Comparing Visual and Image Analysis Techniques to Quantify Fusarium Basal Rot Severity in Mature Onion Bulbs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Production of Mature Bulbs
2.3. Artificial Inoculation of Mature Bulbs
2.4. Visual Scorings of the Infected Bulbs for FBR Severity
2.5. Visual Scorings of the Digital Images for FBR Severity
2.6. Automated Segmentation of FBR Severity
2.7. Statistical Analysis
3. Results
3.1. Spectral Profile of the Healthy and FOC-Infected Basal Plate Tissue
3.2. Comparisons between the Three FBR Severity Estimations
3.3. Influence of Bulb Size on FBR Estimation
4. Discussion
4.1. Blue–Green Autofluorescence Resulted in a Sharp Contrast between Healthy and FOC-Infected Basal Plate Tissue
4.2. Image Analyses Proved to Be a Suitable Alternative to Visual Estimation for FBR Quantification of Onion Bulbs
4.3. The Future Challenges and the Prospects of Digital Image Analysis in Onion Breeding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cramer, C.S.; Mandal, S.; Sharma, S.; Nourbakhsh, S.S.; Goldman, I.; Guzman, I. Recent advances in onion genetic improvement. Agronomy 2021, 11, 482. [Google Scholar] [CrossRef]
- Mandal, S.; Cramer, C.S. An artificial inoculation method to select mature onion bulbs resistant to Fusarium basal rot. HortScience 2020, 55, 1840–1847. [Google Scholar] [CrossRef]
- Cramer, C.S. Breeding and genetics of Fusarium basal rot resistance in onion. Euphytica 2000, 115, 159–166. [Google Scholar] [CrossRef]
- Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. CRC Crit. Rev. Plant Sci. 2010, 92, 927–939. [Google Scholar] [CrossRef]
- Gutierrez, J.A.; Cramer, C.S. Screening short-day onion cultivars for resistance to Fusarium basal rot. HortScience 2005, 40, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Bock, C.H.; Parker, P.E.; Cook, A.Z.; Gottwald, T.R. Characteristics of the perception of different severity measures of citrus canker and the relationships between the various symptom types. Plant Dis. 2008, 92, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Barbedo, J.G.A. Digital image processing techniques for detecting, quantifying and classifying plant diseases. Springerplus 2013, 2, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarrocco, S.; Falaschi, N.; Vergara, M.; Nicoletti, F.; Vannacci, G. Use of Fusarium oxysporum F. sp. dianthi transformed with marker genes to follow colonization of carnation roots. J. Plant Pathol. 2007, 89, 47–54. Available online: https://www.jstor.org/stable/41998356 (accessed on 13 June 2021).
- Jones, K.; Kim, D.W.; Park, J.S.; Khang, C.H. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biol. 2016, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.K.; Alisaac, E.; Al Masri, A.; Behmann, J.; Dehne, H.W.; Oerke, E.C. Comparison and combination of thermal, fluorescence, and hyperspectral imaging for monitoring Fusarium head blight of wheat on spikelet scale. Sensors 2019, 19, 2281. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.; Teakle, G.R.; Walley, P.G.; Finch-Savage, W.E.; Jackson, A.C.; Jones, J.E.; Hand, P.; Thomas, B.; Havey, M.J.; Pink, D.A.; et al. Assembly and characterisation of a unique onion diversity set identifies resistance to Fusarium basal rot and improved seedling vigour. Theor. Appl. Genet. 2019, 132, 3245–3264. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.A.; Mann, L.K. Onion and Their Allies; Leonard Hill (Books) Limited: London, UK, 1963. [Google Scholar]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Marín-Ortiz, J.C.; Gutierrez-Toro, N.; Botero-Fernández, V.; Hoyos-Carvajala, L.M. No Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi J. Biol. Sci. 2020, 27, 88–99. [Google Scholar] [CrossRef]
- Nagasubramanian, K.; Jones, S.; Singh, A.K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Orr, R.; Pattison, A.; East, D.; Warman, N.; O’Neill, W.; Czislowski, E.; Nelson, P.N. Image-based quantification of Fusarium wilt severity in banana. Australas Plant Dis. Notes 2019, 14, 14. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.S.; Lee, D.H.; Kim, Y.J. Machine vision-based automatic disease symptom detection of onion downy mildew. Comput. Electron. Agric. 2020, 168, 105099. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Tollner, E.W.; Gitaitis, R.D.; Rains, G.C. Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions. J. Food Eng. 2012, 109, 38–48. [Google Scholar] [CrossRef]
- Ford, H.D.; Tatam, R.P.; Landahl, S.; Terry, L.A. Investigation of disease in stored onions using optical coherence tomography. Acta Hortic. 2012, 945, 247–254. [Google Scholar] [CrossRef]
- Forbes, G.A.; Jeger, M.J. Factors affecting the estimation of disease intensity in simulated plant structures. J. Plant Dis Prot. 1987, 94, 113–120. Available online: https://www.jstor.org/stable/43383217 (accessed on 13 June 2021).
- Pujari, J.D.; Yakkundimath, R.; Byadgi, A.S. Image processing based detection of fungal diseases in plants. Procedia Comput. Sci. 2015, 46, 1802–1808. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, D.; Shani, G.; Erlich, O.; Tsror, L. Using deep learning for image-based potato tuber disease detection. Phytopathology 2019, 109, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Bonciu, E.; Firbas, P.; Fontanetti, C.S.; Wusheng, J.; Karaismailoğlu, M.C.; Liu, D.; Menicucci, F.; Pesnya, D.S.; Popescu, A.; Romanovsky, A.V.; et al. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia 2018, 71, 191–209. [Google Scholar] [CrossRef] [Green Version]
- Cramer, C.S.; Corgan, J.N. “NuMex Crimson” onion. HortScience 2003, 38, 306–307. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.; Ashigh, J.; Cramer, C.; Sammis, T.; Lewis, B. Bulb Onion Culture and Management for Southern New Mexico. Coop Exten Serv Circ 563, College of Agr., Consumer and Environment Sciences, NMSU. 2009. Available online: https://aces.nmsu.edu/pubs/_circulars/CR563/welcome.html (accessed on 13 June 2021).
- Saxena, A.; Cramer, C.S. Screening of onion seedlings for resistance against New Mexico isolates of Fusarium oxysporum f. sp. cepae. J. Plant Pathol. 2009, 91, 197–200. Available online: https://www.jstor.org/stable/41998593 (accessed on 13 June 2021).
- Yen, J.C.; Chang, F.J.; Chang, S. A new criterion for automatic multilevel thresholding. IEEE Trans. Image Process. 1995, 4, 370–378. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Measurement in medicine: The analysis of method comparison studies. J. R. Stat. Soc. Ser. D 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding bland altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Yuan, T.; Tang, W.-H. Fusarium graminearum maize stalk infection assay and associated microscopic observation protocol. Bio Protocol. 2016, 6, e2034. [Google Scholar] [CrossRef]
- Mayama, S.; Shishiyama, J. Histological observation of cellular responses of barley leaves to powdery mildew infection by UV-fluorescence microscopy. Jpn. J. Phytopathol. 1976, 42, 591–596. [Google Scholar] [CrossRef]
- Roshchina, V.V. Vital autofluorescence: Application to the study of plant living cells. Int. J. Spectrosc. 2012, 124672. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, C.; Lichtenthaler, H.K. Principles and characteristics of multi-colour fluorescence imaging of plants. J. Plant Physiol. 1998, 152, 297–314. [Google Scholar] [CrossRef]
- McLusky, S.R.; Bennett, M.H.; Beale, M.H.; Lewis, M.J.; Gaskin, P.; Mansfield, J.W. Cell wall alterations and localized accumulation of feruloyl-3′-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant J. 1999, 17, 523–534. [Google Scholar] [CrossRef]
- Wu, C.H.; Warren, H.L. Natural autofluorescence in fungi, and its correlation with viability. Mycologia 1984, 76, 1049–1058. [Google Scholar] [CrossRef]
- Wu, C.H.; Warren, H.L. Induced autofluorescence in fungi and its correlation with viability: Potential application of fluorescence microscopy. Phytopathology 1984, 74, 1353–1358. [Google Scholar] [CrossRef]
- Sherwood, R.T. Illusions in visual assessment of stagonospora leaf spot of orchardgrass. Phytopathology 1983, 73, 173–177. [Google Scholar] [CrossRef]
- Godoy, C.V.; Carneiro, S.M.T.P.G.; Iamauti, M.T.; Pria, D.M.; Amorim, L.; Berger, R.D.; Filho, A.B. Diagrammatic scales for bean diseases: Development and validation. J. Plant Dis. Prot. 1997, 104, 336–345. Available online: https://www.jstor.org/stable/43215167 (accessed on 13 June 2021).
- Costa, A.P.; Peixoto, J.R.; Blum, L.E.B.; Vilela, M.S.; Nogueira, I.; Castro, A.P.G. Standard area diagram set for quantification of septoriosis in fruit of sour passion fruit. Rev. Bras. Ciências Agrárias Braz. J. Agric. Sci. 2019, 14, e5637. [Google Scholar] [CrossRef] [Green Version]
- Chiang, K.S.; Bock, C.H.; Lee, I.H.; El Jarroudi, M.; Delfosse, P. Plant disease severity assessment-how rater bias, assessment method, and experimental design affect hypothesis testing and resource use efficiency. Phytopathology 2016, 106, 1451–1464. [Google Scholar] [CrossRef]
- Kalman, B.; Abraham, D.; Graph, S.; Perl-Treves, R.; Harel, Y.M.; Degani, O. Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) basal rot in northeastern Israel. Biology 2020, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Olmstead, J.W.; Lang, G.A.; Grove, G.G. Assessment of severity of powdery mildew infection of sweet cherry leaves by digital image analysis. HortScience 2001, 36, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Chungu, C.; Mather, D.E.; Reid, L.M.; Hamilton, R.I. Assessment of ear rot symptom development in maize hybrids inoculated with Fusarium graminearum. Can. J. Plant Pathol. 1997, 19, 390–396. [Google Scholar] [CrossRef]
- Pieczywek, P.M.; Cybulska, J.; Szymańska-Chargot, M.; Siedliska, A.; Zdunek, A.; Nosalewicz, A.; Baranowski, P.; Kurenda, A. Early detection of fungal infection of stored apple fruit with optical sensors—Comparison of biospeckle, hyperspectral imaging and chlorophyll fluorescence. Food Control 2018, 85, 327–338. [Google Scholar] [CrossRef]
- Galván, G.A.; Koning-Boucoiran, C.F.S.; Koopman, W.J.M.; Burger-Meijer, K.; González, P.H.; Waalwijk, C.; Kik, C.; Scholten, O.E. Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. Eur. J. Plant Pathol. 2008, 121, 499–512. [Google Scholar] [CrossRef]
- Mahdy, H. Identification of Fusarium species causing onion basal rot in Egypt and their virulence on seeds, seedlings and onion bulbs. Ann. Agric. Sci. Moshtohor. 2018, 56, 79–88. [Google Scholar] [CrossRef]
- Vaughan, M.; Backhouse, D.; Del Ponte, E.M. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: A review. World Mycotoxin J. 2016, 9, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef]
Correlation | Regression Parameters 1 | Parameters 2 | ||||
---|---|---|---|---|---|---|
y Variable | x Variables | a | b | R2 | CV | r |
VSDI method | Total BP area | 4.0 *** | −0.002 | 0.01 | 43.5 | −0.15 |
VS method | Total BP area | 4.9 *** | −0.003 | 0.02 | 54.3 | −0.17 |
SWS method | Total BP area | 3.6 *** | −0.002 | 0.02 | 42.4 | −0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandal, S.; Cramer, C.S. Comparing Visual and Image Analysis Techniques to Quantify Fusarium Basal Rot Severity in Mature Onion Bulbs. Horticulturae 2021, 7, 156. https://doi.org/10.3390/horticulturae7060156
Mandal S, Cramer CS. Comparing Visual and Image Analysis Techniques to Quantify Fusarium Basal Rot Severity in Mature Onion Bulbs. Horticulturae. 2021; 7(6):156. https://doi.org/10.3390/horticulturae7060156
Chicago/Turabian StyleMandal, Subhankar, and Christopher S. Cramer. 2021. "Comparing Visual and Image Analysis Techniques to Quantify Fusarium Basal Rot Severity in Mature Onion Bulbs" Horticulturae 7, no. 6: 156. https://doi.org/10.3390/horticulturae7060156
APA StyleMandal, S., & Cramer, C. S. (2021). Comparing Visual and Image Analysis Techniques to Quantify Fusarium Basal Rot Severity in Mature Onion Bulbs. Horticulturae, 7(6), 156. https://doi.org/10.3390/horticulturae7060156