Eradication of PPV and PNRSV Viruses from Three Peach Cultivars Using Thermotherapy In Vitro, Including Optimization of Microshoots’ Multiplication and Rooting Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Culture Establishment and Thermotherapy
2.2. Establishment of Regeneration Culture
2.3. Selection of Virus-Free In Vitro Shoots
2.4. Establishment of Rooting Culture
2.5. Statistics
3. Results
3.1. In Vitro Culture Establishment
3.2. Optimization of Shoot Multiplication
3.3. Selection of Virus-Free Plantlets
3.4. Effects of Different Growth Regulators on Rooting
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barba, M.; Ilardi, V.; Pasquini, G. Control of pome and stone fruit virus diseases. In Advances In Virus Research; Elsevier BV: London, UK, 2015; Volume 91, pp. 47–83. [Google Scholar] [CrossRef]
- Umer, M.; Liu, J.; You, H.; Xu, C.; Dong, K.; Luo, N.; Kong, L.; Li, X.; Hong, N.; Wang, G.; et al. Genomic, morphological and biological traits of the viruses infecting major fruit trees. Viruses 2019, 11, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Hernandez, M.; Macias-Bobadilla, I.; Guevara-Gonzalez, R.G.; Rico-Garcia, E.; Ocampo-Velazquez, R.V.; Avila-Juarez, L.; Torres-Pacheco, I. Nanoparticles as potential antivirals in agriculture. Agriculture 2020, 10, 444. [Google Scholar] [CrossRef]
- Kinoti, W.M.; Nancarrow, N.; Dann, A.; Rodoni, B.C.; Constable, F.E. Updating the quarantine status of prunus infecting viruses in Australia. Viruses 2020, 12, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Přibylová, J.; Lenz, O.; Fránová, J.; Koloniuk, I.; Špak, J. Comparison of the incidence of viruses within germplasm, orchards and wild cherry trees in the Czech Republic. Ann. Appl. Biol. 2020, 176, 138–146. [Google Scholar] [CrossRef]
- Okić, A.; Wetzel, T.; Zarghani, S.N.; Massart, S.; Grahić, J.; Gaši, F.; Konjić, A.; Vončina, D. Occurrence and distribution patterns of plum tree viruses and genetic diversity of sharka isolates in Bosnia and Herzegovina. Horticulturae 2022, 8, 783. [Google Scholar] [CrossRef]
- Dehkordi, A.N.; Rubio, M.; Babaeian, N.; Albacete, A.; Martínez-Gómez, P. Phytohormone Signaling of the resistance to plum pox virus (PPV, Sharka disease) induced by almond (Prunus dulcis (Miller) Webb) grafting to peach (P. persica L. Batsch). Viruses 2018, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-R.; Cui, Z.-H.; Li, J.-W.; Hao, X.-Y.; Zhao, L.; Wang, Q.-C. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 2018, 14, 87. [Google Scholar] [CrossRef] [Green Version]
- Panattoni, A.; D’Anna, F.; Cristani, C.; Triolo, E. Grapevine vitivirus A eradication in Vitis vinifera explants by antiviral drugs and thermotherapy. J. Virol. Methods 2008, 146, 129–135. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Zhang, F.; Hong, N.; Wang, G.; Wang, A.; Wang, L. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing. BMC Genom. 2015, 16, 945. [Google Scholar] [CrossRef]
- Koubouris, G.C.; Maliogka, V.I.; Efthimiou, K.; Katis, N.I.; Vasilakakis, M.D. Elimination of Plum pox virus through in vitro thermotherapy and shoot tip culture compared to conventional heat treatment in apricot cultivar Bebecou. J Gen Plant Pathol. 2007, 73, 370–373. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Habashi, A.A.; Emadpour, M.; Kazemi, N. Recovery of virus-free Almond (Prunus dulcis) cultivars by somatic embryogenesis from meristem undergone thermotherapy. Sci. Rep. 2022, 12, 14948. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Dong, Y.; Zhang, Z.; Fan, X.; Ren, F.; Zhou, J. Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell Tissue Organ. Cult. 2015, 121, 435–443. [Google Scholar] [CrossRef]
- Karimpour, S.; Davarynejad, G.; Zakiaghl, M.; Safarnejad, M.R. In vitro thermotherapy and thermo-chemotherapy approaches to eliminate some viruses in Pyrus communis L. cv.‘Natanz’. J. Agric. Sci. Technol. 2020, 22, 1645–1653. [Google Scholar]
- Bettoni, J.C.; Mathew, L.; Pathirana, R.; Wiedow, C.; Hunter, D.A.; McLachlan, A.; Khan, S.; Tang, J.; Nadarajan, J. Eradication of potato virus S, potato virus A, and potato virus M from infected in vitro-grown potato shoots using in vitro therapies. Front. Plant Sci. 2022, 13, 1431. [Google Scholar] [CrossRef] [PubMed]
- Farhadi-Tooli, S.; Ghanbari, A.; Kermani, M.J.; Zeinalabedini, M.; Bettoni, J.C.; Naji, A.M.; Kazemi, N. Droplet-vitrification cryotherapy and thermotherapy as efficient tools for the eradication of apple chlorotic leaf spot virus and apple stem grooving virus from virus-infected quince in vitro cultures. Eur. J. Plant Pathol. 2021, 162, 31–43. [Google Scholar] [CrossRef]
- Manganaris, G.A.; Economou, A.S.; Boubourakas, I.N.; Katis, N.I. Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture in nectarine. Plant Cell Rep. 2003, 22, 195–200. [Google Scholar] [CrossRef]
- Kazemi, N.; Habashi, A.A.; Asadi, W. Evaluation of combined treatments of thermotherapy and apical meristem culture efficiency on virus elimination from in vitro shootlets of red flesh apple (Malus pumila Mill.). J. Hortic. Sci. 2019, 33, 499–509. [Google Scholar] [CrossRef]
- Kazemi, N.; Nahandi, F.Z.; Habash, A.A.; Asadi, W. Molecular assessment of chemotherapy and meristem culture efficiency for production of seven cultivars of virus-free pear (Pyrus communis L.). J. Crop. Improve. 2019, 21, 107–118. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Fazio, G.; Carvalho Costa, L.; Hurtado-Gonzales, O.P.; Rwahnih, M.A.; Nedrow, A.; Volk, G.M. Thermotherapy followed by shoot tip cryotherapy eradicates latent viruses and apple hammerhead viroid from in vitro apple rootstocks. Plants 2022, 11, 582. [Google Scholar] [CrossRef]
- Jaakola, L.; Pirttilä, A.M.; Halonen, M.; Hohtola, A. Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Appl. Biochem. Biotechnol.-Part B Mol. Biotechnol. 2001, 19, 201–203. [Google Scholar] [CrossRef]
- Naderpour, M.; Shahbazi, R. Investigation on Viral Diseases of Pome Fruit Orchards in Western Azarbaijan and Khorasan Razavi Provinces to Introduce Healthier Orchards for Stone Fruit Propagation Industry; Final Report; Center for Agriculture Information and Scientific Documentation, Areo, Ministry of Agriculture: Tehran, Iran, 2014; p. 69. [Google Scholar]
- Varga, A.; James, D. Detection and differentiation of plum pox virus using real-time multiplex pcr with sybr green and melting curve analysis: A rapid method for strain typing. J. Virol. Methods 2005, 123, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, J.C.; Marković, Z.; Bi, W.; Volk, G.M.; Matsumoto, T.; Wang, Q.-C. Grapevine shoot tip cryopreservation and cryotherapy: Secure storage of disease-dree llants. Plants 2021, 10, 2190. [Google Scholar] [CrossRef] [PubMed]
- Magyar-Tábori, K.; Mendler-Drienyovszki, N.; Hanász, A.; Zsombik, L.; Dobránszki, J. Phytotoxicity and Other Adverse Effects on the In Vitro Shoot Cultures Caused by Virus Elimination Treatments: Reasons and Solutions. Plants 2021, 10, 670. [Google Scholar] [CrossRef] [PubMed]
- Gentile, A.; Monticelli, S.; Damiano, C. Adventitious shoot regeneration in peach (Prunus persica L., Batsch). Plant Cell Rep. 2002, 20, 1011–1016. [Google Scholar] [CrossRef]
- Zong, X.; Denler, B.J.; Danial, G.H.; Chang, Y.; Song, G. Adventitious Shoot Regeneration and Agrobacterium tumefaciens-mediated Transient Transformation of Almond × Peach Hybrid Rootstock ‘Hansen 536’. Hortscience 2019, 54, 936–940. [Google Scholar] [CrossRef] [Green Version]
- San, B.; Li, Z.; Hu, Q.; Reighard, G.L.; Luo, H. Adventitious shoot regeneration from in vitro cultured leaf explants of peach rootstock Guardian® is significantly enhanced by silver thiosulfate. Plant Cell Tissue Organ Cult. 2015, 120, 757–765. [Google Scholar] [CrossRef]
- Ricci, A.; Sabbadini, S.; Prieto, H.; Padilla, I.M.; Dardick, C.; Li, Z.; Scorza, R.; Limera, C.; Mezzetti, B.; Perez-Jimenez, M.; et al. Genetic Transformation in Peach (Prunus persica L.): Challenges and Ways Forward. Plants 2020, 9, 971. [Google Scholar] [CrossRef]
- Guo, B.; Stiles, A.R.; Liu, C.Z. Thidiazuron enhances shoot organogenesis from leaf explants of Saussurea involucrata Kar. et Kir. In Vitro Cell Dev Biol Plant. 2012, 48, 609–612. [Google Scholar] [CrossRef]
- Deepa, A.V.; Anju, M.; Dennis Thomas, T. The Applications of TDZ in Medicinal Plant Tissue Culture. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer Nature, Singapore Pte Ltd.: Singapore, 2018. [Google Scholar] [CrossRef]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An Academic and Technical Overview on Plant Micropropagation Challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
Primer Name | Sequence (5’→3’) | Amplicon Size (bp) | Reference |
---|---|---|---|
PNRSV-F3 | GCCGAATTTGCAATCATACCC | 599 | Naderpour and Shahbazi [22] |
PNRSV-R3 | ACTTCGGTCTTGAATTCGAT | ||
PPV-RR | CTCTTCTTGTGTTCCGACGTTTC | 345 | Varga and James [23] |
PPV-F3 | GGAATGTGGGTGATGATGG |
Treatment | Rooting Condition (a) * | Rooting Condition (b) ** | Rooting Condition (c) *** |
---|---|---|---|
1 | MS + IBA (0.5 mg L−1) | MS + IBA (0.5 mg L−1) | ½MS + IBA (0.5 mg/l) |
2 | MS + IBA (1 mg L−1) | MS + IBA (1 mg L−1) | ½MS+ IBA (1 mg L−1) |
3 | MS + IBA (2 mg L−1) | MS + IBA (2 mg L−1) | ½MS + IBA (0.5 mg L−1) + NAA (0.25 mg L−1) |
4 | MS + IBA (0.5 mg L−1) + NAA (0.5 mg L−1) | IBA (0.5 mg L−1) + NAA (0.5 mg L−1) | ½MS + IBA (1 mg L−1) + NAA (0.5 mg L−1) |
5 | MS + IBA (0.5 mg L−1)+ NAA (0.25 mg L−1) | IBA (0.5 mg L−1) + NAA (0.25 mg L−1) | - |
Cultivars | Fe * Treatments mg L−1 | Shoot Length (mm) | Branch Number | Leaf Number |
---|---|---|---|---|
’Elberta’ | 0 | 15.97 ± 2.3 f | 1.00 ± 0.02 d | 1.33 ± 0.05 h |
15 | 21.42 ± 3.1 d | 1.16 ± 0.03 d | 9.50 ± 0.26 e | |
30 | 24.00 ± 2.4 c | 2.33 ± 0.01 bc | 20.67 ± 0.37 b | |
’Dixie Red’ | 0 | 18.97 ± 1.9 e | 1.00 ± 0.01 d | 2.04 ± 0.03 h |
15 | 26.87 ± 1.9 b | 3.21 ± 0.02 ab | 17.33 ± 0.9 c | |
30 | 34.00 ± 2.1 a | 3.66 ± 0.02 a | 24.5 ± 1.2 a | |
’Red Top’ | 0 | 18.97 ± 1.3 e | 1.16 ± 0.03 d | 2.04 ± 0.04 h |
15 | 21.68 ± 1.5 d | 1.70 ± 0.014 cd | 11.49 ± 2.3 d | |
30 | 22.32 ± 1.9 cd | 1.44 ± 0.012 cd | 12.44 ± 2.5 d |
Cultivar | Growth Regulator | Shoot Length (mm) | Branch Number | Leaf Number |
---|---|---|---|---|
’Elberta’ | GA3 (1 mg L−1) + BAP (1.5 mg L−1) | 23.17 ± 3.9 e | 1.33 ± 0.04 b | 12.33 ± 1.8 bc |
GA3 (2 mg L−1) + BAP (2 mg L−1) | 29.53 ± 4.1 a | 2.66 ± 0.4 a | 13.67 ± 2.05 b | |
’Dixie Red’ | GA3 (1 mg L−1) + BAP (1.5 mg L−1) | 28.89 ± 3.0 bc | 2.59 ± 0.8 a | 13.89 ± 3.0 b |
GA3 (2 mg L−1) + BAP (2 mg L−1) | 28.37 ± 2.8 c | 1.733 ± 0.1 b | 9.36 ± 1.15 c | |
’Red Top’ | GA3 (1 mg L−1) + BAP (1.5 mg L−1) | 26.55 ± 1.95 d | 1.66 ± 0.2 b | 15.67 ± 2.75 b |
GA3 (2 mg L−1) + BAP (2 mg L−1) | 27.11 ± 2.3 d | 3.00 ± 0.6 a | 38.33 ± 5.4 a |
Cultivar | Growth Regulator | Shoot Length (mm) | Branch Number | Leaf Number |
---|---|---|---|---|
’Elberta’ | GA3 (1 mg L−1) + TDZ (1 mg L−1) | 22.79 ± 2.8 c | 1.55 ± 0.15 ab | 11.58 ± 2.3 b |
GA3 (1 mg L−1) + TDZ (1.5 mg L−1) | 23.70 ± 3.1 bc | 1.90 ± 0.23 a | 11.63 ± 1.5 b | |
GA3 (2 mg L−1) + TDZ (1 mg L−1) | 19.08 ± 2.3 d | 1.51 ± 0.25 ab | 9.00 ± 1.25 d | |
GA3 (2 mg L−1) + TDZ (2.5 mg L−1) | 26.55 ± 3.1 a | 2.00 ± 0.1 a | 15.33 ± 2.8 a | |
’Dixie Red’ | GA3 (1 mg L−1) + TDZ (1 mg L−1) | 22.53 ± 1.1 c | 1.41 ± 0.2 ab | 7.26 ± 1.07 e |
GA3 (1 mg L−1) + TDZ (1.5 mg L−1) | 20.00 ± 1.8 d | 1.00 ± 0.1 b | 6.00 ± 1.04 f | |
GA3 (2 mg L−1) + TDZ (1 mg L−1) | 23.52 ± 2.2 bc | 1.80 ± 0.15 ab | 10.76 ± 1.9 c | |
GA3 (2 mg L−1) + TDZ (2.5 mg L−1) | 26.96 ± 1.9 a | 1.74 ± 0.2 ab | 10.78 ± 2.1 c | |
’Red Top’ | GA3 (1 mg L−1) + TDZ (1 mg L−1) | 18.43 ± 1.3 d | 1.00 ± 0.3 b | 5.66 ± 0.65 f |
GA3 (1 mg L−1) + TDZ (1.5 mg L−1) | 18.87 ± 2.1 e | 1.33 ± 0.4 ab | 8.66 ± 1.32 d | |
GA3 (2 mg L−1) + TDZ (1 mg L−1) | 24.67 ± 2.2 b | 1.00 ± 0.06 b | 8.66 ± 1.37 d | |
GA3 (2 mg L−1) + TDZ (2.5 mg L−1) | 18.44 ± 2.3 d | 1.66 ± 0.15 ab | 6.133 ± 1.41 f |
ELISA | ’Elberta’ | ’Dixie Red’ | ’Red Top’ |
---|---|---|---|
PPV | 0.134 ± 0.043 | 0.139 ± 0.010 | 0.143 ± 0.025 |
PPV Positive control * | 3.849 ± 0.046 | 3.849 ± 0.046 | 3.849 ± 0.046 |
PNRSV | 0.182 ± 0.092 | 0.174 ± 0.039 | 0.112 ± 0.084 |
PNRSV Positive control * | 3.809 ± 0.042 | 3.809 ± 0.042 | 3.809 ± 0.042 |
Negative Control ** | 0.150 ± 0.044 | 0.150 ± 0.044 | 0.150 ± 0.044 |
Results | Negative | Negative | Negative |
Rooting Medium | No. of Samples | No. of Rooted Microshoots | Root Length cm | Rooting % |
---|---|---|---|---|
MS + IBA (0.5 mg L−1) | 30 | 21 | 1 ± 0.4 | 70 |
MS + IBA (1 mg L−1) | 30 | 0 | 0 | 0 |
MS + IBA (2 mg L−1) | 30 | 0 | 0 | 0 |
MS + IBA (0.5 mg L−1) + NAA (0.5 mg L−1) | 30 | 0 | 0 | 0 |
MS + IBA (0.5 mg L−1) + NAA (0.25 mg L−1) | 30 | 0 | 0 | 0 |
Rooting Medium | No. of Samples | No. of Rooted Microshoots | Root Length cm | Rooting % |
---|---|---|---|---|
MS + IBA (0.5 mg L−1) | 30 | 12 | 2.5 ± 0.6 | 40 |
MS + IBA (1 mg L−1) | 30 | 0 | 0 | 0 |
MS + IBA (2 mg L−1) | 30 | 0 | 0 | 0 |
IBA (0.5 mg L−1) + NAA (0.5 mg L−1) | 30 | 0 | 0 | 0 |
IBA (0.5 mg L−1) + NAA (0.25 mg L−1) | 30 | 0 | 0 | 0 |
Rooting Medium | No. of Samples | No. of Rooted Microshoots | Root Length cm | Rooting % |
---|---|---|---|---|
½MS + IBA (0.5 mg L−1) | 30 | 27 | 2 ± 0.4 | 90 |
½MS + IBA (1 mg L−1) | 30 | 25 | 1.5 ± 0.4 | 83 |
½MS + IBA (0.5 mg L−1) + NAA (0.25 mg L−1) | 30 | 27 | 2 ± 0.5 | 90 |
½MS + IBA (1 mg L−1) + NAA (0.5 mg L−1) | 30 | 22 | 1 ± 0.3 | 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hesari, N.; Haji Mohammadi, A.; Zarghami, R.; Fakheri, B.; Kiss-Bába, E.; Szegő, A.; Papp, I.; Mirmazloum, I. Eradication of PPV and PNRSV Viruses from Three Peach Cultivars Using Thermotherapy In Vitro, Including Optimization of Microshoots’ Multiplication and Rooting Medium. Horticulturae 2022, 8, 929. https://doi.org/10.3390/horticulturae8100929
Hesari N, Haji Mohammadi A, Zarghami R, Fakheri B, Kiss-Bába E, Szegő A, Papp I, Mirmazloum I. Eradication of PPV and PNRSV Viruses from Three Peach Cultivars Using Thermotherapy In Vitro, Including Optimization of Microshoots’ Multiplication and Rooting Medium. Horticulturae. 2022; 8(10):929. https://doi.org/10.3390/horticulturae8100929
Chicago/Turabian StyleHesari, Neda, Ali Haji Mohammadi, Reza Zarghami, Bratali Fakheri, Erzsébet Kiss-Bába, Anita Szegő, István Papp, and Iman Mirmazloum. 2022. "Eradication of PPV and PNRSV Viruses from Three Peach Cultivars Using Thermotherapy In Vitro, Including Optimization of Microshoots’ Multiplication and Rooting Medium" Horticulturae 8, no. 10: 929. https://doi.org/10.3390/horticulturae8100929
APA StyleHesari, N., Haji Mohammadi, A., Zarghami, R., Fakheri, B., Kiss-Bába, E., Szegő, A., Papp, I., & Mirmazloum, I. (2022). Eradication of PPV and PNRSV Viruses from Three Peach Cultivars Using Thermotherapy In Vitro, Including Optimization of Microshoots’ Multiplication and Rooting Medium. Horticulturae, 8(10), 929. https://doi.org/10.3390/horticulturae8100929