Efficiency of Osmotic Dehydration of Pomegranate Seeds in Polyols Solutions Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Osmotic Dehydration Treatment
2.3. Experimental Design
2.4. Optimization
2.5. Statistical Analysis
2.6. Physical Analysis
2.6.1. Dry Matter
2.6.2. Surface Color Measurement
2.6.3. Texture Analysis
2.7. Weight Reduction Water Loss, Solid Gain, and Effective Diffusivity
3. Results and Discussion
3.1. Statistical Analysis
3.2. Effect of Osmotic Agents on WL, SG, WR, and Deff
3.2.1. Water Loss
3.2.2. Solid Gain (SG)
3.2.3. Weight Reduction (WR)
3.2.4. Effective Diffusivity (Deff)
3.2.5. Optimization and Validation of the Models
3.2.6. Predictive Capacity of the Response Surface Models
3.3. The Effect of Polyol on Color Changes of Pomegranate Seeds during OD Process
3.4. The Effect of Polyol on Texture Changes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- White, J.S. Sucrose and Fructose: History, Manufacture, Composition, Applications, and Production. Chapter 2. In Fructose, High Fructose Corn Syrup, Sucrose and Health, Nutrition and Health; Rippe, J.M., Ed.; Springer Science Business Media: New York, NY, USA, 2014. [Google Scholar]
- Kowalska, H.; Wozniak, C.; Masiarz, E.; Stelmach, A.; Salamon, A.; Kowalska, J.; Marzec, A. The impact of using polyols as osmotic agents on mass exchange during osmotic dehydration and their content in osmo-dehydrated and dried apples. Dry. Technol. 2020, 38, 1620–1631. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kearsleya, M. Sweeteners and Sugar Alternatives in Food Technology, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Mendonça, K.; Correa, J.; Junqueira, J.; Angelis-Pereira, M.; Cirillo, M. Mass Transfer Kinetics of the Osmotic Dehydration of Yacon Slices with Polyols. J. Food Process. Preserv. 2016, 41, e12983. [Google Scholar] [CrossRef] [Green Version]
- Grembecka, M. Natural sweeteners in a human diet. Bibl. Nauki 2015, 66, 3. [Google Scholar]
- Aidoo, R.P.; Depypere, F.; Afoakwa, E.O.; Dewettinck, K. Industrial manufacture of sugar-free chocolates—Applicability of alternative sweeteners and carbohydrate polymers as raw materials in product development. Trends Food Sci. Technol. 2013, 32, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Phisut, N.; Rattanawedee, M.; Aekkasak, K. Effect of Different Osmotic Agents on the Physical, Chemical and Sensory Properties of Osmo-Dried Cantaloupe. Chiang Mai J. Sci. 2013, 40, 427–439. [Google Scholar]
- Nowacka, M.; Tylewicz, U.; Tappi, S.; Siroli, L.; Lanciotti, R.; Romani, S.; Witrowa-Rajchert, D. Ultrasound assisted osmotic dehydration of organic cranberries (Vaccinium oxycoccus): Study on quality parameters evolution during storage. Food Control. 2018, 93, 40–47. [Google Scholar] [CrossRef]
- Silva, M.A.D.C.; da Silva, Z.E.; Mariani, V.C.; Darche, S. Mass transfer during the osmotic dehydration of West Indian cherry. LWT 2012, 45, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Bialik, M.; Wiktor, A.; Latocha, P.; Gondek, E. Mass Transfer in Osmotic Dehydration of Kiwiberry: Experimental and Mathematical Modelling Studies. Molecules 2018, 23, 1236. [Google Scholar] [CrossRef] [PubMed]
- Cichowska, J.; Zubernik, J.; Czyzewski, J.; Kowalska, H.; Witrowa-Rajchert, D. Efficiency of Osmotic Dehydration of Apples in Polyols Solutions. Molecules 2018, 23, 446. [Google Scholar] [CrossRef] [Green Version]
- Lowithun, N.; Charoenrein, S. Influence of osmodehydrofreezing with different sugars on the quality of frozen rambutan. Int. J. Food Sci. Technol. 2009, 44, 2183–2188. [Google Scholar] [CrossRef]
- Vicente, S.; Nieto, A.B.; Hodara, K.; Castro, M.A.; Alzamora, S.M. Changes in Structure, Rheology, and Water Mo-bility of Apple Tissue Induced by Osmotic Dehydration with Glucose or Trehalose. Food Biopro. Technol. 2012, 5, 3075–3089. [Google Scholar] [CrossRef]
- Konopacka, D.; Jesionkowska, K.; Klewicki, R.; Bonazzi, C. The effect of different osmotic agents on the sensory perception of osmo-treated dried fruit. J. Hortic. Sci. Biotechnol. 2009, 84, 80–84. [Google Scholar] [CrossRef]
- Nieto, A.B.; Vicente, S.; Hodara, K.; Castro, M.A.; Alzamora, S.M. Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility. J. Food Eng. 2013, 119, 104–114. [Google Scholar] [CrossRef]
- Dermesonlouoglou, E.K.; Giannakourou, M.; Taoukis, P.S. Kinetic study of the effect of the osmoticdehydration pre-treatment with alternative osmotic solutes to the shelf life of frozen strawberry. Food Bioprod. Process. 2016, 99, 212–221. [Google Scholar] [CrossRef]
- Bchir, B.; Bouaziz, M.A.; Ettaib, R.; Sebii, H.; Danthine, S.; Blecker, C.; Besbes, S.; Attia, H. Optimization of ultrasound-assisted osmotic dehydration of pomegranate seeds (Punica granatum L.) using response surface methodology. J. Food Process. Preserv. 2020, 44. [Google Scholar] [CrossRef]
- Cichowska, J.; Woźniak, L.; Figiel, A.; Witrowa-Rajchert, D. The Influence of Osmotic Dehydration in Polyols Solu-tions on Sugar Profiles and Color Changes of Apple Tissue. Period. Polytech. Chem. Eng. 2020, 64, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Bchir, B.; Besbes, S.; Attia, H.; Blecker, C. Osmotic dehydration of pomegranate seeds (Punica granatum L.): Effect of freezing pre-treatment. J. Food Process. Eng. 2011, 35, 335–354. [Google Scholar] [CrossRef]
- Bchir, B.; Besbes, S.; Attia, H.; Blecker, C. Osmotic dehydration of pomegranate seeds: Mass transfer kinetics and differential scanning calorimetry characterization. Int. J. Food Sci. Technol. 2009, 44, 2208–2217. [Google Scholar] [CrossRef]
- Alvarez, A.C.; Aguerre, R.; Gomez, R.; Vidales, S.; Altamira, S.M.; Gerschenson, L.N. Air dehydration of strawber-ries: Effects of blanching and osmotic pretreatments on the kinetics of moisture transport. J. Food Eng. 1995, 25, 167–178. [Google Scholar] [CrossRef]
- Palou, E.; Lopez-Malo, A.; Argaiz, A.; Welti, J. Use of Peleg’s equation to osmotic concentration of papaya. Dry. Technol. 1994, 12, 965–978. [Google Scholar] [CrossRef]
- Khan, M.A.; Shukla, R.N.; Zaidi, S. Mass Transfer during Osmotic dehydration of Apple using Sucrose, Fructose and Maltodextrin Solution. In Proceedings of the 11th International Congress on Engineering and Food, Athens, Greece, 22–26 May 2011; pp. 967–968. [Google Scholar]
- Devic, E.; Guyot, S.; Daudin, J.-D.; Bonazzi, C. Effect of Temperature and Cultivar on Polyphenol Retention and Mass Transfer during Osmotic Dehydration of Apples. J. Agric. Food Chem. 2009, 58, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.C.; Hubinger, M.D. Evaluation of the mechanical properties and diffusion coefficients of osmodehydrated melon cubes. Int. J. Food Sci. Technol. 2008, 43, 2065–2074. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Torres, M.; Vazquez, G. Effect of stirring in the osmotic dehydration of chestnut using glycerol solutions. LWT 2007, 40, 1507–1514. [Google Scholar] [CrossRef]
- Viana, A.D.; Corrêa, J.L.; Justus, A. Optimisation of the pulsed vacuum osmotic dehydration of cladodes of fodder palm. Int. J. Food Sci. Technol. 2013, 49, 726–732. [Google Scholar] [CrossRef]
- Chauhan, O.P.; Singh, A.; Singh, A.; Raju, P.S.; Bawa, A.S. Effects of Osmotic Agents on Colour, Textural, Struc-tural, Thermal, and Sensory Properties of Apple Slices. Int. J. Food Prop. 2011, 14, 1037–1048. [Google Scholar] [CrossRef]
- Sritongtae, B.; Mahawanich, T.; Duangmal, K. Drying of Osmosed Cantaloupe: Effect of Polyols on Drying and Water Mobility. Dry. Technol. 2011, 29, 527–535. [Google Scholar] [CrossRef]
- Corrêa, J.L.G.; Pereira, L.M.; Vieira, G.S.; Hubinger, M.D. Mass transfer kinetics of pulsed vacuum osmotic dehy-dration of guavas. J. Food Eng. 2010, 96, 498–504. [Google Scholar] [CrossRef]
- Maldonado, S.; Santapaola, J.E.; Singh, J.; Torrez, M.; Garay, A. Cinetica de la transferencia de massa durante la deshidratacion osmotica de yacon (Smallanthus sonchifolius). Cienc. Tecnol. Alimen. 2008, 28, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Taiwo, K.A.; Eshtiaghi, M.N.; Ade-Omowaye, B.I.O.; Knorr, D. Osmotic dehydration of strawberry halves: Influ-ence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Int. J. Food Sci. Technol. 2003, 38, 693–707. [Google Scholar] [CrossRef]
- Peleg, M. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci. 1988, 53, 1216–1217. [Google Scholar] [CrossRef]
- Uribe, E.; Miranda, M.; Vega, A.; Quispe, I.; Claver, R.; Scala, K. Mass transfer modelling during osmotic dehy-dration of jumbo squid (Dosidicus gigas): Influence of temperature on diffusion coefficients and kinetic parameters. Food Bioproc. Technol. 2011, 4, 320–326. [Google Scholar] [CrossRef]
- Silva, K.S.; Fernandes, M.A.; Mauro, M.A. Osmotic Dehydration of Pineapple with Impregnation of Sucrose, Calcium, and Ascorbic Acid. Food Bioprocess Technol. 2013, 7, 385–397. [Google Scholar] [CrossRef]
- Mothibe, K.J.; Zhang, J.M.; Nsoratindana, Y.; Wang, C. Use of ultrasound pretreatment in drying of fruits: Drying rates, quality attributes, and shelf-life extension. Dry. Technol. 2011, 29, 1611–1621. [Google Scholar] [CrossRef]
- Zaouay, F.; Mars, M. Phenotypic variation, and estimation of genetic parameters to improve fruit quality in Tunisi-an pomegranate (Punica granatum L.) accessions. J. Horticult. Sci. Biotechnol. 2014, 89, 221–228. [Google Scholar] [CrossRef]
- Nunes, C.; Santos, C.; Pinto, G.; Lopes-Da-Silva, J.A.; Saraiva, J.A.; Coimbra, M.A. Effect of candying on microstructure and texture of plums (Prunus domestica L.). LWT 2008, 41, 1776–1783. [Google Scholar] [CrossRef]
- Khoualdia, B.; Ben-Ali, S.; Hannachi, A. Pomegranate arils osmotic dehydration: Effect of pre-drying on mass transfer. J. Food Sci. Technol. 2020, 57, 2129–2138. [Google Scholar] [CrossRef]
Coded Factor | Independent Variables | Coded Levels of Variables | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
X1 | Temperature (°C) | 30 | 40 | 50 |
X2 | Time (min) | 10 | 35 | 60 |
X3 | °Brix (%) | 0 | 20 | 40 |
X1 | X2 | X3 | Erythritol | Sorbitol | Sucrose | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WL | SG | WR | Deff | WL | SG | WR | Deff | WL | SG | WR | Deff | |||
40 | 60 | 40 | 32.96 | 3.64 | 40.61 | 4.22 × 10−8 | 32.24 | 9.08 | 41.10 | 4.10 × 10−8 | 28.09 | −1.31 | 38.41 | 4.03 × 10−8 |
50 | 35 | 40 | 38.58 | −0.78 | 39.36 | 4.74 × 10−8 | 33.40 | −1.35 | 32.05 | 3.70 × 10−8 | 35.02 | 0.66 | 30.37 | 4.70 × 10−8 |
40 | 10 | 0 | 40.83 | −8.84 | 31.98 | 1.75 × 10−8 | 34.56 | −7.70 | 26.85 | 1.75 × 10−8 | 20.86 | −4.76 | 43.62 | 1.50 × 10−8 |
30 | 60 | 20 | 28.49 | −1.36 | 27.12 | 2.11 × 10−8 | 32.04 | 1.00 | 33.04 | 1.80 × 10−8 | 26.34 | −3.56 | 29.90 | 2.80 × 10−8 |
50 | 60 | 20 | 36.64 | −3.29 | 33.35 | 4.74 × 10−8 | 34.59 | −5.28 | 29.30 | 4.71 × 10−8 | 37.95 | −4.55 | 38.50 | 3.80 × 10−8 |
40 | 35 | 20 | 36.85 | −3.65 | 33.20 | 3.75 × 10−8 | 37.92 | −0.33 | 37.58 | 3.20 × 10−8 | 35.98 | −4.45 | 40.42 | 2.74 × 10−8 |
50 | 35 | 0 | 41.48 | −10.16 | 31.21 | 1.75 × 10−8 | 36.67 | −8.93 | 27.73 | 1.75 × 10−8 | 25.93 | −5.20 | 38.81 | 2.80 × 10−8 |
30 | 35 | 0 | 36.91 | −9.91 | 26.99 | 1.75 × 10−8 | 34.76 | −9.03 | 25.72 | 1.75 × 10−8 | 20.13 | −5.15 | 35.29 | 1.20 × 10−8 |
40 | 60 | 0 | 37.88 | −10.63 | 27.25 | 1.75 × 10−8 | 25.80 | −9.15 | 26.64 | 1.75 × 10−8 | 28.09 | −5.31 | 38.41 | 1.80 × 10−8 |
40 | 35 | 20 | 36.85 | −3.65 | 33.20 | 3.75 × 10−8 | 37.92 | −0.33 | 37.56 | 3.20 × 10−8 | 35.98 | −4.45 | 40.42 | 2.74 × 10−8 |
50 | 10 | 20 | 34.48 | 7.24 | 41.73 | 4.74 × 10−8 | 36.38 | −0.25 | 36.13 | 4.71 × 10−8 | 37.56 | −3.97 | 30.59 | 3.70 × 10−8 |
40 | 35 | 20 | 36.85 | −3.65 | 33.20 | 3.75 × 10−8 | 37.92 | −0.33 | 37.56 | 3.20 × 10−8 | 35.98 | −4.45 | 40.42 | 2.74 × 10−8 |
30 | 35 | 40 | 37.68 | 1.53 | 39.21 | 1.74 × 10−8 | 31.80 | −5.90 | 37.71 | 1.90 × 10−8 | 43.09 | −0.71 | 33.81 | 2.74 × 10−8 |
30 | 10 | 20 | 40.30 | −3.64 | 36.65 | 1.74 × 10−8 | 38.61 | −2.29 | 36.31 | 1.73 × 10−8 | 27.33 | −4.04 | 31.38 | 1.75 × 10−8 |
40 | 10 | 40 | 36.91 | 0.11 | 37.03 | 4.73 × 10−8 | 37.60 | 9.42 | 47.41 | 4.80 × 10−8 | 36.25 | −2.95 | 36.21 | 4.50 × 10−8 |
Source | df | Water Loss | Solid Gain | Weight Reduction | Effective Diffusivity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | Sum of Squares | p-Value | Coefficient | Sum of Squares | p-Value | Coefficient | Sum of Squares | p-Value | Coefficient | Sum of Squares | p-Value | ||
Model | 9 | 43.70 | 136.60 | 0.011 * | 4.2 | 364.74 | 0.017 * | 46.4 | 263.79 | 0.050 * | 6.35 × 10−8 | 23.75 | 0.020 * |
A. Temperature | 1 | 0.07 | 15.03 | 0.027 * | 0.44 | 260.36 | 0.001 * | 0.37 | 151.12 | 0.004 * | 0.0182 × 10−8 | 9.20 | 0.004 * |
B. Time | 1 | −0.15 | 7.62 | 0.078 | −0.59 | 7.92 | 0.264 | −0.74 | 30.68 | 0.076 | 0.475 × 10−8 | 9.30 | 0.014 * |
C. °Brix | 1 | 0.44 | 34.18 | 0.005 * | 0.22 | 5.33 | 0.349 | 0.23 | 66.52 | 0.022 * | 0.0051 × 10−8 | 0.00 | 0.996 |
A2 | 1 | 4.97 × 10−3 | 14.57 | 0.028 * | 5.56 × 10−3 | 18.23 | 0.114 | −0.62 × 10−3 | 0.23 | 0.854 | −0.19 × 10−10 | 1.90 | 0.069 |
B2 | 1 | 1.79 × 10−3 | 0.12 | 0.794 | 14.4 × 10−3 | 7.66 | 0.271 | 12.5 × 10−3 | 5.75 | 0.378 | −0.53 × 10−10 | 1.06 | 0.146 |
C2 | 1 | 2.71 × 10−3 | 10.58 | 0.048 * | 3.12 × 10−3 | 14.02 | 0.155 | 0.43 × 10−3 | 0.26 | 0.844 | 0.019 × 10−10 | 0.05 | 0.719 |
A * B | 1 | 4.58 × 10−3 | 3.35 | 0.203 | 0.63 × 10−3 | 0.06 | 0.915 | −5.09 × 10−3 | 4.14 | 0.450 | 0.37 × 10−10 | 2.25 | 0.054 |
A * C | 1 | 0.50 × 10−3 | 0.25 | 0.706 | 2.66 × 10−3 | 7.06 | 0.288 | 2.16 × 10−3 | 4.65 | 0.425 | −0.02 × 10−10 | 0.03 | 0.776 |
B * C | 1 | 13.97 × 10−3 | 48.77 | 0.003 * | 12.82 × 10−3 | 41.08 | 0.035 * | 1.15 *× 10−3 | 0.33 | 0.826 | −0.04 × 10−10 | 0.03 | 0.770 |
Residual | 5 | - | 7.81 | - | - | 25.03 | - | - | 30.81 | - | - | 1.78 | - |
Lack of fit | 3 | - | 7.81 | 0.098 | - | 25.03 | 0.124 | - | 30.81 | 0.110 | - | 1.78 | 0.202 |
Pure error | 2 | - | 0.00 | - | - | 0.00 | - | - | 0.00 | - | - | 0.00 | - |
R-squared | - | 0.95 | - | - | 0.93 | - | - | 0.89 | - | - | 0.90 | - | - |
Adj R-squared | - | 0.85 | - | - | 0.82 | - | - | 0.71 | - | - | 0.81 | - | - |
Source | df | Water Loss | Solid Gain | Weight Reduction | Effective Diffusivity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | Sum of Squares | p-Value | Coefficient | Sum of Squares | p-Value | Coefficient | Sum of Squares | p-Value | Coefficient | Sum of Squares | p-Value | ||
Model | 9 | 39.60 | 69.20 | 0.044 * | 3.10 | 499.74 | 0.006 * | 44.70 | 478.98 | 0.032 * | 5.80 × 10−8 | 19.17 | 0.014 * |
A. Temperature | 1 | 0.29 | 5.67 | 0.111 | 0.75 | 418.71 | 0.000 * | 1.05 | 326.92 | 0.002 * | 0.007 × 10−8 | 8.26 | 0.024 * |
B. Time | 1 | 1.25 | 1.83 | 0.321 | 2.39 | 16.23 | 0.111 | 3.63 | 7.15 | 0.414 | 0.43 × 10−8 | 7.39 | 0.039 * |
C. °Brix | 1 | 0.09 | 19.49 | 0.016 * | 0.17 | 1.55 | 0.575 | 0.07 | 32.06 | 0.118 | −0.53 × 10−9 | 0.00 | 0.650 |
A2 | 1 | 5.15 × 10−3 | 15.63 | 0.024 * | −1.12 × 10−3 | 0.74 | 0.695 | −6.25 × 10−3 | 23.09 | 0.171 | −0.11 × 10−10 | 0.75 | 0.377 |
B2 | 1 | 17.00 × 10−3 | 10.67 | 0.045 * | −25.7 × 10−3 | 24.38 | 0.064 | 42.6 × 10−3 | 67.10 | 0.041 * | −0.47 × 10−10 | 0.82 | 0.358 |
C2 | 1 | 1.30 × 10−3 | 2.43 | 0.261 | 1.91 × 10−3 | 5.29 | 0.319 | 0.63 × 10−3 | 0.56 | 0.812 | 0.81 × 10−11 | 0.96 | 0.324 |
A * B | 1 | 0.39 × 10−3 | 0.02 | 0.904 | −9.19 × 10−3 | 13.50 | 0.138 | −9.58 × 10−3 | 14.67 | 0.258 | 0.22 × 10−10 | 0.81 | 0.362 |
A * C | 1 | 3.30 × 10−3 | 10.89 | 0.044 * | 0.56 × 10−3 | 0.31 | 0.800 | −2.74 × 10−3 | 7.52 | 0.403 | −0.03 × 10−11 | 0.01 | 0.970 |
B * C | 1 | 4.78 × 10−3 | 5.72 | 0.110 | −8.33 × 10−3 | 17.36 | 0.102 | −3.55 × 10−3 | 3.14 | 0.580 | −0.01 × 10−10 | 0.01 | 0.970 |
Residual | 5 | - | 7.58 | - | - | 21.65 | - | - | 45.11 | - | - | 4.02 | - |
Lack of fit | 3 | - | 7.58 | 0.084 | - | 21.65 | 0.230 | - | 45.11 | 0.078 | - | 4.02 | 0.301 |
Pure error | 2 | - | 0.00 | - | - | 0.00 | - | - | 0.00 | - | - | 0.00 | - |
R-squared | - | 0.90 | - | - | 0.96 | - | - | 0.92 | - | - | 0.83 | - | - |
Adj R-squared | - | 0.72 | - | - | 0.89 | - | - | 0.76 | - | - | 0.70 | - | - |
Source | df | Water Loss | Solid Gain | Weight Reduction | Effective Diffusivity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | Sum of Squares | p-Value | Coefficient | Sum of Squares | p-Value | Coefficient | Sum of Squares | p-Value | Coefficient | Sum of Squares | p-Value | ||
Model | 9 | 32.30 | 1267.60 | 0.001 * | 0.65 | 41.41 | 0.023 * | 40.50 | 219.23 | 0.029 * | 4.23 × 10−8 | 17.35 | 0.008 * |
A. Temperature | 1 | 0.49 | 1068.14 | 0.000 * | 0.123 | 32.41 | 0.001 * | −0.07 | 19.02 | 0.078 | 0.027 × 10−8 | 11.06 | 0.000 * |
B. Time | 1 | 2.24 | 149.39 | 0.002 * | −0.55 | 0.021 | 0.866 | 4.78 | 14.83 | 0.108 | 0.10 × 10−8 | 5.36 | 0.002 * |
C. °Brix | 1 | 0.19 | 8.95 | 0.217 | 0.057 | 0.124 | 0.683 | −0.23 | 0.25 | 0.811 | 0.017 × 10−8 | 0.35 | 0.210 |
A2 | 1 | 2.93 × 10−3 | 5.07 | 0.337 | 2.86 × 10−3 | 4.848 | 0.043 * | 2.46 × 10−3 | 3.57 | 0.382 | 0.31 × 10−11 | 0.05 | 0.586 |
B2 | 1 | −23.6 × 10−3 | 20.50 | 0.086 | 6.99 × 10−3 | 1.804 | 0.160 | 60.9 × 10−3 | 136.91 | 0.002 * | 0.05 × 10−10 | 0.01 | 0.982 |
C2 | 1 | 2.12 × 10−3 | 6.49 | 0.283 | −0.45 × 10−3 | 0.29 | 0.535 | −2.79 × 10−3 | 11.24 | 0.150 | 0.43 × 10−11 | 0.26 | 0.268 |
A * B | 1 | 1.41 × 10−3 | 0.32 | 0.800 | 1.78 × 10−3 | 0.50 | 0.422 | −4.95 × 10−3 | 3.92 | 0.361 | 0.50 × 10−11 | 0.04 | 0.648 |
A * C | 1 | 2.70 × 10−3 | 7.26 | 0.259 | 1.09 × 10−3 | 1.20 | 0.236 | 2.71 × 10−3 | 7.33 | 0.228 | −0.35 * 1012 | 0.01 | 0.936 |
B * C | 1 | 1.39 × 10−3 | 0.48 | 0.756 | −1.06 × 10−3 | 0.28 | 0.545 | 9.39 × 10−3 | 22.02 | 0.063 | −0.95 × 10−11 | 0.22 | 0.302 |
Residual | 5 | - | 22.43 | - | - | 3.31 | - | - | 19.45 | - | - | 0.85 | - |
Lack of fit | 3 | - | 22.43 | 0.101 | - | 3.31 | 0.527 | - | 19.45 | 0.317 | - | 0.85 | 0.152 |
Pure error | 2 | - | 0.00 | - | - | 0.00 | - | - | 0.00 | - | - | 0.00 | - |
R-squared | - | 0.98 | - | - | 0.92 | - | - | 0.91 | - | - | 0.95 | - | - |
Adj R-squared | - | 0.95 | - | - | 0.79 | - | - | 0.77 | - | - | 0.86 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bchir, B.; Sebii, H.; Danthine, S.; Blecker, C.; Besbes, S.; Attia, H.; Bouaziz, M.A. Efficiency of Osmotic Dehydration of Pomegranate Seeds in Polyols Solutions Using Response Surface Methodology. Horticulturae 2021, 7, 268. https://doi.org/10.3390/horticulturae7090268
Bchir B, Sebii H, Danthine S, Blecker C, Besbes S, Attia H, Bouaziz MA. Efficiency of Osmotic Dehydration of Pomegranate Seeds in Polyols Solutions Using Response Surface Methodology. Horticulturae. 2021; 7(9):268. https://doi.org/10.3390/horticulturae7090268
Chicago/Turabian StyleBchir, Brahim, Haifa Sebii, Sabine Danthine, Christophe Blecker, Souhail Besbes, Hamadi Attia, and Mohamed Ali Bouaziz. 2021. "Efficiency of Osmotic Dehydration of Pomegranate Seeds in Polyols Solutions Using Response Surface Methodology" Horticulturae 7, no. 9: 268. https://doi.org/10.3390/horticulturae7090268
APA StyleBchir, B., Sebii, H., Danthine, S., Blecker, C., Besbes, S., Attia, H., & Bouaziz, M. A. (2021). Efficiency of Osmotic Dehydration of Pomegranate Seeds in Polyols Solutions Using Response Surface Methodology. Horticulturae, 7(9), 268. https://doi.org/10.3390/horticulturae7090268