Comparative Transcriptome Identifies Gene Expression Networks Regulating Developmental Pollen Abortion in Ogura Cytoplasmic Male Sterility in Chinese Cabbage (Brassica rapa ssp. pekinensis)
Abstract
:1. Introduction
2. Results
2.1. The Ogura CMS Chinese Cabbage Displays Complete Male Sterility
2.2. Posttranscriptional Regulation, Carbohydrate Metabolism and Cytoskeleton Dynamics Were Probably Associated with Pollen Abortion in Ogura CMS Line
2.3. Up-Regulated Expression of GSH-Oxidation Genes Probably Led to ROS Accumulation and Affected Pollen Fertility in the Ogura CMS Line
2.4. Down-Regulation of DEGs Related to Phenylpropane Synthesis May Affect Sporopollenin Formation during Pollen Development in the Ogura CMS Line
2.5. qRT-PCR Validation
3. Discussion
3.1. The Accumulation of ROS May Lead to the Premature Degradation of Tapetum, Which Affects the Formation of Pollen Exine
3.2. Cytoskeletal Actin Dynamics Were Probably Involved in Pollen Sterility
4. Materials and Methods
4.1. Morphological Observation
4.2. Observation of Meiotic Chromosomal Behaviors
4.3. DAPI Staining
4.4. Transcriptome Sequencing and Identification of DEGs
4.5. Annotation and Functional Analysis of DEGs
4.6. Quantitative Real-Time PCR (qRT-PCR) Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gang-ping, H.A.O.; Qing, Y. Progress in molecular mechanism of cytoplasmic male sterility and fertility restoration in plant. Subtrop. Plant Sci. 2002, 31, 78–84. [Google Scholar]
- Touzet, P.; Meyer, E.H. Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 2014, 19, 166–171. [Google Scholar] [CrossRef]
- Dong, X.; Kim, W.K.; Lim, Y.-P.; Kim, Y.-K.; Hur, Y. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes. Plant Sci. 2013, 199–200, 7–17. [Google Scholar] [CrossRef]
- Grelon, M.; Budar, F.; Bonhomme, S.; Pelletier, G. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol. Gen. Genet. 1994, 243, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.G.; Formanová, N.; Jin, H.; Wargachuk, R.; Dendy, C.; Patil, P.; Laforest, M.; Zhang, J.; Cheung, W.Y.; Landry, B.S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 2003, 35, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Chase, C.D. Cytoplasmic male sterility: A window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 2007, 23, 81–90. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tsuda, M.; Yasumoto, K.; Yamagishi, H.; Terachi, T. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genom. 2012, 13, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, K.; Liu, Q.; Wu, X.; Jiang, J.; Wu, J.; Fang, Y.; Li, A.; Wang, Y. Morphological structure and transcriptome comparison of the cytoplasmic male sterility line in Brassica napus (SaNa-1A) derived from somatic hybridization and its maintainer line saNa-1B. Front. Plant Sci. 2016, 7, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Lv, M.; Wang, Y.; Wang, P.-A.; Cui, Y.; Li, M.; Wang, R.; Gou, X.; Li, J. BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana. Nat. Commun. 2019, 10, 4164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurencja, S.; Katarzyna, S.; Wieslawa, P.; Alina, L.; Anna, O.; Katarzyna, K.; Jan, B.; Teresa, C.-T. Development of new restorer lines for CMS Ogura system with the use of resynthesized oilseed rape (Brassica napus L.). Breed. Sci. 2016, 66, 516–521. [Google Scholar] [CrossRef] [Green Version]
- Yasumoto, K.; Terachi, T.; Yamagishi, H. A novel Rf gene controlling fertility restoration of ogura male sterility by RNA processing of orf138 found in Japanese wild radish and its STS markers. Genome 2009, 52, 495–504. [Google Scholar] [CrossRef]
- Chen, W.; Jia, P.; Yang, W.; Li, H. Plasma membrane H+-ATPases-mediated cytosolic proton gradient regulates pollen tube growth. J. Integr. Plant Biol. 2020, 62, 1817–1822. [Google Scholar] [CrossRef]
- Lee, S.; Persson, P.; Mathews, R.D. Role of P-type IIA (ECA) and P-type IIB (ACA) Ca2+-ATPases in plant development and growth Julián. Rev. Financ. Stud. 2015, 29, 2341–2386. [Google Scholar] [CrossRef]
- De Haro, L.A.; Arellano, S.M.; Novák, O.; Feil, R.; Dumón, A.D.; Mattio, M.F.; Tarkowská, D.; Llauger, G.; Strnad, M.; Lunn, J.E.; et al. Mal de Río Cuarto virus infection causes hormone imbalance and sugar accumulation in wheat leaves. BMC Plant Biol. 2019, 19, 112. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Bai, J.; Wang, P.; Duan, W.; Yuan, S.; Zhang, F.; Gao, S.; Liu, L.; Pang, B.; Zhang, L.; et al. Comparative transcriptome analysis identifies genes involved in the regulation of the pollen cytoskeleton in a genic male sterile wheat line. Plant Growth Regul. 2018, 86, 133–147. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, X.; Li, S.; Hu, G.; Zhang, L.; Song, X. Tapetal-delayed programmed cell death (PCD) and oxidative stress-induced male sterility of aegilops uniaristata cytoplasm in wheat. Int. J. Mol. Sci. 2018, 19, 1708. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Lv, Y.; Zhao, Y.; Nath, U.K.; Yuan, Y.; Wang, Z.; Yang, S.; Jia, H.; Wei, F.; Zhang, X. Comparative transcriptome analysis in Chinese cabbage (Brassica rapa ssp. pekinesis) for DEGs of Ogura-, Polima-CMS and their shared maintainer. Physiol. Mol. Biol. Plants 2020, 26, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Duroc, Y.; Hiard, S.; Vrielynck, N.; Ragu, S.; Budar, F. The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria. Plant Mol. Biol. 2009, 70, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, S.; Ding, X.; He, T.; Dai, J.; Yang, S.; Gai, J. Comparative transcriptome analysis between the cytoplasmic male sterile line NJCMS1A and its maintainer NJCMS1B in soybean (Glycine max L. Merr.). PLoS ONE 2015, 10, e0126771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Wu, Y.; Zhang, M.; Zhang, J.; Stewart, J.M.; Xing, C.; Wu, J.; Jin, S. Transcriptome, cytological and biochemical analysis of cytoplasmic male sterility and maintainer line in CMS-D8 cotton. Plant Mol. Biol. 2018, 97, 537–551. [Google Scholar] [CrossRef]
- Chen, L.; Shahid, M.Q.; Wu, J.; Chen, Z.; Wang, L.; Liu, X. Cytological and transcriptome analyses reveal abrupt gene expression for meiosis and saccharide metabolisms that associated with pollen abortion in autotetraploid rice. Mol. Genet. Genom. 2018, 293, 1407–1420. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, S.; Li, W.; Liu, Q.; Zhang, L.; Song, X. Comparative transcriptome analysis indicates that a core transcriptional network mediates isonuclear alloplasmic male sterility in wheat (Triticum aestivum L.). BMC Plant Biol. 2020, 20, 10. [Google Scholar] [CrossRef]
- Hamid, R.; Marashi, H.; Tomar, R.S.; Shafaroudi, S.M.; Sabara, P.H. Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium hirsutum L.). PLoS ONE 2019, 14, e0218381. [Google Scholar] [CrossRef]
- Li, S.; Dong, H.; Pei, W.; Liu, C.; Zhang, S.; Sun, T.; Xue, X.; Ren, H. LlFH1-mediated interaction between actin fringe and exocytic vesicles is involved in pollen tube tip growth. New Phytol. 2017, 214, 745–761. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; An, Y.-Q.; McDowell, J.M.; McKinney, E.C.; Meagher, R.B. The Arabidopsis thaliana ACT4/ACT12 actin gene subclass is strongly expressed throughout pollen development. Plant J. 1996, 10, 189–202. [Google Scholar] [CrossRef]
- Daher, F.B.; Geitmann, A. Actin depolymerizing factors ADF7 and ADF10 play distinct roles during pollen development and pollen tube growth. Plant Signal. Behav. 2012, 7, 879–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Qu, X.; Bao, C.; Khurana, P.; Wang, Q.; Xie, Y.; Zheng, Y.; Chen, N.; Blanchoin, L.; Staiger, C.J.; et al. Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 2010, 22, 2749–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selote, D.S.; Khanna-Chopra, R. Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol. Plant. 2004, 121, 462–471. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, J.; Ye, N.; Cao, J.; Tan, M.; Jiang, M. ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. J. Exp. Bot. 2010, 61, 4399–4411. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, D.; Guo, Z.; Shi, Q.; Xiong, S.; Zhang, C.; Zhu, J.; Yang, Z. OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC Plant Biol. 2016, 16, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.-S.; Zhang, B.; Zhan, H.; Lv, Y.-L.; Jia, X.-L.; Wang, T.; Yang, N.-Y.; Lou, Y.-X.; Zhang, Z.-B.; Hu, W.-J.; et al. Phenylpropanoid derivatives are essential components of sporopollenin in vascular plants. Mol. Plant 2020, 13, 1644–1653. [Google Scholar] [CrossRef]
- Wang, N.-D.; Bai, H.; Chen, W.-Q.; Lu, H.; Jiang, X.-N. Identifying a cinnamoyl coenzyme a reductase (CCR) activity with 4-coumaric acid: Coenzyme a ligase (4CL) reaction products in Populus tomentosa. J. Plant Biol. 2009, 52, 482–491. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, S.-D.; Fan, J.-J.; Zhou, L.; Shi, Q.-S.; Zhang, Y.-F.; Liu, X.-L.; Chen, X.; Zhu, J.; Yang, Z.-N. OsMS188 Is a key regulator of tapetum development and sporopollenin synthesis in rice. Rice 2021, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liang, W.; Yin, C.; Cui, X.; Zong, J.; Wang, X.; Hu, J.; Zhang, D. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 2011, 23, 515–533. [Google Scholar] [CrossRef] [Green Version]
- Solis, M.-T.; Chakrabarti, N.; Corredor, E.; Cortés-Eslava, J.; Rodriguez-Serrano, M.; Biggiogera, M.; Risueno, M.C.; Testillano, P.S. Epigenetic changes accompany developmental programmed cell death in tapetum cells. Plant Cell Physiol. 2014, 55, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Xu, H.; Liu, Z.; Guo, J.; Li, H.; Chen, L.; Fang, C.; Zhang, Q.; Bai, M.; Yao, N.; et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 2013, 45, 573–577. [Google Scholar] [CrossRef]
- Parish, R.W.; Li, S.F. Death of a tapetum: A programme of developmental altruism. Plant Sci. 2010, 178, 73–89. [Google Scholar] [CrossRef]
- An, Y.Q.; Huang, S.; McDowell, J.M.; McKinney, E.C.; Meagher, R.B. Conserved expression of the Arabidopsis ACT1 and ACT3 actin subclass in organ primordia and mature pollen. Plant Cell 1996, 8, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Sudo, K.; Park, J.-I.; Sakazono, S.; Masuko-Suzuki, H.; Osaka, M.; Kawagishi, M.; Fujita, K.; Maruoka, M.; Nanjo, H.; Suzuki, G.; et al. Demonstration in vivo of the role of Arabidopsis PLIM2 action-binding proteins during pollination. Genes Genet. Syst. 2013, 88, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Xu, M. Actin bundler PLIM2s are involved in the regulation of pollen development and tube growth in Arabidopsis. J. Plant Physiol. 2012, 169, 516–522. [Google Scholar] [CrossRef]
- Daher, F.B.; Van Oostende, C.; Geitmann, A. Spatial and temporal expression of actin depolymerizing factors ADF7 and ADF10 during male gametophyte development in Arabidopsis thaliana. Plant Cell Physiol. 2011, 52, 1177–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeks, M.J.; Rodrigues, C.; Dimmock, S.; Ketelaar, T.; Maciver, S.K.; Malhó, R.; Hussey, P.J. Arabidopsis CAP1-A key regulator of actin organisation and development. J. Cell Sci. 2007, 120, 2609–2618. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. World J. Microbiol. Biotechnol. 2007, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M.-C.; Estreicher, A.; Gasteiger, E.; Martin, M.J.; Michoud, K.; O’Donovan, C.; Phan, I.; et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003, 31, 365–370. [Google Scholar] [CrossRef]
- Harris, M.A.; Clark, J.; Ireland, A.; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; et al. The Gene Oncology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32, 258–261. [Google Scholar] [CrossRef] [Green Version]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Natale, D.A.; Vasudevan, S.; Wolf, Y.I.; Yin, J.J.; et al. The COG database: An updated version includes eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Oncol. Lett. 2000, 19, 3316–3332. [Google Scholar] [CrossRef]
- Yu, G. clusterProfiler: Universal enrichment tool for functional and comparative study. bioRxiv 2018. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Zhang, X.; Yuan, Y.; Wang, Z.; Yang, S.; Li, R.; Nath, U.K.; Zhao, Y.; Tian, B.; Shi, G.; et al. Comparative Transcriptome Identifies Gene Expression Networks Regulating Developmental Pollen Abortion in Ogura Cytoplasmic Male Sterility in Chinese Cabbage (Brassica rapa ssp. pekinensis). Horticulturae 2021, 7, 157. https://doi.org/10.3390/horticulturae7060157
Hu L, Zhang X, Yuan Y, Wang Z, Yang S, Li R, Nath UK, Zhao Y, Tian B, Shi G, et al. Comparative Transcriptome Identifies Gene Expression Networks Regulating Developmental Pollen Abortion in Ogura Cytoplasmic Male Sterility in Chinese Cabbage (Brassica rapa ssp. pekinensis). Horticulturae. 2021; 7(6):157. https://doi.org/10.3390/horticulturae7060157
Chicago/Turabian StyleHu, Lijiao, Xiaowei Zhang, Yuxiang Yuan, Zhiyong Wang, Shuangjuan Yang, Ruina Li, Ujjal Kumar Nath, Yanyan Zhao, Baoming Tian, Gongyao Shi, and et al. 2021. "Comparative Transcriptome Identifies Gene Expression Networks Regulating Developmental Pollen Abortion in Ogura Cytoplasmic Male Sterility in Chinese Cabbage (Brassica rapa ssp. pekinensis)" Horticulturae 7, no. 6: 157. https://doi.org/10.3390/horticulturae7060157
APA StyleHu, L., Zhang, X., Yuan, Y., Wang, Z., Yang, S., Li, R., Nath, U. K., Zhao, Y., Tian, B., Shi, G., Xie, Z., Wei, F., & Wei, X. (2021). Comparative Transcriptome Identifies Gene Expression Networks Regulating Developmental Pollen Abortion in Ogura Cytoplasmic Male Sterility in Chinese Cabbage (Brassica rapa ssp. pekinensis). Horticulturae, 7(6), 157. https://doi.org/10.3390/horticulturae7060157