Genome Wide Characterization, Comparative and Genetic Diversity Analysis of Simple Sequence Repeats in Cucurbita Species
Abstract
:1. Introduction
2. Methods
2.1. Plant Materials
2.2. Genome SSR Identification and Development in Cucurbita Genomes
2.3. In Silico PCR and Synteny Analysis of Cross-Species SSR Markers
2.4. Genomic DNA Extraction, PCR Amplification, and Electrophoresis Detection
2.5. Calculation of Clustering
3. Result
3.1. The Frequency and Distribution of Different SSR Types in Cucurbita Genomes
3.2. Chromosome Synteny Relationships of C. pepo with Other Cucurbitaceae Species
3.3. The Genetic Diversity and Population Structure Analysis of the C. pepo Germplasm
4. Discussion
4.1. Frequency, Distribution, and Characterization of Microsatellites in Three Cucurbita Genomes
4.2. Chromosome Synteny Analysis between C. pepo and Other Cucurbitaceae Species
4.3. The Genetic Diversity and Population Structure of C. pepo Germplasm
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- George, E.B.; Ronald, J.T. Toxic plants of North America. Choice Curr. Rev. Acad. Libraries 2013, 12, 2202–2203. [Google Scholar]
- Loy, J.B. Morpho-physiological aspects of productivity and quality in squash and pumpkins (Culcurbita spp.). Crit. Rev. Plant Sci. 2004, 23, 337–363. [Google Scholar] [CrossRef]
- Savage, J.A.; Haines, D.F.; Holbrook, N.M. The making of giant pumpkins: How selective breeding changed the phloem of Cucurbita maxima from source to sink. Plant Cell Environ. 2015, 38, 1543–1554. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.R.; Perkins-Veazie, P.; Sakata, Y.; Lopez-Galarza, S.; Maroto, J.V.; Lee, S.G.; Huh, Y.C.; Sun, Z.Y.; Miguel, A.; King, S.R.; et al. Cucurbit grafting. Crit. Rev. Plant Sci. 2008, 27, 50–74. [Google Scholar] [CrossRef]
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Lv, J.; Qi, J.J.; Shi, Q.X.; Shen, D.; Zhang, S.P.; Shao, G.J.; Li, H.; Sun, Z.Y.; Weng, Y.Q.; Shang, Y.; et al. Genetic Diversity and Population Structure of Cucumber (Cucumis sativus L.). PLoS ONE 2012, 7, e46919. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wen, C.; Weng, Y. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor. Appl. Genet. 2013, 126, 2187–2196. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.W.; Li, R.Q.; Zhang, Z.H.; Li, L.; Gu, X.F.; Fan, W.; Lucas, W.J.; Wang, X.W.; Xie, B.Y.; Ni, P.X.; et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.G.; Zhang, J.G.; Sun, H.H.; Salse, J.; Lucas, W.J.; Zhang, H.Y.; Zheng, Y.; Mao, L.Y.; Ren, Y.; Wang, Z.W.; et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 2013, 45, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mas, J.; Benjak, A.; Sanseverino, W.; Bourgeois, M.; Mir, G.; González, V.M.; Hénaff, E.; Câmara, F.; Cozzuto, L.; Lowy, E.; et al. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 2012, 109, 11872–11877. [Google Scholar] [CrossRef] [Green Version]
- Cavagnaro, P.F.; Senalik, D.A.; Yang, L.; Simon, P.W.; Harkins, T.T.; Kodira, C.D.; Huang, S.; Weng, Y. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom. 2010, 11, 569. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Guo, L.; Song, P.; Luan, F.; Hu, J.; Sun, X.; Yang, L. Development of genome-wide SSR markers in melon with their cross-species transferability analysis and utilization in genetic diversity study. Mol. Breed. 2016, 36, 153. [Google Scholar] [CrossRef]
- Zhu, H.; Song, P.; Koo, D.H.; Guo, L.; Li, Y.; Sun, S.; Weng, Y.; Yang, L. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis. BMC Genom. 2016, 17, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.W.; Cuevas, H.E.; Yang, L.M.; Li, Y.H.; Garcia-Mas, J.; Zalapa, J.; Staub, J.E.; Luan, F.S.; Reddy, U.; He, X.M.; et al. Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genom. 2011, 12, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.M.; Koo, D.H.; Li, D.W.; Zhang, T.; Jiang, J.M.; Luan, F.S.; Renner, S.S.; Henaff, E.; Sanseverino, W.; Garcia-Mas, J.; et al. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J. 2014, 77, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Hi, L.Y.; Jeong, J.H.; Hong, K.H.; Dong, K.B. Use of Random Amplified Polymorphic DNAs for Linkage Group Analysis in Interspecific Hybrid F2 Generation of Cucurbita. Hortic. Environ. Biotechnol. 1995, 36, 323–330. [Google Scholar]
- Brown, R.N.; Myers, J.R. A genetic map of squash (Cucurbita sp.) with randomly amplified polymorphic DNA markers and morphological markers. J. Am. Soc. Hortic. 2002, 127, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Paris, H.S.; Yonash, N.; Portnoy, V.; Mozes-Daube, N.; Tzuri, G.; Katzir, N. Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor. Appl. Genet. 2003, 106, 971–978. [Google Scholar] [CrossRef]
- Zraidi, A.; Stift, G.; Pachner, M.; Shojaeiyan, A.; Gong, L.; Lelley, T. A consensus map for Cucurbita pepo. Mol. Breed. 2007, 20, 375–388. [Google Scholar] [CrossRef]
- Gong, L.; Stift, G.; Kofler, R.; Pachner, M.; Lelley, T. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor. Appl. Genet. 2008, 117, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Esteras, C.; Gomez, P.; Monforte, A.J.; Blanca, J.; Vicente-Dolera, N.; Roig, C.; Nuez, F.; Pico, B. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom. 2012, 13, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.H.; Wu, S.; Zhang, G.Y.; Jiao, C.; Guo, S.G.; Ren, Y.; Zhang, J.; Zhang, H.Y.; Gong, G.Y.; Jia, Z.C.; et al. Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Mol. Plant 2017, 10, 1293–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero-Pau, J.; Blanca, J.; Bombarely, A.; Ziarsolo, P.; Esteras, C.; Marti-Gomez, C.; Ferriol, M.; Gomez, P.; Jamilena, M.; Mueller, L.; et al. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol. J. 2018, 16, 1161–1171. [Google Scholar] [CrossRef] [Green Version]
- Blanca, J.; Canizares, J.; Roig, C.; Ziarsolo, P.; Nuez, F.; Pico, B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genom. 2011, 12, 104. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, L.E.; Strickler, S.R.; Mueller, L.A.; Mazourek, M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hortic. Res. 2015, 2, 14070. [Google Scholar] [CrossRef] [Green Version]
- Xanthopoulou, A.; Psomopoulos, F.; Ganopoulos, I.; Manioudaki, M.; Tsaftaris, A.; Nianiou-Obeidat, I.; Madesis, P. De novo transcriptome assembly of two contrasting pumpkin cultivars. Genom. Data 2016, 7, 200–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliki, X.; Ganopoulos, I.; Psomopoulos, F.; Manioudaki, M.; Moysiadis, T.; Kapazoglou, A.; Osathanunkul, M.; Michailidou, S.; Kalivas, A.; Tsaftaris, A.; et al. De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers. Gene 2017, 622, 50–66. [Google Scholar] [CrossRef]
- Vitiello, A.; Scarano, D.; D’Agostino, N.; Digilio, M.C.; Pennacchio, F.; Corrado, G.; Rao, R. Unraveling zucchini transcriptome response to aphids. Peer J. PrePrints 2016, 4. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.R.; Zou, C.S.; Zhang, Y.P.; Yu, D.Q.; Cheng, H.L.; Jiang, P.F.; Yang, W.C.; Wang, Q.L.; Feng, X.X.; Prosper, M.A.; et al. Development of chromosome-specific markers with high polymorphism for allotetraploid cotton based on genome-wide characterization of simple sequence repeats in diploid cottons (Gossypium arboreum L. and Gossypium raimondii Ulbrich). BMC Genom. 2015, 16, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Fang, L.; Chen, J.D.; Hu, Y.; Si, Z.F.; Wang, S.; Chang, L.J.; Guo, W.Z.; Zhang, T.Z. Genome-Wide Mining, Characterization, and Development of Microsatellite Markers in Gossypium Species. Sci. Rep. 2015, 5, 10638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Tang, C.J.; Zhao, Q.; Li, J.; Yang, L.F.; Qie, L.F.; Fan, X.K.; Li, L.; Zhang, N.; Zhao, M.C.; et al. Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genom. 2014, 15, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.W.; Yang, S.; Chen, Y.D.; Zhang, S.M.; Zhao, Q.S.; Li, M.; Gao, Y.L.; Yang, L.; Bennetzen, J.L. Comparative genome-wide characterization leading to simple sequence repeat marker development for Nicotiana. BMC Genom. 2018, 19, 500. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.L. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 1990, 7, 524–530. [Google Scholar] [CrossRef]
- Li, Y.C.; Korol, A.B.; Fahima, T.; Beiles, A.; Nevo, E. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Mol. Ecol. 2002, 11, 2453–2465. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Weber, J.L.; Zhong, G.; Tanksley, S.D. Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 1994, 88, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Morgante, M.; Hanafey, M.; Powell, W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 2002, 30, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Korol, A.B.; Fahima, T.; Nevo, E. Microsatellites within genes: Structure, function, and evolution. Mol. Biol. Evol. 2004, 21, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol. 2005, 23, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.X.; Guo, C.; Sutharzan, S.; Li, P.; Echt, C.S.; Zhang, J.; Liang, C. Genome-Wide Analysis of Tandem Repeats in Plants and Green Algae. G3 Genes Genomes Genet. 2014, 4, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Cheng, J.; Nong, D.; Peng, J.; Hu, Y.; He, W.; Zhou, Q.; Dhillon, N.P.S.; Hu, K. Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia). Front. Plant Sci. 2017, 8, 1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.S.; Booth, J.G.; Gauch, H.G., Jr.; Sun, Q.; Park, J.; Lee, Y.H.; Lee, K. Simple sequence repeats in Neurospora crassa: Distribution, polymorphism and evolutionary inference. BMC Genom. 2008, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Zhao, Z.; Li, B.; Qin, C.; Wu, Z.; Trejo-Saavedra, D.L.; Luo, X.; Cui, J.; Rivera-Bustamante, R.F.; Li, S.; et al. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Sci. Rep. 2016, 6, 18919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangphatsornruang, S.; Somta, P.; Uthaipaisanwong, P.; Chanprasert, J.; Sangsrakru, D.; Seehalak, W.; Sommanas, W.; Tragoonrung, S.; Srinives, P. Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol. 2009, 9, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portis, E.; Lanteri, S.; Barchi, L.; Portis, F.; Valente, L.; Toppino, L.; Rotino, G.L.; Acquadro, A. Comprehensive Characterization of Simple Sequence Repeats in Eggplant (Solanum melongena L.) Genome and Construction of a Web Resource. Front. Plant Sci. 2018, 9, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferriol, M.; Pico, B.; Nuez, F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet. 2003, 107, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Ntuli, N.R.; Tongoona, P.B.; Zobolo, A.M. Genetic diversity in Cucurbita pepo landraces revealed by RAPD and SSR markers. Sci. Hortic. 2015, 189, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Decker, D.S. Origin (s), Evolution, and Systematics of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 1988, 42, 4–15. [Google Scholar] [CrossRef]
- Paris, H.S. Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): Progress and challenges. Euphytica 2015, 208, 415–438. [Google Scholar] [CrossRef]
C. pepo | C. moschata | C. maxima | C. lanatus | C. sativus | C. melo |
---|---|---|---|---|---|
Cpe1 | Cmo3(4), Cmo4(1,436), Cmo9(5), Cmo10(3), Cmo17(24) | Cma3(5), Cma4(1,103), Cma9(9), Cma17(19) | Cla1(5), Cla5(21), Cla6(4), Cla7(13), Cla8(5), Cla10(3), Cla11(14) | Csa3(6), Csa5(28), Csa6(3) | Cme3(4), Cme6(4), Cme7(3), Cme9(5), Cme10(16) |
Cpe2 | Cmo1(913), Cmo10(3), Cmo18(12) | Cma1(674), Cma18(8) | Cla5(8), Cla7(8), Cla10(13), Cla11(7) | Csa3(7), Csa4(6), Csa7(3) | Cme1(3), Cme4(10), Cme7(9) |
Cpe3 | Cmo4(3), Cmo14(1,080) | Cma4(4), Cma14(859) | Cla5(24), Cla7(8), Cla10(36) | Csa3(34), Csa4(4) | Cme4(25), Cme6(17), Cme7(6) |
Cpe4 | Cmo10(3), Cmo11(822) | Cma11(640) | Cla2(6), Cla3(5), Cla6(12), Cla10(3) | Csa1(15), Csa3(3) | Cme2(11) |
Cpe5 | Cmo2(904), Cmo10(8) | Cma2(692), Cma10(8) | Cla1(8), Cla2(20), Cla9(5) | Csa3(5), Csa5(8), Csa6(8) | Cme4(3), Cme5(4), Cme9(6), Cme11(10) |
Cpe6 | Cmo9(551) | Cma9(396) | Cla5(12), Cla8(4), Cla9(5), Cla11(9) | Csa3(6), Csa4(3) | Cme4(6), Cme7(9) |
Cpe7 | Cmo5(3), Cmo12(587), Cmo14(20) | Cma5(4), Cma12(452) | Cla2(3), Cla8(6) | Csa2(5) | Cme3(5), Cme5(3) |
Cpe8 | Cmo6(785) | Cma6(431) | Cla5(13), Cla10(16) | Csa3(6) | Cme4(10), Cme6(6) |
Cpe9 | Cmo18(544), Cmo19(6) | Cma2(3), Cma18(440) | Cla5(14) | Csa1(4), Csa3(5), Csa5(5) | Cme6(4), Cme10(3), Cme12(4) |
Cpe10 | Cmo3(659), Cmo18(5) | Cma3(547), Cma18(6) | Cla1(23), Cla4(13) | Csa4(3), Csa6(19) | Cme8(20) |
Cpe11 | Cmo5(707), Cmo10(3) | Cma5(574) | Cla2(4), Cla8(17), Cla11(14) | Csa2(14) | Cme3(11), Cme5(9) |
Cpe12 | Cmo17(665) | Cma17(516) | Cla6(12), Cla9(15) | Csa6(9), Csa7(14) | Cme1(17), Cme11(6) |
Cpe13 | Cmo8(9), Cmo15(649) | Cma4(3), Cma8(7), Cma15(468) | Cla1(21), Cla8(11), Cla11(8) | Csa2(3), Csa5(13), Csa6(6) | Cme3(8), Cme9(12) |
Cpe14 | Cmo16(565) | Cma16(409) | Cla5(4), Cla7(17), Cla10(14) | Csa3(15), Csa4(8) | Cme6(13), Cme7(5) |
Cpe15 | Cmo19(493) | Cma19(356) | Cla2(16), Cla7(4), Cla9(11) | Csa3(4), Csa7(11) | Cme1(12) |
Cpe16 | Cmo20(526) | Cma20(394) | Cla2(23) | Csa2(4), Csa6(4) | Cme5(5), Cme11(10) |
Cpe17 | Cmo4(3), Cmo8(634), Cmo9(7), Cmo14(3), Cmo17(3) | Cma8(472), Cma14(3), Cma17(4) | Cla6(11), Cla9(17) | Csa6(3), Csa7(3) | Cme1(8), Cme11(4) |
Cpe18 | Cmo10(500), Cmo14(3) | Cma10(354), Cma14(3) | Cla3(8), Cla6(22) | Csa1(16) | Cme2(17) |
Cpe19 | Cmo7(658) | Cma7(462) | Cla1(20), Cla4(7) | Csa4(4), Csa6(16) | Cme8(23) |
Cpe20 | Cmo13(468) | Cma13(330) | Cla1(4), Cla3(12), Cla4(4) | Csa1(11) | Cme12(8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Zhu, H.; Li, Y.; Wang, Y.; Wu, X.; Li, J.; Zhang, Z.; Wang, Y.; Hu, J.; Yang, S.; et al. Genome Wide Characterization, Comparative and Genetic Diversity Analysis of Simple Sequence Repeats in Cucurbita Species. Horticulturae 2021, 7, 143. https://doi.org/10.3390/horticulturae7060143
Zhu L, Zhu H, Li Y, Wang Y, Wu X, Li J, Zhang Z, Wang Y, Hu J, Yang S, et al. Genome Wide Characterization, Comparative and Genetic Diversity Analysis of Simple Sequence Repeats in Cucurbita Species. Horticulturae. 2021; 7(6):143. https://doi.org/10.3390/horticulturae7060143
Chicago/Turabian StyleZhu, Lei, Huayu Zhu, Yanman Li, Yong Wang, Xiangbin Wu, Jintao Li, Zhenli Zhang, Yanjiao Wang, Jianbin Hu, Sen Yang, and et al. 2021. "Genome Wide Characterization, Comparative and Genetic Diversity Analysis of Simple Sequence Repeats in Cucurbita Species" Horticulturae 7, no. 6: 143. https://doi.org/10.3390/horticulturae7060143
APA StyleZhu, L., Zhu, H., Li, Y., Wang, Y., Wu, X., Li, J., Zhang, Z., Wang, Y., Hu, J., Yang, S., Yang, L., & Sun, S. (2021). Genome Wide Characterization, Comparative and Genetic Diversity Analysis of Simple Sequence Repeats in Cucurbita Species. Horticulturae, 7(6), 143. https://doi.org/10.3390/horticulturae7060143