils according to its triglycerides and sterols composition by chemometric methods. Food Control 2005, 16, 339–347. [Google Scholar] [CrossRef]
- López-Cortés, I.; Salazar-García, D.C.; Velázquez-Martí, B.; Salazar, D.M. Chemical characterization of traditional varietal olive oils in East of Spain. Food Res. Int. 2013, 54, 1934–1940. [Google Scholar] [CrossRef] [Green Version]
- Pardo, J.E.; Sena, E.; Cuesta, M.A.; Granell, J.D.; Valiente, J.; Alvarez-Ortí, M. Evaluation of potential and real quality of virgin olive oil from “Campos de Hellín” (Albacete, Spain). J. Am. Oil Chem. Soc. 2013, 90, 851–862. [Google Scholar] [CrossRef]
- Gómez-Coca, R.B.; Fernandes, G.D.; Del Aguila-Sánchez, C.; Del Pérez-Camino, M.C.; Moreda, W. Comparative study of phytosterol derivatives in monovarietal olive oils. J. Agric. Food Chem. 2014, 62, 5669–5674. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, M.; de Miguel, C.; Ranalli, A.; Franco, M.N.; Martínez, M.; Martín-Vertedor, D. Chemical composition and sensory evaluation of virgin olive oils from “Morisca” and “Carrasqueña” olive varieties. Grasas Aceites 2015, 66, e061. [Google Scholar] [CrossRef] [Green Version]
- Sena-Moreno, E.; Alvarez-Ortí, M.; Zied, D.C.; Pardo-Giménez, A.; Pardo, J.E. Olive oils from Campos de Hellin (Spain) exhibit significant varietal differences in fatty acid composition, sterol fraction, and oxidative stability. Eur. J. Lipid Sci. Technol. 2015, 117, 967–975. [Google Scholar] [CrossRef]
- Salazar-García, D.C.; Malheiro, R.; Pereira, J.A.; Lopéz-Cortés, I. Unexplored olive cultivars from the Valencian Community (Spain): Some chemical characteristics as a valorization strategy. Eur. Food Res. Technol. 2019, 245, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Pardo, J.E.; Tello, J.; Suárez, M.; Rabadán, A.; de Miguel, C.; Álvarez-Orti, M. Variety characterization and influence of olive maturity in virgin olive oils from the area assigned to the Protected Designation of Origin “Aceite de la Alcarria” (Spain). Agronomy 2020, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Kyçyk, O.; Aguilera, M.P.; Gaforio, J.J.; Jiménez, A.; Beltrán, G. Sterol composition of virgin olive oil of forty-three olive cultivars from the World Collection Olive Germplasm Bank of Cordoba. J. Sci. Food Agric. 2016, 96, 4143–4150. [Google Scholar] [CrossRef] [PubMed]
- Allouche, Y.; Jiménez, A.; Uceda, M.; Aguilera, M.P.; Gaforio, J.J.; Beltrán, G. Triterpenic content and chemometric analysis of virgin olive oils from forty olive cultivars. J. Agric. Food Chem. 2009, 57, 3604–3610. [Google Scholar] [CrossRef] [PubMed]
- Stefanoudaki, E.; Kotsifaki, F.; Koutsaftakis, A. Sensory and chemical profiles of three European olive varieties (Olea europea L); an approach for the characterisation and authentication of the extracted oils. J. Sci. Food Agric. 2000, 80, 381–389. [Google Scholar] [CrossRef]
- Ranalli, A.; Pollastri, L.; Contento, S.; Di Loreto, G.; Iannucci, E.; Lucera, L.; Russi, F. Sterol and alcohol components of seed, pulp and whole olive fruit oils. Their use to characterise olive fruit variety by multivariates. J. Sci. Food Agric. 2002, 82, 854–859. [Google Scholar] [CrossRef]
- Giansante, L.; Di Vincenzo, D.; Bianchi, G. Classification of monovarietal Italian olive oils by unsupervised (PCA) and supervised (LDA) chemometrics. J. Sci. Food Agric. 2003, 83, 905–911. [Google Scholar] [CrossRef]
- Marini, F.; Balestrieri, F.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Marini, D. Supervised pattern recognition to authenticate Italian extra virgin olive oil varieties. Chemometr. Intell. Lab. Syst. 2004, 73, 85–93. [Google Scholar] [CrossRef]
- Sivakumar, G.; Bati, C.; Perri, E.; Uccella, N. Gas chromatography screening of bioactive phytosterols from mono-cultivar olive oils. Food Chem. 2006, 95, 525–528. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Louadj, L. Influence of crop season and cultivar on sterol composition of monovarietal olive oils in Reggio Calabria (Italy). Czech J. Food Sci. 2013, 31, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Deiana, P.; Santona, M.; Dettori, S.; Molinu, M.G.; Dore, A.; Culeddu, N.; Azara, E.; Naziri, E.; Tsimidou, M.Z. Can all the Sardinian varieties support the PDO “Sardegna” virgin olive oil? Eur. J. Lipid Sci. Technol. 2019, 121, 1800135. [Google Scholar] [CrossRef]
- Vekiari, S.A.; Oreopoulou, V.; Kourkoutas, Y.; Kamoun, N.; Msallem, M.; Psimouli, V.; Arapoglou, D. Characterization and seasonal variation of the quality of virgin olive oil of the Throumbolia and Koroneiki varieties from southern Greece. Grasas Aceites 2010, 61, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Skiada, V.; Tsarouhas, P.; Varzakas, T. Preliminary study and observation of “Kalamata PDO” extra virgin olive oil, in the Messinia region, southwest of Peloponnese (Greece). Foods 2019, 8, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skiada, V.; Tsarouhas, P.; Varzakas, T. Comparison and discrimination of two major monocultivar extra virgin olive oils in the southern region of Peloponnese, according to specific compositional/traceability markers. Foods 2020, 9, 155. [Google Scholar] [CrossRef] [Green Version]
- Skiada, V.; Agriopoulou, S.; Tsarouhas, P.; Katsaris, P.; Stamatelopoulou, E.; Varzakas, T. Evaluation and origin discrimination of two monocultivar extra virgin olive oils, cultivated in the coastline part of North-Western Greece. Appl. Sci. 2020, 10, 6733. [Google Scholar] [CrossRef]
- Ilyasoglu, H.; Ozcelik, B.; van Hoed, V.; Verhe, R. Characterization of Aegean olive oils by their minor compounds. J. Am. Oil Chem. Soc. 2010, 87, 627–636. [Google Scholar] [CrossRef]
- Yorulmaz, A.; Yavuz, H.; Tekin, A. Characterization of Turkish olive oils by triacylglycerol structures and sterol profiles. J. Am. Oil Chem. Soc. 2014, 91, 2077–2090. [Google Scholar] [CrossRef]
- Bozdogan Konuskan, D.; Mungan, B. Effects of variety, maturation and growing region on chemical properties, fatty acid and sterol compositions of virgin olive oils. J. Am. Oil Chem. Soc. 2016, 93, 1499–1508. [Google Scholar] [CrossRef]
- Yorulmaz, H.O.; Konuskan, D.B. Antioxidant activity, sterol and fatty acid compositions of Turkish olive oils as an indicator of variety and ripening degree. J. Food Sci. Technol. 2017, 54, 4067–4077. [Google Scholar] [CrossRef] [PubMed]
- Demirag, O.; Konuskan, D.B. Quality properties, fatty acid and sterol compositions of East Mediterranean region olive oils. J. Oleo Sci. 2021, 70, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Haddada, F.M.; Manaï, H.; Oueslati, I.; Daoud, D.; Sánchez, J.; Osorio, E.; Zarrouk, M. Fatty acid, triacylglycerol, and phytosterol composition in six Tunisian olive varieties. J. Agric. Food Chem. 2007, 55, 10941–10946. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, I.; Manai, H.; Haddada, F.M.; Daoud, D.; Sánchez, J.; Osorio, E.; Zarrouk, M. Sterol, Triterpenic dialcohol, and triacylglycerol compounds of extra virgin olive oils from some Tunisian varieties grown in the region of Tataouine. Food Sci. Technol. Int. 2009, 15, 5–13. [Google Scholar] [CrossRef]
- Krichène, D.; Allalout, A.; Salvador, M.D.; Fregapane, G.; Zarrouk, M. Fatty acids, volatiles, sterols and triterpenic alcohols of six monovarietal Tunisian virgin olive oils. Eur. J. Lipid Sci. Technol. 2010, 112, 400–409. [Google Scholar] [CrossRef]
- Manai-Djebali, H.; Krichène, D.; Ouni, Y.; Gallardo, L.; Sánchez, J.; Osorio, E.; Daoud, D.; Guido, F.; Zarrouk, M. Chemical profiles of five minor olive oil varieties grown in central Tunisia. J. Food Compost. Anal. 2012, 27, 109–119. [Google Scholar] [CrossRef]
- Alves, M.R.; Cunha, S.C.; Amaral, J.S.; Pereira, J.A.; Oliveira, M.B. Classification of PDO olive oils on the basis of their sterol composition by multivariate analysis. Anal. Chim. Acta 2005, 549, 166–178. [Google Scholar] [CrossRef]
- Matos, L.C.; Cunha, S.C.; Amaral, J.S.; Pereira, J.A.; Andrade, P.B.; Seabra, R.M.; Oliveira, B.P. Chemometric characterization of three varietal olive oils (Cvs. Cobrançosa, Madural and Verdeal Transmontana) extracted from olives with different maturation indices. Food Chem. 2007, 102, 406–414. [Google Scholar] [CrossRef]
- Boulkroune, H.; Lazzez, A.; Guissous, M.; Bellik, Y.; Smaoui, S.; Kamoun, N.G.; Madani, T. Characterization of sterolic and alcoholic fractions of some Algerian olive oils according to the variety and ripening stage. OCL J. 2017, 24, A502. [Google Scholar] [CrossRef] [Green Version]
- Ceci, L.N.; Carelli, A.A. Characterization of monovarietal argentinian olive oils from new productive zones. J. Am. Oil Chem. Soc. 2007, 84, 1125–1136. [Google Scholar] [CrossRef]
- Mailer, R.J.; Ayton, J.; Graham, K. The influence of growing region, cultivar and harvest timing on the diversity of Australian olive oil. J. Am. Oil Chem. Soc. 2010, 87, 877–884. [Google Scholar] [CrossRef]
- Olmo-García, L.; Polari, J.J.; Li, X.; Bajoub, A.; Fernández-Gutiérrez, A.; Wang, S.C.; Carrasco-Pancorbo, A. Study of the minor fraction of virgin olive oil by a multi-class GC-MS approach: Comprehensive quantitative characterization and varietal discrimination potential. Food Res. Int. 2019, 125, 108649. [Google Scholar] [CrossRef]
- Noorali, M.; Barzegar, M.; Sahari, M.A. Sterol and fatty acid compositions of olive oil as an indicator of cultivar and growing area. J. Am. Oil Chem. Soc. 2014, 91, 1571–1581. [Google Scholar] [CrossRef]
- Lukić, M.; Lukić, I.; Krapac, M.; Sladonja, B.; Piližota, V. Sterols and triterpene diols in olive oil as indicators of variety and degree of ripening. Food Chem. 2013, 136, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Brkic Bubola, K.; Valenčič, V.; Bucar-Miklavčič, M.; Krapac, M.; Lukic, M.; Setic, E.; Sladonja, B. Sterol, triterpen dialcohol and fatty acid profile of less-and well-known Istrian monovarietal olive oil. Croat. J. Food Sci. Technol. 2018, 10, 118–122. [Google Scholar] [CrossRef]
- Ajana, H.; El Antari, A. Fatty acids and sterols evolution during the ripening of olives from the Moroccan Picholine cultivar. Grasas Aceites 1998, 49, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, R.; Luna, G. Characterisation of monovarietal virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 614–627. [Google Scholar] [CrossRef]
- Salvador, M.D.; Aranda, F.; Fregapane, G. Chemical composition of commercial cornicabra virgin olive oil from 1995/96 and 1996/97 crops. J. Am. Oil Chem. Soc. 1998, 75, 1305–1311. [Google Scholar] [CrossRef]
- Srigley, C.T.; Oles, C.J.; Kia, A.R.F.; Mossoba, M.M. Authenticity assessment of extra virgin olive oil: Evaluation of desmethylsterols and triterpene dialcohols. J. Am. Oil Chem. Soc. 2016, 93, 171–181. [Google Scholar] [CrossRef]
- Beltrán, G.; Del Río, C.; Sánchez, S.; Martínez, L. Seasonal changes in olive fruit characteristics and oil accumulation during ripening process. J. Sci. Food Agric. 2004, 84, 1783–1790. [Google Scholar] [CrossRef]
- Avidan, B.; Meni, Y.; Tsur, N. Composition and morphology changes in olive fruit as indication of maturation. Adv. Hortic. Sci. 2007, 21, 3–8. [Google Scholar]
- Sönmez, A.; Özdikicierler, O.; Saygin Gümüşkesen, A. Evaluation of olive oil quality during the ripening of the organic cultivated olives and multivariate discrimination of the variety with a chemometric approach. Riv. Ital. Sostanze Grasse 2018, 95, 173–181. [Google Scholar]
- Fuentes de Mendoza, M.; de Miguel Gordillo, C.; Marín Expóxito, J.; Sánchez Casas, J.; Martínez Cano, M.; Martín Vertedor, D.; Franco Baltasar, M.N. Chemical composition of virgin olive oils according to the ripening in olives. Food Chem. 2013, 141, 2575–2581. [Google Scholar] [CrossRef] [PubMed]
- Lazzez, A.; Perri, E.; Caravita, M.A.; Khlif, M.; Cossentini, M. Influence of olive maturity stage and geographical origin on some minor components in virgin olive oil of the Chemlali variety. J. Agric. Food Chem. 2008, 56, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Mena, C.; González, A.Z.; Olivero-David, R.; Pérez-Jiménez, M.Á. Characterization of ‘Castellana’ virgin olive oils with regard to olive ripening. Horttechnology 2018, 28, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Taticchi, A.; Selvaggini, R.; Esposto, S.; Sordini, B.; Veneziani, G.; Servili, M. Physicochemical characterization of virgin olive oil obtained using an ultrasound-assisted extraction at an industrial scale: Influence of olive maturity index and malaxation time. Food Chem. 2019, 289, 7–15. [Google Scholar] [CrossRef]
- Yorulmaz, A.; Erinc, H.; Tekin, A. Changes in olive and olive oil characteristics during maturation. J. Am. Oil Chem. Soc. 2013, 90, 647–658. [Google Scholar] [CrossRef]
- Chtourou, F.; Jabeur, H.; Lazzez, A.; Bouaziz, M. Characterization and discrimination of Oueslati virgin olive oils from adult and young trees in different ripening stages using sterols, pigments, and alcohols in tandem with chemometrics. J. Agric. Food Chem. 2017, 65, 3512–3522. [Google Scholar] [CrossRef] [PubMed]
- Lazzez, A.; Vichi, S.; Kammoun, N.G.; Arous, M.N.; Khlif, M.; Romero, A.; Cossentini, M. A four year study to determine the optimal harvesting period for Tunisian Chemlali olives. Eur. J. Lipid Sci. Technol. 2011, 113, 796–807. [Google Scholar] [CrossRef]
- Kaliora, A.C.; Artemiou, A.; Giogios, I.; Kalogeropoulos, N. The impact of fruit maturation on bioactive microconstituents, inhibition of serum oxidation and inflammatory markers in stimulated PBMCs and sensory characteristics of Koroneiki virgin olive oils from Messenia, Greece. Food Funct. 2013, 4, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, L.; Zhao, A.; Karrar, E.; Zhang, H.; Jin, Q.; Wu, G.; Yang, X.; Chen, L.; Wang, X. Quality characteristics and antioxidant activity during fruit ripening of three monovarietal olive oils cultivated in china. J. Am. Oil Chem. Soc. 2021, 98, 229–240. [Google Scholar] [CrossRef]
- Salvador, M.D.; Aranda, F.; Fregapane, G. Influence of fruit ripening on ‘Cornicabra’ virgin olive oil quality A study of four successive crop seasons. Food Chem. 2001, 73, 45–53. [Google Scholar] [CrossRef]
- Fernández-Cuesta, A.; León, L.; Velasco, L.; De La Rosa, R. Changes in squalene and sterols associated with olive maturation. Food Res. Int. 2013, 54, 1885–1889. [Google Scholar] [CrossRef] [Green Version]
- Uceda, M.; Frias, L. Harvest dates: Evolution of the fruit oil content, oil composition and oil quality. In Proceedings of the 2nd Seminario Oleícola Internacional, Cordoba, Spain, 6 October 1975; pp. 125–128. [Google Scholar]
- Giuffrè, A.M. Biometric evaluation of twelve olive cultivars under rainfed conditions in the region of Calabria, South Italy. Emir. J. Food Agric. 2017, 29, 696–709. [Google Scholar] [CrossRef] [Green Version]
- Sakouhi, F.; Absalon, C.; Harrabi, S.; Vitry, C.; Sebei, K.; Boukhchina, S.; Fouquet, E.; Kallel, H. Dynamic accumulation of 4-desmethylsterols and phytostanols during ripening of Tunisian Meski olives (Olea europea L.). Food Chem. 2009, 112, 897–902. [Google Scholar] [CrossRef]
- Ranalli, A.; Tombesi, A.; Ferrante, M.L.; De Mattia, G. Respiratory rate of olive drupes during their ripening cycle and quality of oil extracted. J. Sci. Food Agric. 1998, 77, 359–367. [Google Scholar] [CrossRef]
- Sakouhi, F.; Herchi, W.; Sbei, K.; Absalon, C.; Boukhchina, S. Characterisation and accumulation of squalene and n-alkanes in developing Tunisian Olea europaea L. fruits. Int. J. Food Sci. Technol. 2011, 46, 2281–2286. [Google Scholar] [CrossRef]
- Orozco-Solano, M.; Ruiz-Jimenez, J.; Luque De Castro, M.D. Characterization of fatty alcohol and sterol fractions in olive tree. J. Agric. Food Chem. 2010, 58, 7539–7546. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro, L.; Aparicio, R. Influencia de la altitud en la composición química de los aceites de oliva vírgenes de Andalucía. Ecuaciones matemáticas de clasificación. Grasas Aceites 1992, 43, 149–156. [Google Scholar] [CrossRef]
- Ranalli, A.; de Mattia, G.; Patumi, M.; Proietti, P. Quality of virgin olive oil as influenced by origin area. Grasas Aceites 1999, 50, 249–259. [Google Scholar] [CrossRef]
- Anastasopoulos, E.; Kalogeropoulos, N.; Kaliora, A.C.; Kountouri, A.; Andrikopoulos, N.K. The influence of ripening and crop year on quality indices, polyphenols, terpenic acids, squalene, fatty acid profile, and sterols in virgin olive oil (Koroneiki cv.) produced by organic versus non-organic cultivation method. Int. J. Food Sci. Technol. 2011, 46, 170–178. [Google Scholar] [CrossRef]
- Ben Temime, S.; Manai, H.; Methenni, K.; Baccouri, B.; Abaza, L.; Daoud, D.; Casas, J.S.; Bueno, E.O.; Zarrouk, M. Sterolic composition of Chétoui virgin olive oil: Influence of geographical origin. Food Chem. 2008, 110, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Alberghina, G.; Caruso, L.; Fisichella, S.; Musumarra, G. Geographical classification of sicilian olive oils in terms of sterols and fatty acids content. J. Sci. Food Agric. 1991, 56, 445–455. [Google Scholar] [CrossRef]
- Longobardi, F.; Ventrella, A.; Casiello, G.; Sacco, D.; Tasioula-Margari, M.; Kiritsakis, A.K.; Kontominas, M.G. Characterisation of the geographical origin of Western Greek virgin olive oils based on instrumental and multivariate statistical analysis. Food Chem. 2012, 133, 169–175. [Google Scholar] [CrossRef]
- Longobardi, F.; Ventrella, A.; Casiello, G.; Sacco, D.; Catucci, L.; Agostiano, A.; Kontominas, M.G. Instrumental and multivariate statistical analyses for the characterisation of the geographical origin of Apulian virgin olive oils. Food Chem. 2012, 133, 579–584. [Google Scholar] [CrossRef]
- Bajoub, A.; Hurtado-Fernández, E.; Ajal, E.A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A.; Ouazzani, N. Quality and chemical profiles of monovarietal north Moroccan olive oils from “Picholine Marocaine” cultivar: Registration database development and geographical discrimination. Food Chem. 2015, 179, 127–136. [Google Scholar] [CrossRef]
- Giacalone, R.; Giuliano, S.; Gulotta, E.; Monfreda, M.; Presti, G. Origin assessment of EV olive oils by esterified sterols analysis. Food Chem. 2015, 188, 279–285. [Google Scholar] [CrossRef]
- Inglese, P.; Barone, E.; Gullo, G. The effect of complementary irrigation on fruit growth, ripening pattern and oil characteristics of olive (Olea europaea L.) cv. Carolea. J. Hortic. Sci. 1996, 71, 257–263. [Google Scholar] [CrossRef]
- Stefanoudaki, E.; Chartzoulakis, K.; Koutsaftakis, A.; Kotsifaki, F. Effect of drought stress on qualitative characteristics of olive oil of cv Koroneiki. Grasas Aceites 2001, 52, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Stefanoudaki, E.; Williams, M.; Chartzoulakis, K.; Harwood, J. Effect of irrigation on quality attributes of olive oil. J. Agric. Food Chem. 2009, 57, 7048–7055. [Google Scholar] [CrossRef]
- Barone, E.; Gullo, G.; Zappia, R.; Inglese, P. Effect of crop load on fruit ripening and olive oil (Olea europea L.) quality. J. Hortic. Sci. 1994, 69, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Di Giovacchino, L.; Sestili, S.; Di Vincenzo, D. Influence of olive processing on virgin olive oil quality. Eur. J. Lipid Sci. Technol. 2002, 104, 587–601. [Google Scholar] [CrossRef]
- Ranalli, A.; Ferrante, M.L.; de Mattia, G.; Costantini, N. Analytical evaluation of virgin olive oil of first and second extraction. J. Agric. Food Chem. 1999, 47, 417–424. [Google Scholar] [CrossRef]
- Cercaci, L.; Passalacqua, G.; Poerio, A.; Rodriguez-Estrada, M.T.; Lercker, G. Composition of total sterols (4-desmethyl-sterols) in extravirgin olive oils obtained with different extraction technologies and their influence on the oil oxidative stability. Food Chem. 2007, 102, 66–76. [Google Scholar] [CrossRef]
- Thanh, T.T.; Vergnes, M.-F.; Kaloustian, J.; El-Moselhy, T.F.; Amiot-Carlin, M.-J.; Portugal, H. Effect of storage and heating on phytosterol concentrations in vegetable oils determined by GC/MS. J. Sci. Food Agric. 2006, 86, 220–225. [Google Scholar] [CrossRef]
Sterol/Parameter (Unit) | Virgin Olive Oil (1) | Rapeseed Oil (Low Erucic Acid) | Soyabean Oil | Sunflower- Seed Oil | Sunflower- Seed Oil (High Oleic Acid) | Palm Oil | Maize Oil | Hazelnut Oil |
---|---|---|---|---|---|---|---|---|
Cholesterol (%) | ≤0.5 | ND (2)–1.3 | 0.2–1.4 | ND–0.7 | ND–0.5 | 2.6–6.7 | 0.2–0.6 | ND–1.1 |
Brassicasterol (%) | ≤0.1 | 5.0–13.0 | ND–0.3 | ND–0.2 | ND–0.3 | ND | ND–0.2 | ND |
Campesterol (%) | ≤4.0 (1) | 24.7–38.6 | 15.8–24.2 | 6.5–13.0 | 5.0–13.0 | 18.7–27.5 | 16.0–24.1 | 3.0–6.2 |
Stigmasterol (%) | <Campesterol | 0.2–1.0 | 14.9–19.1 | 6.0–13.0 | 4.5–13.0 | 8.5–13.9 | 4.3–8.0 | ND–2.0 |
β-Sitosterol (%) | (most represented) | 45.1–57.9 | 47.0–60 | 50–70 | 42.0–70 | 50.2–62.1 | 54.8–66.6 | 76.45–96.0 |
Δ5-Avenasterol (%) | (2nd most represented) | 2.5–6.6 | 1.5–3.7 | ND–6.9 | 1.5–6.9 | ND–2.8 | 1.5–8.2 | 1.0–5.1 |
Δ7-Stigmastenol (%) | ≤0.5 (1) | ND–1.3 | 1.4–5.2 | 6.5–24.0 | 6.5–24.0 | 0.2–2.4 | 0.2–4.2 | ND–4.3 |
Δ7-Avenasterol (%) | (Not defined) | ND–0.8 | 1.0–4.6 | 3.0–7.5 | ND–9.0 | ND–5.1 | 0.3–2.7 | ND–1.6 |
App. β-sitosterol (3) (%) | ≥93.0 | (Not defined) | (Not defined) | (Not defined) | (Not defined) | (Not defined) | (Not defined) | (Not defined) |
Others (%) | (Not defined) | ND–4.2 | ND–1.8 | ND–5.3 | 3.5–9.5 | ND | ND–2.4 | ND |
Total sterols (mg/kg) | ≥1000 | 4500–11,300 | 1800–4500 | 2400–5000 | 1700–5200 | 300–700 | 7000–22,100 | 1200–1800 |
Erythrodiol + uvaol (%) | ≤4.5 | (Not defined) | (Not defined) | (Not defined) | (Not defined) | (Not defined) | (Not defined) | (Not defined) |
Country of Origin | Varieties | Statistical Analysis | Main Varietal Differentiators Among Sterols and Triterpene Diols | Non-Compliance with EC Regulation [10] | Other Remarks | Reference |
---|---|---|---|---|---|---|
Spain | Cornicabra (5 seasons), Arbequina, Picual, Hojiblanca | ANOVA, PCA, LDA | Campesterol, Δ5-avenasterol, erythrodiol | Cornicabra: campesterol > 4.0% in >50% samples, apparent β-sitosterol < 93% in 15–20% samples, 10–15% samples surpassing the limits for cholesterol, brassicasterol, and Δ7-stigmastenol | Five seasons; oils collected from commercial mills; 334 samples; campesterol levels > 4.0% in particular samples from each season; relatively successful chemometric varietal differentiation in combination with aliphatic alcohols; Cornicabra total sterols 1125–1906 mg/kg, erythrodiol + uvaol approx. 0.5–9 mg/kg | [98] |
Spain | Cornezuelo, Corniche, Cacereña, Carrasqueña, Morisca, Verdial de Badajoz, Picual | ANOVA, LDA | Total sterols, campestanol, Δ7-stigmastenol, campesterol | Campesterol > 4.0% in particular Corniche samples; cholesterol > 0.5% in particular Cornezuelo, Corniche, and Verdial Badajoz samples | Three ripening degrees; Abencor laboratory oil mill; 21 samples; relatively successful chemometric varietal differentiation; negative correlation between β-sitosterol and Δ5-avenasterol; total sterols: Cornezuelo 1571 mg/kg, Corniche 2030 mg/kg,, Cacereña 1109 mg/kg, Carrasqueña 1426 mg/kg, Morisca 1658 mg/kg,, Verdial de Badajoz 1423 mg/kg, Picual 1263 mg/kg; erythrodiol + uvaol: 1.30–3.28% | [99] |
Spain | Manzanilla Cacereña, other varieties | PCA, SIMCA | β-Sitosterol, Δ5-avenasterol, campesterol, stigmasterol | n/a | Two seasons; 80 samples; relatively successful chemometric varietal differentiation of Manzanilla Cacereña from ‘non-Manzanilla Cacereña’ oils, more successful when combined with triglycerides | [100] |
Spain | Arbequina, Borriolenca, Canetera, Farga, Picual, Serrana | LDA | Not specified | n/a | Three seasons; different growing regions; commercial olive oils; 36 samples; HPLC analysis of particular sterols and triterpene diols; successful chemometric varietal differentiation | [82] |
Spain | Arbequina, Borriolenca, Canetera, Farga, Hojiblanca, Picual, Serrana | LDA | Ergosterol, campesterol, Δ5,24-stigmastadienol (first model); erythrodiol + uvaol, β-sitosterol + Δ7-stigmastenol, ergosterol, brassicasterol, campesterol (second model) | Cholesterol > 0.5% in particular Borriolenca and Farga samples; brassicasterol > 0.1% in particular Picual and Serrana samples; campesterol > 4.0% in particular Arbequina, Borriolenca, and Farga samples; erythrol + uvaol >4.5% in Serrana samples | One to three seasons; various growing regions; 42 commercial samples; UPLC-MS analysis; successful chemometric varietal differentiation; total sterols: Arbequina 1457–2739 mg/kg, Borriolenca 1337–1876 mg/kg, Canetera 1578–2034 mg/kg, Farga 1357–1953 mg/kg, Picual 1334–2354 mg/kg, Serrana 2247–2597 mg/kg; erythrol + uvaol: 0.0–6.1% | [85] |
Spain | Farga, Morruda, Serrana, Arbequina, Alfafara, Blanqueta, Villalonga, Picual, | ANOVA, PCA | β-Sitosterol, campesterol, stigmasterol | n/a | Different growing regions; Abencor laboratory oil mill; 40 samples; β-sitosterol, campesterol, stigmasterol the only reported sterols; sweet oils (Farga, Morruda, Serrana) compared with Arbequina, bitter–spicy oils (Alfafara, Blanqueta, Villalonga) compared with Picual; successful chemometric varietal differentiation in both cases | [101] |
Spain | Arbequina, Benizal, Cornicabra, Cuquillo, Injerta, Manzanilla de Sevilla, Manzanilla Local, Negrilla, Picual | ANOVA, Duncan’s multiple range test | Not specified | Campesterol > 4.0% and total sterols < 1000 mg/kg in most Benizal samples | Two seasons; two ripening degrees RI 2–3, ≥4; semi-industrial oil mill; 124 samples; results for two ripening degrees were averaged; statistically significant differences for the majority of major sterols and triterpene diols except cholesterol and Δ7-stigmastenol; total sterols: Arbequina 1207–1434 mg/kg, Benizal 977–1005 mg/kg, Cornicabra 1391–1551 mg/kg, Cuquillo 1440–1507 mg/kg, Injerta 1315–1642 mg/kg, Manzanilla de Sevilla 1416–1447 mg/kg, Manzanilla Local 1157–1626 mg/kg, Negrilla 1446–1685 mg/kg, Picual 1204–1257 mg/kg (averages in two seasons); erythrodiol + uvaol: 1.12–2.77% | [102] |
Spain | Cornicabra, Manzanilla Cacereña, Manzanilla Castellana, Picual | ANOVA, Tukey’s honest test | (Esterified) β-sitosteryl and Δ5-avenasteryl glucosides | n/a | Eight growing regions; two farming modalities (conventional, organic); four ripening degrees; Abencor laboratory oil mill; 44 samples; analysis of esterified and glucosylated sterols; statistically significant differences for the majority of analyzed glucosides (campesteryl, β-sitosteryl, Δ5-avenasteryl) and esterified glucosides (β-sitosteryl, Δ5-avenasteryl); (esterified) β-sitosteryl glucoside the most abundant; (esterified) stigmasteryl glucoside mostly not detected; total steryl glucosides: 0.59–2.62 mg/kg; total esterified steryl glucosides: 0.18–3.07 mg/kg | [103] |
Spain | Morisca, Carrasqueña | ANOVA, Tukey’s multiple range test | Not specified | None | Three seasons; spotted stage of ripening; Abencor laboratory oil mill; 54 samples, three ripening degrees RI 0–2, 2–3, and 3–4 and nine industrial oil mills, 162 samples; statistically significant differences for particular sterols; interaction between variety and year significant for particular sterols; negative correlation between β-sitosterol and Δ5-avenasterol; total sterols: Morisca 1681–1689 mg/kg, Carrasqueña 1492–1551 mg/kg; erythrodiol + uvaol: 2.74–3.86% | [104] |
Spain | Arbequina, Benizal, Cornicabra, Cuquillo, Injerta, Manzanilla Local, Manzanilla de Sevilla, Negrilla, Picual | ANOVA, Duncan’s multiple range test, PCA | Not specified | Campesterol > 4.0% in most and total sterols < 1000 mg/kg in all Benizal samples | Four seasons; RI 2–3; semi-industrial oil mill; 50 samples; relatively successful chemometric varietal differentiation in combination with FAMEs and oxidative stability; no quantitative data for sterols | [105] |
Spain | Thirty-one minor cultivars | ANOVA, PCA, LDA | Apparent β-sitosterol, campesterol, stigmasterol | Campesterol > 4.0% in Borriolenca, Vallesa, and Blanqueta Enguera samples; apparent β-sitosterol < 93% in Borriolenca and Vallesa samples | Eleven growing regions; RI 2–3; Abencor laboratory oil mill; 155 samples; relatively successful chemometric varietal differentiation in combination with tocopherols, phenols, FAMEs, and oil yield | [106] |
Spain | Arbequina, Castellana, Gordera, Manzanilla, Martin Galgo | ANOVA, Duncan’s multiple range test, PCA | Campesterol, erythrodiol + uvaol | Total sterols < 1000 mg/kg in Martin Galgo samples (average) and other samples | Different growing areas; two groups according to ripening degree (RI1 0–3, RI2 3.5–7); semi-industrial oil mill (27 samples) and oils from commercial mills (16 samples); statistically significant differences for campesterol, apparent β-sitosterol, and total sterols (the only reported parameters); the effect of ripening degree much weaker; relatively successful chemometric varietal differentiation in combination with polyphenols, tocopherols, FAMEs, and oxidative stability; total sterols: Arbequina 1096–1195 mg/kg, Castellana 1002–1009 mg/kg, Gordera 1010–1017 mg/kg, Manzanilla 1020–1022 mg/kg, Martin Galgo 900 mg/kg; erythrodiol + uvaol: 0.8–2.4% | [107] |
Spain | Forty-three world varieties | PCA, CA | β-Sitosterol, Δ5-avenasterol | Cholesterol > 0.5% in samples from two varieties; campesterol > 4.0% in samples from five varieties; apparent β-sitosterol < 93% in samples from 10 varieties; Δ7-stigmastenol > 0.5% in samples from a single variety; 28% samples outside the limits | Varieties from the World Olive Germplasm Bank, IFAPA Centro ‘Alameda de Obispo’, Cordoba, various countries of origin; same growing and oil extraction conditions; RI around 3; Abencor laboratory oil mill; great variability; successful differentiation of groups of cultivars based on their β-sitosterol and Δ5-avenasterol proportions; β-sitosterol 672 mg/kg–2035 mg/kg, Δ5-avenasterol 11 mg/kg–318 mg/kg, total sterols: Khashabi 848 mg/kg–Sevillenca 2419 mg/kg | [108] |
Spain | Forty world varieties | PCA, CA | Erythrodiol (96% of variance), uvaol (4% of variance) | Erythrodiol + uvaol > 4.5% in particular Lechin de Granada and Moraiolo samples | Varieties from the World Olive Germplasm Bank Collection of Cordoba, various countries of origin; same growing and oil extraction conditions; RI around 3; Abencor laboratory oil mill; great variability; successful differentiation of groups of cultivars based on their triterpene diol content; erythrodiol: Frantoio 5.89 mg/kg–Nevado Azul 73.78 mg/kg, uvaol: Genovesa 1.50 mg/kg–Dolce Agogia 19.35 mg/kg; erythrodiol + uvaol: St. George Greys 0.46%–Lechin de Granada 4.36% | [109] |
Spain, Greece, Italy | Coratina, Picual, Koroneiki | ANOVA, Duncan’s multiple range test, correlation, HCA, CDA | Campesterol, β-sitosterol, Δ7-avenasterol | Total sterols < 1000 mg/kg in particular Koroneiki samples | Two seasons; similar ripening degree; laboratory oil mill; 12 samples; statistically significant differences for all sterols and triterpene diols; successful chemometric varietal differentiation in combination with aliphatic alcohols, phenols, triglycerides, basic quality parameters; negative correlation between β-sitosterol and Δ5-avenasterol; total sterols: Coratina 1090–1326 mg/kg, Picual 1646–1882 mg/kg, Koroneiki 999–1235 mg/kg; erythrodiol + uvaol: 0.14–3.28% | [110] |
Italy | Coratina, Provenzale, Frantoio, Moraiolo, Bosana, Dritta | ANOVA, linear regression, PCA | Fatty acids, aliphatic, and triterpenic alcohols more useful than sterols | n/a | Four growing regions; laboratory oil mill; 63 samples; relatively successful chemometric varietal differentiation combined with aliphatic and triterpenic alcohols and fatty acids | [71] |
Italy | Leccino, Dritta, Caroleo, Coratina, Castiglionese, Carboncella, Nebbio | ANOVA, PCA, CDA, HCA, RDA, KNN | Not specified | n/a | Experimental orchard; laboratory oil mill; 14 samples; successful chemometric varietal differentiation; average total sterols: 1847 mg/kg; average erythrodiol + uvaol: 150 mg/kg | [111] |
Italy | Frantoio, Bosana, Dritta, Leccino | PCA, LDA | Δ5-avenasterol | n/a | Various growing regions; laboratory oil mill; 76 samples; successful chemometric varietal differentiation in combination with aliphatic and triterpenic alcohols, FAMEs, and squalene | [112] |
Italy | Carboncella, Frantoio, Leccino, Moraiolo, Pendolino, Minuta, Nocellara, Nociara, Ortice, Ortolana, Ottobratica, Peranzana, Racioppella, Sinopolese | LDA, BP-ANN | Campesterol, stigmasterol, clerosterol, Δ5,24-stigmastadienol (LDA); sitostanol, stigmasterol, campestanol, β-sitosterol, Δ5-avenasterol, clerosterol, cholesterol, campesterol, Δ5,24-stigmastadienol (BP-ANN) | None | Five seasons; six different geographical areas; variable stage of ripeness and extracting procedure; 153 samples; successful chemometric varietal differentiation in combination with fatty acids methyl esters (FAME), triglycerides, and basic quality parameters; non-linear method BP-ANN more successful than LDA | [113] |
Italy | Carolea, Coratina, Cassanese | Duncan’s multiple range test | Not specified | n/a | A single sample per variety/ripening degree; six samples; extremely high total sterol concentrations, in some samples, >7000 mg/kg; statistically significant differences for all sterols; differences between varieties change with ripening degree | [114] |
Italy | Ten varieties in total, three autochthonous and seven allochthonous varieties in Calabria | PCA | Not specified | None | Three seasons; up to seven ripening degrees; laboratory oil mill; relatively successful chemometric varietal differentiation despite the influence of other factors; negative correlation between β-sitosterol and Δ5-avenasterol; total sterols: Ottobratica 1354.0 mg/kg–Picholine 1884.9 mg/kg | [14] |
Italy | Cassanese, Coratina, Itrana, Leccino, Nocellara Messinese, Nociara, Ottobratica, Pendolino, Picholine, Sinopolese | Two-way ANOVA, Duncan’s multiple range test | 24-Methylene-cholesterol, β-sitosterol, sitostanol, Δ5-avenasterol, Δ5,24-stigmastadienol, Δ7-avenasterol | None | Three seasons; laboratory oil mill; statistically significant differences for the majority of sterols except cholesterol, campesterol, Δ7-campesterol, clerosterol, and apparent β-sitosterol; significant effect of harvest season and interactions cultivar/season for particular sterols; strong positive correlation between β-sitosterol and campesterol; total sterols: Cassanese 1641 mg/kg, Coratina 1498 mg/kg, Itrana 1483 mg/kg, Leccino 1551 mg/kg, Nociara 1788 mg/kg, Ottobratica 1334 mg/kg, Pendolino 1363 mg/kg, Picholine 1880 mg/kg, Sinopolese 1840 mg/kg | [115] |
Italy | Fourteen varieties for PDO Sardegna, three minor varieties, Coratina, Frantoio, Itrana, and Leccino | n/a | n/a | Campesterol > 4.0% in Sivigliana da Olio samples; total sterols < 1000 mg/kg in Coratina, Terza Piccola, Sivigliana da olio, and Itrana samples | Olives from the same collection field; different ripening degrees (RI 1.1–4.0); semi-industrial oil mill; 31 samples; total sterols: Coratina 696 mg/kg–Leccino 1637 mg/kg; erythrodiol + uvaol: Leccino 0.7%–Bosana 3.2% | [116] |
Italy | Leccino, Picual, Picholine marocaine, Frantoio, Sourani, Kalamon, Manzanilla de Sevilla, Arbequina, Koroneiki | HCA, OPLS-DA | Large number of sterols belonging to the classes of cholesterols, cardanolides, furostanols, spirostanols, stigmasterols, and so on; ajugalactone, 7α,12α-trihydroxy-5β-cholestanoyl-CoA, two isomeric forms of pseudoprotodioscin | n/a | Olives from the germplasm repository of the University of Perugia (Italy); harvested on the same day in three repetitions; laboratory oil mill; analysis by ultra-high-pressure liquid chromatography–electrospray quadrupole-time-of-flight hybrid mass spectrometry (UHPLC-ESI/QTOF-MS); successful chemometric varietal differentiation in combination with phenols | [86] |
Greece | Throumbolia, Koroneiki | ANOVA, Duncan’s multiple range test | β-Sitosterol, Δ5-avenasterol, Δ7-stigmastenol, Δ7-avenasterol, | n/a | Three ripening degrees; laboratory oil mill; six samples; statistically significant differences for all studied sterols; differences between varieties change with ripening degree; negative correlation between β-sitosterol and Δ5-avenasterol | [117] |
Greece | Koroneiki | n/a | n/a | Campesterol > 4.0% in 21.7% samples; total sterols < 1000 mg/kg in 43.5% samples; total sterols < 1100 mg/kg (limit for Kalamata PDO) in 66.7% samples; erythrodiol + uvaol > 4.5% in 8.06% samples | Industrial processing in various mills; 71 samples; total sterols 1033 mg/kg (average), 744–1283 mg/kg (range); erythrodiol + uvaol: 2.85% (average) | [118] |
Greece | Koroneiki, Mastoides | ANOVA, PCA | Not specified | Total sterols < 1000 mg/kg in particular Koroneiki samples | Each cultivar from a different region; industrially produced oils; 112 samples; statistically significant differences for the majority of sterols and triterpene diols; successful chemometric varietal differentiation, better in combination with FAMEs; total sterols: Koroneiki 1033 mg/kg, Mastoides 1220 mg/kg; erythrodiol + uvaol: Koroneiki 2.85%, Mastoides 1.40% | [119] |
Greece | Lianolia Kerkyras, Koroneiki | ANOVA, PCA | Not specified | Total sterols < 1000 mg/kg in 40.9% Koroneiki samples | Three growing regions; industrial processing in various mills; 104 samples; statistically significant differences for the majority of sterols and triterpene diols; successful chemometric varietal differentiation, even better in combination with FAMEs; total sterols: Lianolia Kerkyras 1344 mg/kg, Koroneiki 1021 mg/kg (average); erythrodiol + uvaol: Lianolia Kerkyras 1.43%, Koroneiki 2.76% (average) | [120] |
Turkey | Ayvalik, Memecik | ANOVA, PCA, LDA | Stigmasterol, apparent β-sitosterol, total sterols followed by campesterol | Campesterol >4.0% in all Memecik samples | Two seasons; two growing regions; 16 commercial samples; successful chemometric varietal differentiation; sterols better differentiators than phenols and tocopherols; apparent β-sitosterol and total sterol affected by season; negative correlation between β-sitosterol and Δ5-avenasterol; Ayvalik relatively high Δ5-avenasterol 17.27–22.17%; total sterols: Ayvalik 2135–2673 mg/kg, Memecik 1157–1676 mg/kg | [121] |
Turkey | Eighteen varieties | ANOVA, Duncan’s multiple range test, regression analysis, PCA, DA | Cholesterol, campesterol, stigmasterol, Δ7-campesterol, β-sitosterol, Δ5-avenasterol, Δ5,24-stigmastadienol, Δ7-avenasterol | Campesterol > 4.0% and cholesterol > 0.5% in Girit samples; Δ7-stigmastenol > 0.5% in Erkence, Mersin yaglık, Saurani, Kilis yaglık, and Sarı hasebi samples | Two harvest years; different growing regions; laboratory oil mill; 101 samples; statistically significant differences for the majority of sterols and triterpene diols; for five major varieties (Gemlik, Memecik, Edremit, Nizip yaglık, Kilis yaglık), sterols have better chemometric varietal differentiators than triglycerides and FAMEs; negative correlation between β-sitosterol and Δ5-avenasterol; total sterols: Kalamata 1145 mg/kg–Edremit yaglık 2212 mg/kg; erythrodiol + uvaol: 0.69–4.42% | [122] |
Turkey | Gemlik, Halhalı | ANOVA, Duncan’s multiple range test | Not specified | Brassicasterol > 0.1% in a particular Gemlik sample; Δ7-stigmastenol > 0.5% and apparent β-sitosterol < 93% in particular Halhalı samples | Four ripening degrees; two growing regions; laboratory oil mill; 16 samples; significant differences for all sterols and triterpene diols; significant effect of ripening degree and growing region; negative correlation between β-sitosterol and Δ5-avenasterol; Halhalı rather low Δ5-avenastrol 2.74–3.73%; total sterols: Gemlik 1325–2009 mg/kg, Halhalı 1194–1569 mg/kg; erythrodiol + uvaol: 1.16–4.09% | [123] |
Turkey | Sarı Hasebi, Gemlik, Halhalı | ANOVA, Duncan’s multiple range test, correlation analysis | Not specified | Δ7-Stigmastenol > 0.5% in all Sari Hasebi and ripe Halhalı samples; cholesterol > 0.5% in earlier harvest Sarı Hasebi and Gemlik samples; apparent β-sitosterol < 93% in all Sari Hasebi samples; total sterols < 1000 mg/kg in earlier harvest all varieties; erythrodiol + uvaol > 4.5% in early harvest Sari Hasebi samples | Three ripening degrees (RI from 1.9 to 4.8); laboratory oil mill; nine samples; statistically significant differences for the majority of sterols; significant effect of ripening degree; negative correlation between β-sitosterol and Δ5-avenasterol; total sterols: Sarı Hasebi 358–1061 mg/kg, Gemlik 728–1001 mg/kg, Halhalı 898–1092 mg/kg; erythrodiol + uvaol: 1.78–4.52% | [124] |
Turkey | Buyuk Topak Ulak, Gemlik, Sari Ulak, Kargaburun, Hasebi, Halhali | ANOVA, Duncan’s multiple range test | Not specified | Stigmasterol > campesterol in a particular Gemlik sample; total sterols < 1000 mg/kg in particular Kargaburun, Halhali, and Gemlik samples | Four growing regions; RI from 1.4 to 6.3; laboratory oil mill; 24 samples; statistically significant differences for all sterols and triterpene diols; significant effect of growing region; negative correlation between β-sitosterol and Δ5-avenasterol; Δ5-avenasterol fluctuated notably from 1.82 to 18.9%; total sterols: Buyuk Topak Ulak 4519 mg/kg, Gemlik 880–2057 mg/kg, Sari Ulak 3095 mg/kg, Kargaburun 720 mg/kg, Hasebi 1804 mg/kg, Halhali 789 mg/kg; erythrodiol + uvaol: 0.07–4.27% | [125] |
Tunisia | Chétoui, Jarboui, Ain Jarboua, Neb Jmel, Rekhami, Regregui | Duncan’s multiple range test, HCA | Δ5-Avenasterol, stigmasterol, total sterols (Chétoui vs. others); β-sitosterol, apparent β-sitosterol (Regregui from others) | None | Three seasons; Abencor laboratory oil mill; six samples; statistically significant differences for all sterols and triterpene diols; negative correlation between β-sitosterol and Δ5-avenasterol; Regreui: very low Δ5-avenasterol of 3.79%; total sterols: Chétoui 1288 mg/kg, Jarboui 1964 mg/kg, Ain Jarboua 1600 mg/kg, Neb Jmel 2048 mg/kg, Rekhami 1662 mg/kg, Regregui 2292 mg/kg; erythrodiol + uvaol 1.38–2.60% | [126] |
Tunisia | Chemlali Tataouine, Fakhari Douirat, Zarrazi Douirat | ANOVA, Duncan’s multiple range test | Not specified | None | Similar RI; Abencor laboratory oil mill; nine samples; statistically significant differences for the majority of sterols and triterpene diols except for campestanol or stigmasterol; negative correlation between β-sitosterol and Δ5-avenasterol; total sterols: Chemlali Tataouine 1717 mg/kg, Fakhari Douirat 1041 mg/kg, Zarrazi Douirat 1063 mg/kg; erythrodiol + uvaol: 1.5–2.4% | [127] |
Tunisia | Semni, Jdallou, Chemlali Sfax, Swabâa Algia, Oueslati, El Hor | ANOVA, HCA | Not specified | Brassicasterol > 0.1% in Semni samples; Δ7-stigmastenol > 0.5% in all samples except Jdallou and Chemlali Sfax; apparent β-sitosterol < 93% in Oueslati samples | RI between 4 and 5.5; Abencor laboratory oil mill; statistically significant differences for the majority of major and some minor sterols; successful chemometric varietal differentiation in combination with aliphatic and triterpenic alcohols, FAMEs, volatiles, and basic quality parameters; very high Δ5-avenasterol proportion in El Hor samples of 31%; total sterols: Semni 1390 mg/kg, Jdallou 2320 mg/kg, Chemlali Sfax 1926 mg/kg, Swabâa Algia 1488 mg/kg, Oueslati 1508 mg/kg, El Hor 1173 mg/kg; erythrodiol + uvaol: 1.08–2.79% | [128] |
Tunisia | Hor Kesra, Sredki, Chladmi, Betsijina, Aloui | ANOVA, Duncan’s multiple range test, PCA, HCA | Δ7-Stigmastenol, 24-methylene-cholesterol, clerosterol, β-sitosterol | None | RI around 3.5; Abencor laboratory oil mill; 15 samples; statistically significant differences for the majority of sterols and triterpene diols; successful chemometric varietal differentiation in combination with phenols, FAMEs, and tryglycerides; Hor Kesra 1039 mg/kg, Sredki 1381 mg/kg, Chladmi 1567 mg/kg, Betsijina 1382 mg/kg, Aloui 1268 mg/kg; erythrodiol + uval: 19–32 mg/kg | [129] |
Portugal | Cobrançosa, Madural, Verdeal Transmontana | ANOVA, PCA, MANOVA, and Hotelling T2 tests, CVA | Campesterol, sitosterol, Δ7-sitostanol, clerosterol | None | Laboratory produced (51 samples) and commercial oils (27 samples); statistically significant differences for all sterols; successful chemometric varietal differentiation; positive correlation between campesterol, sitosterol, and Δ7-sitostanol; negative correlation between β-sitosterol and Δ5-avenasterol; total sterols 2003–2682 mg/kg | [130] |
Portugal | Cobrançosa, Madural, Verdeal Transmontana | Not specified | n/a | Cholesterol > 0.5% in particular samples | Two ripening degrees; Abencor laboratory oil mill (six samples) and commercial oils (nine samples); free and esterified sterols analyzed separately; quantitative dominance of free sterols; total sterols: 1046–1829 mg/kg | [95] |
Portugal | Cobrançosa, Madural, Verdeal Transmontana | MANOVA, PCA, CA | Δ5-Avenasterol, stigmasterol, Δ7-avenasterol | None | Abencor laboratory oil mill; 18 samples; successful chemometric varietal differentiation despite different ripening degrees, better in combination with tocopherols; total sterols: Cobrançosa 1654–2678 mg/kg, Madural 1780–2936 mg/kg, Verdeal Transmontana 1365–2183 mg/kg | [131] |
Algeria | Chemlal, Aghenfas, Buichret, Mekki | ANOVA, PCA, LDA | Cholesterol, campestanol, Δ7-stigmastenol, Δ7-avenasterol, clerosterol | None | Eight ripening degrees; Abencor laboratory oil mill; 32 samples; significant differences for all sterols and triterpene diols; significant effect of ripening degree; negative correlation between β-sitosterol and Δ5-avenasterol; relatively successful chemometric varietal differentiation in combination with aliphatic alcohols; total sterols: Chemlal 1745–2170 mg/kg, Aghenfas 1882–2304 mg/kg, Buichret 1187–1664 mg/kg, Mekki 1748–1985 mg/kg; erythrodiol + uvaol: 18–58 mg/kg | [132] |
Argentina | Arbequina, Barnea, Picual, Frantoio, Empeltre, Manzanilla, Arauco, Coratina | ANOVA, Student’s t-test, PCA, CA | Apparent β-sitosterol, total sterols | Cholesterol > 0.5% in particular Arbequina, Arauco, and Coratina samples; brassicasterol > 0.1% in an Arbequina and an Arauco sample; campesterol > 4.0% in 70% Arbequina, all Barnea, and a single Arauco sample; Δ7-stigmastenol > 0.5% in a Coratina sample; apparent β-sitosterol < 93% in particular Arbequina and in Frantoio and Arauco samples | Two seasons; different growing regions; RI 1.3–4.8; industrial processing in various mills; 37 samples; relatively successful chemometric varietal differentiation in combination with other parameters; total sterols: Arbequina 1424–3004 mg/kg, other varieties 1053–2509 mg/kg; erythrodiol + uvaol: Arbequina 0.9–1.9%, other varieties 0.5–3.0% | [133] |
Australia | Arbequina, Barnea, Coratina, Corregiolla, Frantoio, Koreneiki, Leccino, Manzanillo, Pendolino, Picual | ANOVA | Not specified | Campesterol > 4.0% in particular Barnea samples from all locations and particular Koroneiki samples; total sterols < 1000 mg/kg in particular Koroneiki and Pendolino samples | Two seasons; four growing regions; Abencor laboratory oil mill; 40 samples; statistically significant effect of variety for all sterols and triterpene diols, much stronger than the effects of season and ripening degree; growing region had a significant effect for many sterols; total sterols: Arbequina 1381–2140 mg/kg, Barnea 1576–1762 mg/kg, Coratina 1190–1452 mg/kg, Corregiolla 1159–1812 mg/kg, Frantoio 1200–1632 mg/kg, Koreneiki 798–1267 mg/kg, Leccino 1371–1715 mg/kg, Manzanillo 1483–1803 mg/kg, Pendolino 944–1183 mg/kg, Picual 1281–1937 mg/kg; erythrodiol + uvaol: 0.45–4.0% | [134] |
USA | Carolea, Casaliva, Cayon, Frantoio, Kalamon, Maurino, Moraiolo, Taggiasca | ANOVA, PCA, PLS-DA | β-Sitosterol, Δ5-avenasterol | n/a | Experimental orchard; RI 2.3–2.9; Abencor laboratory oil mill; 32 samples; successful chemometric varietal differentiation in combination with phenols, tocopherols, triterpenic alcohols, and FAMEs | [135] |
Iran | Beleydi, Mission, Koroneiki | ANOVA, PCA | β-Sitosterol, Δ5-avenasterol, campesterol, clerosterol, stigmasterol, cholesterol | Apparent β-sitosterol < 93% and Δ7-stigmastenol > 0.5% in particular Koroneiki and Mission samples | Two growing regions; RI 5; Abencor laboratory oil mill; six samples; statistically significant differences for all sterols; significant effect of growing region; relatively successful chemometric varietal differentiation; negative correlation between β-sitosterol and Δ5-avenasterol; total sterols: Beleydi 1609–1778 mg/kg, Mission 1520–1785 mg/kg, Koroneiki 1354–1756 mg/kg | [136] |
Croatia | Buža, Črna, Rosinjola | MANOVA, PCA, SLDA | Campesterol, β-sitosterol, Δ7-campesterol/Δ5,24-stigmastadienol, clerosterol, uvaol, campestanol/Δ7-avenasterol (fresh oils), later three substituted by 24-methylene-cholesterol/stigmasterol (aged oils) | Δ7-Stigmastenol > 0.5% and apparent β-sitosterol < 93% in particular Rosinjola samples | Three ripening degrees approximately RI 1.5–2, 3, 4; industrial olive processing; 36 samples; relatively successful chemometric varietal differentiation of fresh and aged oils independently from ripening degree and vice versa; total sterols: Buža 1178–1305 mg/kg, Črna 2078–2277 mg/kg, Rosinjola 1483–1813 mg/kg; erythrodiol + uvaol: 0.78–2.28% | [137] |
Croatia | Bova, Buža puntoža, Istarska bjelica, Buža, Rosinjola | ANOVA, Tukey’s honest test | Not specified | None | Same orchard; RI 2.5–3.0, except late ripening Istarska bjelica RI 1.1; statistically significant differences for all sterols and triterpene diols; high Δ5-avenasterol in Istarska bjelica 26.6%; Bova 2964 mg/kg, Buža puntoža 2158 mg/kg, Istarska bjelica 1451 mg/kg, Buža 1567 mg/kg, Rosinjola 1648 mg/kg; erythrodiol + uvaol: 0.53–3.16% | [138] |
Sterol/Triterpene Diol | Evolution during Ripening: Variety | |
---|---|---|
First Phase (RI 0–3 or Analogous) | Second Phase (RI > 3 or Analogous) | |
Cholesterol | Increase: Halhalı [123]; Memecik, Ayvalik [145]; relatively constant: Koroneiki [12]; averaged [99]; Gemlik [123]; Aghenfas, Buichret, Mekki [132]; Buža, Črna, Rosinjola [137]; averaged [146]; Chemlali [147]; Castellana [148]; Ogliarola garganica [149]; Edremit [150]; variable: Cobrançosa, Verdeal Transmontana [131]; Chemlal [132]; mostly decrease: Oueslati [151]; decrease: averaged [13]; Sarı Hasebi, Gemlik, Halhalı [124]; Memecik [150] | Increase: Ayvalik [145]; mostly increase: Aghenfas [132]; relatively constant: averaged [13]; averaged [99]; Halhalı [124]; Chemlal, Buichret [132]; Buža, Črna, Rosinjola [137]; averaged [146]; Castellana [148]; Ogliarola garganica [149]; Memecik, Edremit [150]; variable: Cobrançosa, Madural, Verdeal Transmontana [131]; Mekki [132]; Chemlali [147]; decrease: Koroneiki [12]; Halhalı [123]; Sarı Hasebi, Gemlik [124]; Memecik [145]; Oueslati [151] |
Brassicasterol | Relatively constant: Halhalı [123]; Sarı Hasebi, Gemlik, Halhalı [124]; Memecik, Edremit [150]; decrease: Gemlik [123] | Increase: Sarı Hasebi, Gemlik, Halhalı [124]; Memecik [150]; relatively constant: Gemlik, Halhalı [123]; Edremit [150] |
24-Methylenecholesterol | Increase: Koroneiki [12]; averaged [13]; averaged [99]; Gemlik [124]; Buža, Črna, Rosinjola [137]; relatively constant: Gemlik [123]; Halhalı [124]; averaged [146]; Chemlali [147]; Ogliarola garganica [149]; Memecik, Edremit [150]; variable: Halhalı [123]; Oueslati [151]; decrease: Sarı Hasebi [124]; Memecik, Ayvalik [145] | Increase: averaged [99]; Gemlik [124]; Črna [137]; Memecik, Ayvalik [145]; relatively constant: averaged [13]; Gemlik [123]; Sarı Hasebi, Halhalı [124]; Rosinjola [137]; averaged [146]; Chemlali [147]; Ogliarola garganica [149]; Memecik, Edremit [150]; variable: Halhalı [123]; Oueslati [151]; decrease: Koroneiki [12]; Buža [137] |
Campesterol | Increase: Throumbolia [117]; Chemlal [132]; Buža, Črna, Rosinjola [137]; relatively constant: averaged [13]; Picual, Hojiblanca [52]; averaged [99]; Koroneiki [117]; Halhalı [123]; Sarı Hasebi [124]; averaged [146]; Castellana [148]; Ogliarola garganica [149]; Memecik [150]; Chemlali [152]; variable: Gemlik [123]; Cobrançosa [131]; Buichret [132]; Picholine [139]; Chemlali [147]; Edremit [150]; Koroneiki [153]; mostly decrease: Chemlal, Aghenfas, Mekki [132]; Oueslati [151]; decrease: Koroneiki [12]; Gemlik, Halhalı [124]; Verdeal Transmontana [131]; Memecik, Ayvalik [145] | Increase: averaged [13]; Memecik [145]; relatively constant: Picual, Hojiblanca [52]; averaged [99]; Throumbolia [117]; Sarı Hasebi [124]; Chemlal, Buichret [132]; averaged [146]; Castellana [148]; Ogliarola garganica [149]; Memecik [150]; Chemlali [152]; Koroneiki [153]; variable: Madural [131]; Aghenfas, Mekki [132]; Picholine [139]; Chemlali [147]; Oueslati [151]; mostly decrease: Chemlal [132]; decrease: Koroneiki [12]; Gemlik, Halhalı [123]; Koroneiki [117]; Gemlik, Halhalı [124]; Cobrançosa, Verdeal Transmontana [131]; Buža, Črna, Rosinjola [137]; Memecik, Ayvalik [145]; Memecik, Edremit [150] |
Campestanol | Mostly increase: Chemlal, Mekki [132]; Črna, Rosinjola [137]; relatively constant: Koroneiki [12]; averaged [13]; averaged [99]; Gemlik [123]; Halhalı [124]; Aghenfas, Buichret [132]; Buža [137]; averaged [146]; Chemlali [147]; Ogliarola garganica [149]; Memecik, Edremit [150]; variable: Halhalı [123]; Oueslati [151]; decrease: Sarı Hasebi, Gemlik [124]; Memecik, Ayvalik [145] | Increase: averaged [13]; Aghenfas [132]; Ayvalik [145]; mostly increase: Buichret, Mekki [132]; Chemlali [147]; relatively constant: averaged [99]; Gemlik [123]; Gemlik, Halhalı [124]; Chemlal [132]; Buža [137]; Memecik [145]; averaged [146]; Ogliarola garganica [149]; Memecik, Edremit [150]; variable: Halhalı [123]; decrease: Koroneiki [12]; Sarı Hasebi [124]; Črna, Rosinjola [137]; Oueslati [151] |
Stigmasterol | Increase: averaged [99]; Sarı Hasebi [124]; Buža, Črna Rosinjola [137]; averaged [146]; relatively constant: averaged [13]; Picual, Hojiblanca [52]; Gemlik [123]; Chemlal, Aghenfas [132]; Picholine [139]; Castellana [148]; Koroneiki [153]; Ogliarola garganica [149]; Memecik [150]; variable: Halhalı [123]; Cobrançosa, Verdeal Transmontana [131]; Mekki [132]; Edremit [150]; mostly decrease: Buichret [132]; Chemlali [147]; decrease: Koroneiki [12]; Gemlik, Halhalı [124]; Memecik, Ayvalik [145]; Oueslati [151] | Increase: averaged [13]; Gemlik, Halhalı [123]; Gemlik [124]; Buža [137]; Memecik, Ayvalik [145]; mostly increase: Mekki [132]; Oueslati [151]; relatively constant: Koroneiki [12]; Picual, Hojiblanca [52]; averaged [99]; Aghenfas, Buichret [132]; averaged [146]; Chemlali [147]; Castellana [148]; Ogliarola garganica [149]; Memecik, Edremit [150]; Koroneiki [153]; variable: Cobrançosa, Madural, Verdeal Transmontana [131]; Chemlal [132]; Picholine [139]; decrease: Sarı Hasebi, Halhalı [124]; Črna, Rosinjola [137] |
Δ7-Campesterol | Increase: Halhalı [124]; Rosinjola [137]; relatively constant: averaged [99]; Sarı Hasebi, Gemlik [124]; Buža, Črna [137]; averaged [146]; Memecik, Edremit [150]; variable: Gemlik, Halhalı [123]; Memecik, Ayvalik [145]; Oueslati [151]; decrease: averaged [13] | Relatively constant: averaged [13]; averaged [99]; Sarı Hasebi, Gemlik, Halhalı [124]; Buža, Črna [137]; averaged [146]; Memecik, Edremit [150]; variable: Gemlik, Halhalı [123]; Memecik, Ayvalik [145]; mostly decrease: Oueslati [151]; decrease: Rosinjola [137] |
Δ5,23-Stigmastadienol | Variable: Oueslati [151]; decrease: averaged [13] | Increase: averaged [13]; variable: Oueslati [151] |
Clerosterol | Increase: averaged [13]; Throumbolia [117]; Ayvalik [145]; relatively constant: averaged [99]; Halhalı [123]; Gemlik [124]; Chemlal, Aghenfas, Buichret, Mekki [132]; Memecik, Ayvalik [145]; averaged [146]; Chemlali [147]; Ogliarola garganica [149]; variable: Gemlik [123]; Cobrançosa [131]; Edremit [150]; decrease: Koroneiki [12]; Koroneiki [117]; Sarı Hasebi, Halhalı [124]; Verdeal Transmontana [131]; Memecik [150]; Oueslati [151] | Increase: Sarı Hasebi, Halhalı [124]; Memecik, Ayvalik [145]; relatively constant: Koroneiki [12]; averaged [13]; averaged [99]; Throumbolia, Koroneiki [117]; Halhalı [123]; Gemlik [124]; Verdeal Transmontana [131]; Buichret [132]; averaged [146]; Chemlali [147]; Ogliarola garganica [149]; Memecik, Edremit [150]; variable: Gemlik [123]; Cobrançosa, Madural [131]; Aghenfas [132]; Oueslati [151]; mostly decrease: Chemlal, Mekki [132] |
β-Sitosterol | Increase: Throumbolia [117]; Sarı Hasebi [124]; Buža, Črna, Rosinjola mg/100 g [137]; Edremit [150]; Barnea, Manzanilla, Kadesh [154]; relatively constant: Picual, Hojiblanca [52]; Koroneiki [117]; Memecik [145]; averaged [146]; Ogliarola garganica [149]; Cornicabra [155]; variable: various cultivars [14]; Gemlik, Halhalı [123]; Cobrançosa [131]; Buichret [132]; Chemlali [147]; Koroneiki [153]; mostly decrease: Aghenfas [132]; Picholine [139]; Chemlali [152]; decrease: Koroneiki [12]; averaged [13]; averaged [99]; Gemlik, Halhalı [124]; Verdeal Transmontana [131]; Chemlal, Mekki [132]; Buža, Črna, Rosinjola % [137]; Ayvalik [145]; Memecik [150]; Oueslati [151]; averaged [156] | Increase: Koroneiki [12]; averaged [146]; Barnea [154]; mostly increase: Oueslati [151]; relatively constant: averaged [13]; Picual, Hojiblanca [52]; averaged [99]; Sarı Hasebi, Gemlik [124]; Chemlal, Aghenfas, Mekki [132]; Buža, Črna, Rosinjola % [137]; Memecik [145]; Ogliarola garganica [149]; Memecik, Edremit [150]; Koroneiki [153]; Cornicabra [155]; averaged [156]; variable: various cultivars [14]; Halhalı [123]; Cobrançosa, Madural, Verdeal Transmontana [131]; Buichret [132]; Chemlali [147]; Chemlali [152]; mostly decrease: Picholine [139]; decrease: Throumbolia, Koroneiki [117]; Gemlik [123]; Halhalı [124]; Buža, Črna, Rosinjola mg/100 g [137]; Ayvalik [145]; Manzanilla, Kadesh [154] |
Sitostanol | Increase: Throumbolia [117]; relatively constant: averaged [99]; Koroneiki [117]; averaged [146]; Memecik [150]; variable: Gemlik, Halhalı [123]; Chemlali [147]; Edremit [150]; decrease: Koroneiki [12]; averaged [13]; Sarı Hasebi, Gemlik, Halhalı [124]; Memecik [145]; Oueslati [151] | Increase: Throumbolia [117]; Ayvalik [145]; relatively constant: averaged [13]; averaged [99]; Koroneiki [117]; averaged [146]; Memecik, Edremit [150]; variable: Gemlik, Halhalı [123]; Chemlali [147]; Oueslati [151]; decrease: Koroneiki [12]; Sarı Hasebi, Gemlik, Halhalı [124]; Memecik, Ayvalik [145] |
Δ5-Avenasterol | Increase: Koroneiki [12]; averaged [13]; Hojiblanca [52]; averaged [99]; Throumbolia [117]; Gemlik, Halhalı [124]; Cobrançosa [131]; Buichret, Mekki [132]; Buža, Črna, Rosinjola [137]; Picholine [139]; Memecik, Ayvalik [145]; Memecik, Edremit [150]; averaged [156]; mostly increase: various cultivars [14]; Chemlal, Aghenfas [132]; Chemlali [147]; Chemlali [152]; relatively constant: Picual [52]; Gemlik [123]; averaged [146]; Ogliarola garganica [149];Koroneiki [153]; variable: Halhalı [123]; Verdeal Transmontana [131]; Oueslati [151]; Cornicabra [155]; decrease: Koroneiki [117]; Sarı Hasebi [124] | Increase: Koroneiki [12]; Koroneiki [117]; Gemlik [123]; Sarı Hasebi, Gemlik, Halhalı [124]; Rosinjola mg/100 g [137]; Buža, Rosinjola % [137]; Ayvalik [145]; Oueslati [151]; mostly increase: Picual, Hojiblanca [52]; Picholine [139]; relatively constant: averaged [13]; averaged [99]; Throumbolia [117]; Cobrançosa [131]; Buichret [132]; Črna % [137]; Ogliarola garganica [149]; Edremit [150]; averaged [156]; variable: various cultivars [14]; Madural, Verdeal Transmontana [131]; Aghenfas, Mekki [132]; averaged [146]; Memecik [150]; Chemlali [152]; Cornicabra [155]; mostly decrease: Chemlali [147]; decrease: Halhalı [123]; Chemlal [132]; Buža, Črna mg/100 g [137]; Memecik [145]; Koroneiki [153] |
Δ5,24-Stigmastadienol | Increase: averaged [13]; Aghenfas [132]; Edremit [150]; mostly increase: Mekki [132]; Buža, Črna, Rosinjola mg/100 g [137]; relatively constant: Koroneiki [12]; averaged [99]; Throumbolia, Koroneiki [117]; Gemlik [123]; Halhalı [124]; Buža, Črna, Rosinjola % [137]; Memecik, Ayvalik [145]; averaged [146]; Ogliarola garganica [149]; Memecik [150]; variable: Halhalı [123]; Chemlal, Buichret [132]; mostly decrease: Oueslati [151]; decrease: Sarı Hasebi, Gemlik [124]; Chemlali [147]; Chemlali [152] | Increase: averaged [13]; Throumbolia [117]; Gemlik, Halhalı [124]; Buža % [137]; relatively constant: averaged [99]; Koroneiki [117]; Halhalı [123]; Buichret [132]; Memecik, Ayvalik [145]; Ogliarola garganica [149]; Memecik [150]; variable: Chemlal, Aghenfas, Mekki [132]; Chemlali [147]; Oueslati [151]; Chemlali [152]; mostly decrease: Gemlik [123]; decrease: Koroneiki [12]; Sarı Hasebi [124]; Črna, Rosinjola % [137]; averaged [146]; Edremit [150] |
Δ7-Stigmastenol | Increase: Halhalı [124]; Rosinjola [137]; relatively constant: averaged [99]; Throumbolia, Koroneiki [117]; Gemlik [123]; Gemlik [124]; Aghenfas, Buichret, Mekki [132]; Črna [137]; Memecik, Ayvalik [145]; averaged [146]; Chemlali [147]; Castellana [148]; Ogliarola garganica [149]; Edremit [150]; variable: Chemlal [132]; Oueslati [151]; mostly decrease: Halhalı [123]; decrease: Koroneiki [12]; Sarı Hasebi [124]; Buža [137]; Memecik [150] | Increase: Gemlik, Halhalı [124]; relatively constant: Koroneiki [12]; averaged [99]; Throumbolia, Koroneiki [117]; Sarı Hasebi [124]; Chemlal, Buichret, Mekki [132]; Buža, Črna [137]; Memecik, Ayvalik [145]; averaged [146]; Chemlali [147]; Castellana [148]; Ogliarola garganica [149]; Memecik, Edremit [150]; variable: Gemlik [123]; mostly decrease: Aghenfas [132]; Oueslati [151]; decrease: Halhalı [123]; Rosinjola [137] |
Δ7-Avenasterol | Increase: averaged [13]; Throumbolia [117]; Gemlik, Halhalı [124]; Cobrançosa [131]; Ayvalik [145]; relatively constant: Koroneiki [12]; averaged [99]; Koroneiki [117]; Chemlal, Mekki [132]; Memecik [145]; averaged [146]; Ogliarola garganica [149]; Edremit [150]; variable: Halhalı [123]; Memecik [150]; Oueslati [151]; mostly decrease: Aghenfas, Buichret [132]; Chemlali [147]; decrease: Gemlik [123]; Sarı Hasebi [124]; Verdeal Transmontana [131] | Increase: Gemlik, Halhalı [124]; Ayvalik [145]; relatively constant: averaged [13]; averaged [99]; Koroneiki [117]; Chemlal, Aghenfas, Buichret [132]; Memecik [145]; averaged [146]; Chemlali [147]; Ogliarola garganica [149]; Edremit [150]; variable: Gemlik, Halhalı [123]; Verdeal Transmontana [131]; Mekki [132]; Memecik [150]; Oueslati [151]; mostly decrease: Madural [131] decrease: Koroneiki [12]; Throumbolia [117]; Sarı Hasebi [124] |
Apparent β-sitosterol | Increase: Sarı Hasebi, Gemlik, Halhalı [124]; Buža, Črna, Rosinjola mg/100 g [137]; Ayvalik [145]; relatively constant: Gemlik [123]; Buža, Črna % [137]; Memecik [145]; averaged [146]; Castellana [148]; Ogliarola garganica [149]; variable: Halhalı [123] | Increase: Sarı Hasebi [124]; relatively constant: Gemlik, Halhalı [123]; Castellana [148]; Ogliarola garganica [149]; decrease: Gemlik, Halhalı [124]; Buža, Črna, Rosinjola mg/100 g [137]; Rosinjola % [137]; Memecik, Ayvalik [145]; averaged [146] |
Total sterols [mg/kg] | Increase: averaged [13]; Sarı Hasebi, Gemlik, Halhalı [124]; Buža, Črna, Rosinjola [137]; Edremit [150]; averaged [156]; relatively constant: Hojiblanca [52]; averaged [99]; Halhalı [123]; Chemlal, Aghenfas, Mekki [132]; Memecik, Ayvalik [145]; averaged [146]; Castellana [148]; Koroneiki [153]; variable: Gemlik [123]; Cobrançosa [131]; Buichret [132]; Chemlali [147]; Chemlali [152]; mostly decrease: Oueslati [151]; decrease: various cultivars [14]; Picual [52]; Verdeal Transmontana [131]; Ogliarola garganica [149]; Memecik [150] | Increase: Sarı Hasebi, Gemlik, Halhalı [124]; Oueslati [151]; averaged [156]; relatively constant: Hojiblanca [52]; averaged [99]; Chemlal, Aghenfas, Mekki [132]; Ayvalik [145]; averaged [146]; Castellana [148]; Memecik [150]; Chemlali [152]; Koroneiki [153]; variable: various cultivars [14]; Gemlik, Halhalı [123]; Cobrançosa, Madural [131]; Buichret [132]; Edremit [150]; mostly decrease: Verdeal Transmontana [131]; Chemlali [147]; decrease: averaged [13]; Picual [52]; Buža, Črna, Rosinjola [137]; Memecik [145]; Ogliarola garganica [149] |
Erythrodiol | Increase: Buža, Rosinjola [137]; relatively constant: Koroneiki [12]; Črna [137]; averaged [146]; mostly decrease: Oueslati [151] | Increase: Koroneiki [12]; Buža, Črna, Rosinjola [137]; mostly decrease: Oueslati [151]; decrease: averaged [146] |
Uvaol | Relatively constant: averaged [146]; variable: Buža, Črna, Rosinjola [137]; Oueslati [151]; decrease: Koroneiki [12] | Increase: Koroneiki [12]; Buža, Črna, Rosinjola % [137]; relatively constant: averaged [146]; mostly decrease: Oueslati [151] |
Erythrodiol+uvaol | Increase: Mekki [132]; mostly increase: Buichret [132]; Ogliarola garganica [149]; relatively constant: averaged [99]; Ayvalik [145]; averaged [146]; variable: Gemlik, Halhalı [123]; mostly decrease: Chemlal [132]; decrease: averaged [13]; Sarı Hasebi, Gemlik, Halhalı [124]; Aghenfas [132]; Memecik [145]; Memecik, Edremit [150] | Increase: Sarı Hasebi, Gemlik, Halhalı [124]; Memecik, Ayvalik [145]; relatively constant: averaged [99]; Chemlal [132]; Ogliarola garganica [149]; Memecik, Edremit [150]; variable: Gemlik, Halhalı [123]; mostly decrease: Buichret [132]; decrease: averaged [13]; Aghenfas, Mekki [132]; averaged [146] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukić, M.; Lukić, I.; Moslavac, T. Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. Horticulturae 2021, 7, 493. https://doi.org/10.3390/horticulturae7110493
Lukić M, Lukić I, Moslavac T. Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. Horticulturae. 2021; 7(11):493. https://doi.org/10.3390/horticulturae7110493
Chicago/Turabian StyleLukić, Marina, Igor Lukić, and Tihomir Moslavac. 2021. "Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree" Horticulturae 7, no. 11: 493. https://doi.org/10.3390/horticulturae7110493
APA StyleLukić, M., Lukić, I., & Moslavac, T. (2021). Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. Horticulturae, 7(11), 493. https://doi.org/10.3390/horticulturae7110493