Tomato Landraces May Benefit from Protected Production—Evaluation on Phytochemicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Instrumental Measurements
2.3. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Fruit Quality Parameters
3.3. Antioxidant Traits
3.4. GGE Analysis of the Tomato PGR Phytonutrient Dataset
4. Discussion
4.1. Assessment of PGR Phytonutrient Status
4.2. Identifying Ideal Environments for PGRs
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Statistical Databases (FAOSTAT). Rome, Italy. Available online: https://www.fao.org/faostat/en/ (accessed on 25 October 2021).
- Raiola, A.; Rigano, M.M.; Calafiore, R.; Frusciante, L.; Barone, A. Enhancing the Health-Promoting Effects of Tomato Fruit for Biofortified Food. Mediat. Inflamm. 2014, 2014, e139873. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.J.; Jayaprakasha, G.K.; Enciso, J.; Avila, C.A.; Crosby, K.M.; Patil, B.S. Production System Influences Tomato Phenolics and Indoleamines in a Cultivar-Specific Manner. Food Res. Int. 2021, 140, 110016. [Google Scholar] [CrossRef] [PubMed]
- Rapa, M.; Ciano, S.; Ruggieri, R.; Vinci, G. Bioactive Compounds in Cherry Tomatoes (Solanum Lycopersicum Var. Cerasiforme): Cultivation Techniques Classification by Multivariate Analysis. Food Chem. 2021, 355, 129630. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.C.; Murphy, K.M.; Jones, S.S. Decentralized Selection and Participatory Approaches in Plant Breeding for Low-Input Systems. Euphytica 2008, 160, 143–154. [Google Scholar] [CrossRef]
- Rodríguez-Burruezo, S.; Prohens, J.; RosellÓ, J.; Nuez, F. “Heirloom” Varieties as Sources of Variation for the Improvement of Fruit Quality in Greenhouse-Grown Tomatoes. J. Hortic. Sci. Biotechnol. 2005, 80, 453–460. [Google Scholar] [CrossRef]
- Tieman, D.; Zhu, G.; Resende, M.F.R.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.O.; Taylor, M.; Zhang, B.; et al. A Chemical Genetic Roadmap to Improved Tomato Flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef]
- Fullana-Pericàs, M.; Conesa, M.À.; Douthe, C.; El Aou-ouad, H.; Ribas-Carbó, M.; Galmés, J. Tomato Landraces as a Source to Minimize Yield Losses and Improve Fruit Quality under Water Deficit Conditions. Agric. Water Manag. 2019, 223, 105722. [Google Scholar] [CrossRef]
- Healy, G.K.; Emerson, B.J.; Dawson, J.C. Tomato Variety Trials for Productivity and Quality in Organic Hoop House versus Open Field Management. Renew. Agric. Food Syst. 2017, 32, 562–572. [Google Scholar] [CrossRef]
- Biodiversity International. European Landraces: On-Farm Conservation, Management and Use; Veteläinen, M., Negri, V., Maxted, N., Eds.; Bioversity International: Rome, Italy, 2009; ISBN 978-92-9043-805-2. [Google Scholar]
- Maxim, A.; Străjeru, S.; Albu, C.; Sandor, M.; Mihalescu, L.; Pauliuc, S.E. Conservation of Vegetable Genetic Diversity in Transylvania-Romania. Sci. Rep. 2020, 10, 18416. [Google Scholar] [CrossRef]
- Wang, D.; Seymour, G.B. Tomato Flavor: Lost and Found? Mol. Plant 2017, 10, 782–784. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Muñoz, P.; Antón, A.; Rieradevall, J. Assessment of Tomato Mediterranean Production in Open-Field and Standard Multi-Tunnel Greenhouse, with Compost or Mineral Fertilizers, from an Agricultural and Environmental Standpoint. J. Clean. Prod. 2011, 19, 985–997. [Google Scholar] [CrossRef]
- Rogers, M.A.; Wszelaki, A.L. Influence of High Tunnel Production and Planting Date on Yield, Growth, and Early Blight Development on Organically Grown Heirloom and Hybrid Tomato. HortTechnology 2012, 22, 452–462. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, S.; Rivard, C.; Peet, M.M.; Harlow, C.; Louws, F. High Tunnel and Field Production of Organic Heirloom Tomatoes: Yield, Fruit Quality, Disease, and Microclimate. HortScience 2012, 47, 1283–1290. [Google Scholar] [CrossRef] [Green Version]
- Maxim, V.; Linnemannstöns, L.; Măniuţiu, D.; Maxim, A.; Şandor, M.; Creţa, C.; Gocan, T. Suitability of Some Romanian Tomato Landraces to Organic Crop in Plastic Tunel. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2013, 70, 164–171. [Google Scholar]
- Woolley, A.; Sumpter, S.; Lee, M.; Xu, J.; Barry, S.; Wang, W.; Rajashekar, C.B. Accumulation of Mineral Nutrients and Phytochemicals in Lettuce and Tomato Grown in High Tunnel and Open Field. Am. J. Plant Sci. 2019, 10, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Servili, M. Characterization of Phenolic and Volatile Composition of Extra Virgin Olive Oil Extracted from Six Italian Cultivars Using a Cooling Treatment of Olive Paste. LWT 2018, 87, 523–528. [Google Scholar] [CrossRef]
- Zhao, X.; Carey, E.E.; Young, J.E.; Wang, W.; Iwamoto, T. Influences of Organic Fertilization, High Tunnel Environment, and Postharvest Storage on Phenolic Compounds in Lettuce. HortScience 2007, 42, 71–76. [Google Scholar] [CrossRef]
- Oh, M.-M.; Carey, E.E.; Rajashekar, C.B. Antioxidant Phytochemicals in Lettuce Grown in High Tunnels and Open Field. Hortic. Environ. Biotechnol. 2011, 52, 133–139. [Google Scholar] [CrossRef]
- Romani, A.; Pinelli, P.; Galardi, C.; Sani, G.; Cimato, A.; Heimler, D. Polyphenols in Greenhouse and Open-Air-Grown Lettuce. Food Chem. 2002, 79, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Bradish, C.M.; Yousef, G.G.; Ma, G.; Perkins-Veazie, P.; Fernandez, G.E. Anthocyanin, Carotenoid, Tocopherol, and Ellagitannin Content of Red Raspberry Cultivars Grown under Field or High Tunnel Cultivation in the Southeastern United States. J. Am. Soc. Hortic. Sci. 2015, 140, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Asensio, E.; Sanvicente, I.; Mallor, C.; Menal-Puey, S. Spanish Traditional Tomato. Effects of Genotype, Location and Agronomic Conditions on the Nutritional Quality and Evaluation of Consumer Preferences. Food Chem. 2019, 270, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Cebolla-Cornejo, J.; Roselló, S.; Valcárcel, M.; Serrano, E.; Beltrán, J.; Nuez, F. Evaluation of Genotype and Environment Effects on Taste and Aroma Flavor Components of Spanish Fresh Tomato Varieties. J. Agric. Food Chem. 2011, 59, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.J.; Jayaprakasha, G.K.; Rush, C.M.; Crosby, K.M.; Patil, B.S. Production System Influences Volatile Biomarkers in Tomato. Metabolomics 2018, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Abushita, A.A.; Daood, H.G.; Biacs, P.A. Change in Carotenoids and Antioxidant Vitamins in Tomato as a Function of Varietal and Technological Factors. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf990715p (accessed on 2 March 2021).
- Tripathy, B.C.; Oelmüller, R. Reactive Oxygen Species Generation and Signaling in Plants. Plant Signal. Behav. 2012, 7, 1621–1633. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H. Reactive Oxygen Species, Oxidative Signaling and the Regulation of Photosynthesis. Environ. Exp. Bot. 2018, 154, 134–142. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Szepesi, Á.; Csiszár, J.; Gallé, Á.; Gémes, K.; Poór, P.; Tari, I. Effects of Long-Term Salicylic Acid Pre-Treatment on Tomato (Lycopersicon Esculentum Mill. L.) Salt Stress Tolerance: Changes in Glutathione S-Transferase Activities and Anthocyanin Contents. Acta Agron. Hung. 2008, 56, 129–138. [Google Scholar] [CrossRef]
- Csajbók-Csobod, É.; Bíró, B.; Hatvany, Z.; Hegedűs, N.; Orbán, C.; Lichthammer, A.; Tátrai-Németh, K. Effects of Storage Conditions on Peroxidase Isoenzyme-Activities, Antioxidant-Capacity and Chlorophyll-Content of White Cabbage. Biotechnol. Indian J. 2016, 12, 23–58. [Google Scholar]
- Barka, E.A. Protective Enzymes against Reactive Oxygen Species during Ripening of Tomato (Lycopersicon Esculentum) Fruits in Response to Low Amounts of UV-C. Funct. Plant Biol. 2001, 28, 785–791. [Google Scholar] [CrossRef]
- Yuan, X.K.; Yang, Z.Q.; Li, Y.X.; Liu, Q.; Han, W. Effects of Different Levels of Water Stress on Leaf Photosynthetic Characteristics and Antioxidant Enzyme Activities of Greenhouse Tomato. Photosynthetica 2016, 54, 28–39. [Google Scholar] [CrossRef]
- Soto-Zamora, G.; Yahia, E.M.; Brecht, J.K.; Gardea, A. Effects of Postharvest Hot Air Treatments on the Quality and Antioxidant Levels in Tomato Fruit. LWT-Food Sci. Technol. 2005, 38, 657–663. [Google Scholar] [CrossRef]
- Eberhart, S.A.; Russell, W.A. Stability Parameters for Comparing Varieties. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef]
- Zobel, R.W.; Wright, M.J.; Gauch, H.G., Jr. Statistical Analysis of a Yield Trial. Agron. J. 1988, 80, 388–393. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-0-429-12272-9. [Google Scholar]
- Heidari, S.; Azizinezhad, R.; Haghparast, R. Yield Stability Analysis in Advanced Durum Wheat Genotypes by Using AMMI and GGE Biplot Models under Diverse Environment. Ind. Jrnl. Gen. Plnt. Bree. 2016, 76, 274. [Google Scholar] [CrossRef]
- Adalid, A.M.; Roselló, S.; Nuez, F. Evaluation and Selection of Tomato Accessions (Solanum Section Lycopersicon) for Content of Lycopene, β-Carotene and Ascorbic Acid. J. Food Compos. Anal. 2010, 23, 613–618. [Google Scholar] [CrossRef]
- Fayeun, L.S.; Alake, G.C.; Akinlolu, A.O. GGE Biplot Analysis of Fluted Pumpkin (Telfairia Occidentalis) Landraces Evaluated for Marketable Leaf Yield in Southwest Nigeria. J. Saudi Soc. Agric. Sci. 2018, 17, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Song, H.; Ke, X.; Jin, X.; Yin, L.; Liu, Y.; Qu, Y.; Su, W.; Feng, N.; Zheng, D.; et al. GGE Biplot Analysis of Yield Stability and Test Location Representativeness in Proso Millet (Panicum Miliaceum L.) Genotypes. J. Integr. Agric. 2016, 15, 1218–1227. [Google Scholar] [CrossRef] [Green Version]
- Koundinya, A.V.V.; Pandit, M.K.; Ramesh, D.; Mishra, P. Phenotypic Stability of Eggplant for Yield and Quality through AMMI, GGE and Cluster Analyses. Sci. Hortic. 2019, 247, 216–223. [Google Scholar] [CrossRef]
- Araya, N.A.; Chiloane, T.S.; Rakuambo, J.Z.; Maboko, M.M.; du Plooy, C.P.; Amoo, S.O. Effect of Environmental Variability on Fruit Quality and Phytochemical Content of Soilless Grown Tomato Cultivars in a Non-Temperature-Controlled High Tunnel. Sci. Hortic. 2021, 288, 110378. [Google Scholar] [CrossRef]
- Csambalik, L.; Divéky-Ertsey, A.; Pusztai, P.; Boros, F.; Orbán, C.; Kovács, S.; Gere, A.; Sipos, L. Multi-Perspective Evaluation of Phytonutrients–Case Study on Tomato Landraces for Fresh Consumption. J. Funct. Foods 2017, 33, 211–216. [Google Scholar] [CrossRef]
- Csambalik, L.; Gál, I.; Sipos, L.; Gere, A.; Koren, D.; Bíró, B.; Divéky-Ertsey, A. Evaluation of Processing Type Tomato Plant Genetic Resources (Solanum Lycopersicum L.) for Their Nutritional Properties in Different Environments. Plant Genet. Resour. 2019, 17, 488–498. [Google Scholar] [CrossRef]
- Boziné-Pullai, K.; Csambalik, L.; Drexler, D.; Reiter, D.; Tóth, F.; Tóthné Bogdányi, F.; Ladányi, M. Tomato Landraces Are Competitive with Commercial Varieties in Terms of Tolerance to Plant Pathogens—A Case Study of Hungarian Gene Bank Accessions on Organic Farms. Diversity 2021, 13, 195. [Google Scholar] [CrossRef]
- TG 44/11; Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability. Tomato. International Union for the Protection of New Varieties of Plants: Geneva, Italy, 2001.
- USDA Tomato Grades and Standards|Agricultural Marketing Service. Available online: https://www.ams.usda.gov/grades-standards/tomato-grades-and-standards (accessed on 18 July 2022).
- Codex Alimentarius 558/93; The Refractometry Method of Measuring Dry Soluble Residue in Products Processed from Fruit and Vegetables. Codex Alimentarius Committee: Rome, 1993.
- ISO Standard, No. 750:2001; ISO Fruit and Vegetable Products–Methodology Determination of Titratable Acidity. 2001.
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Molyneux, P. The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolibdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 161, 144–158. [Google Scholar]
- Salah, N.; Miller, N.J.; Paganga, G.; Tijburg, L.; Bolwell, G.P.; Riceevans, C. Polyphenolic Flavanols as Scavengers of Aqueous Phase Radicals and as Chain-Breaking Antioxidants. Arch. Biochem. Biophys. 1995, 322, 339–346. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of Antioxidant Capacity Assays and the CUPRAC (Cupric Ion Reducing Antioxidant Capacity) Assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A Quantitative Assay for Lycopene That Utilizes Reduced Volumes of Organic Solvents. J. Food Compos. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Venisse, J.-S.; Gullner, G.; Brisset, M.-N. Evidence for the Involvement of an Oxidative Stress in the Initiation of Infection of Pear by Erwinia Amylovora 1. Plant Physiol. 2001, 125, 2164–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frutos, E.; Galindo, M.P.; Leiva, V. An Interactive Biplot Implementation in R for Modeling Genotype-by-Environment Interaction. Stoch Env. Res Risk Assess 2014, 28, 1629–1641. [Google Scholar] [CrossRef]
- R Core Team R Core Team. European Environment Agency. 2008. Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 18 July 2022).
- Helyes, L. A Paradicsom És Termesztése; Syca Szakkönyvszolgálat: Budapest, Hungary, 2000. [Google Scholar]
- Fibiani, M.; Paolo, D.; Leteo, F.; Campanelli, G.; Picchi, V.; Bianchi, G.; Lo Scalzo, R. Influence of Year, Genotype and Cultivation System on Nutritional Values and Bioactive Compounds in Tomato (Solanum Lycopersicum L.). Food Chem. 2022, 389, 133090. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Maguer, M.L.; Kakuda, Y.; Liptay, A.; Niekamp, F. Lycopene Degradation and Isomerization in Tomato Dehydration. Food Res. Int. 1999, 32, 15–21. [Google Scholar] [CrossRef]
- Brandt, S.; Pék, Z.; Barna, É.; Lugasi, A.; Helyes, L. Lycopene Content and Colour of Ripening Tomatoes as Affected by Environmental Conditions. J. Sci. Food Agric. 2006, 86, 568–572. [Google Scholar] [CrossRef]
- Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.J.; Crozier, A. Occurrence of Flavonols in Tomatoes and Tomato-Based Products. J. Agric. Food Chem. 2000, 48, 2663–2669. [Google Scholar] [CrossRef]
- Bennett, R.N.; Wallsgrove, R.M. Secondary Metabolites in Plant Defence Mechanisms. N. Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Lamuela-Raventos, R.M. Is There Any Difference between the Phenolic Content of Organic and Conventional Tomato Juices? Food Chem. 2012, 130, 222–227. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, X. Recent Advances in Polyphenol Oxidase-Mediated Plant Stress Responses. Phytochemistry 2021, 181, 112588. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Acosta, M.; Arnao, M.B. Hydrophilic and Lipophilic Antioxidant Activity Changes during On-Vine Ripening of Tomatoes (Lycopersicon Esculentum Mill.). Postharvest Biol. Technol. 2003, 28, 59–65. [Google Scholar] [CrossRef]
- Sander, J.-F.; Heitefuss, R. Suceptibility to Erysiphe Graminis f.Sp Tritici and Phenolic Acid Content of Wheat as Influenced by Different Levels of Nitrogen Fertilization. J. Phytopathol. 1998, 146, 495–507. [Google Scholar] [CrossRef]
- Rühmann, S.; Leser, C.; Bannert, M.; Treutter, D. Relationship Between Growth, Secondary Metabolism, and Resistance of Apple. Plant Biol. 2002, 4, 137–143. [Google Scholar] [CrossRef]
- Almuayrifi, M. Effect of Fertilisation, Crop Protection, Pre-Crop and Variety Choice on Yield of Phenols Content Diseases Severity and Yield of Winter Wheat. Ph.D. Thesis, Newcastle University, Newcastle, UK, 2013. [Google Scholar]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for Hydrophilic and Lipophilic Antioxidant Capacity (Oxygen Radical Absorbance Capacity (ORACFL)) of Plasma and Other Biological and Food Samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef]
- Hegedűs, A.; Engel, R.; Abrankó, L.; Balogh, E.; Blázovics, A.; Hermán, R.; Halász, J.; Ercisli, S.; Pedryc, A.; Stefanovits-Bányai, É. Antioxidant and Antiradical Capacities in Apricot (Prunus Armeniaca L.) Fruits: Variations from Genotypes, Years, and Analytical Methods. J. Food Sci. 2010, 75, C722–C730. [Google Scholar] [CrossRef] [PubMed]
- Lokesha, A.N.; Shivashankara, K.S.; Laxman, R.H.; Geetha, G.A.; Shankar, A.G. Effect of High Temperature on Fruit Quality Parameters of Contrasting Tomato Genotypes. Int. J. Curr. Microbiol. App. Sci 2019, 8, 1019–1029. [Google Scholar] [CrossRef]
- Scarano, A.; Olivieri, F.; Gerardi, C.; Liso, M.; Chiesa, M.; Chieppa, M.; Frusciante, L.; Barone, A.; Santino, A.; Rigano, M.M. Selection of Tomato Landraces with High Fruit Yield and Nutritional Quality under Elevated Temperatures. J. Sci. Food Agric. 2020, 100, 2791–2799. [Google Scholar] [CrossRef]
pH | SOM (%) | N (ppm) | P (ppm) | K (ppm) | ||
---|---|---|---|---|---|---|
2015 | OF | 7.27 | 2.58 | 18 | 146 | 224 |
PT | 7.47 | 2.31 | 20.6 | 250 | 372 | |
2016 | OF | 7.32 | 2.8 | 24.9 | 120 | 439 |
PT | 7.42 | 2.53 | 176 | 643 | 562 |
Code | Catalogue no. | Origin/ Variety Name | Type | Fruit Shape 1, Size 2 | Fruit Color | ||
---|---|---|---|---|---|---|---|
B | RCAT030566 | Balatonboglár | fresh cons., processing | circular, M | red | ||
C | RCAT030275 | Cegléd | fresh cons. | circular, M | yellow | ||
F | RCAT030373 | Fadd | fresh cons. | rectangular, M | red | ||
MR | RCAT030731 | Máriapócs | fresh cons. | circular, S | red | ||
MT | RCAT057656 | Mátrafüred | processing | heart-shaped, L | light red | ||
TA | RCAT030370 | Tarnaméra | processing | cylindrical, M | red | ||
TO | RCAT030184 | Tolna County | processing | slightly flattened, L | red | ||
SA | - | San Marzano 3 | fresh cons., processing | cylindrical, M | red |
PGR Code | Location (°Bx) | TSS (g/L) | TAC | SAR | C* | h° | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | ||
B | OF | 3.63 ± 0.06 a | 3.67 ± 0.06 a | 0.29 ± 0.01 bc | 0.38 ± 0.01 c | 12.64 ± 0.57 d | 9.78 ± 0.38 d | 25.63 ± 0.07 e | 31.36 ± 0.05 f | 34.76 ± 0.02 c | 39.21 ± 0.04 e |
PT | 4.67 ± 0.12 A | 4.23 ± 0.06 A | 0.30 ± 0.01 C | 0.33 ± 0.01 B | 15.34 ± 0.37 C | 12.68 ± 0.52 CDE | 29.95 ± 0.03 C | 32.47 ± 0.04 E | 31.19 ± 0.01 B | 30.96 ± 0.01 D | |
C | OF | 4.50 ± 0.10 b | 4.63 ± 0.06 d | 0.25 ± 0.01 b | 0.39 ± 0.01 c | 17.95 ± 0.87 bc | 11.86 ± 0.36 b | 25.21 ± 0.13 e | 34.14 ± 0.03 c | 96.54 ± 0.09 g | 90.25 ± 0.01 h |
PT | 4.70 ± 0.00 A | 5.67 ± 0.06 C | 0.45 ± 0.20 E | 0.32 ± 0.00 B | 13.01 ± 1.27 C | 17.49 ± 0.18 C | 25.36 ± 0.04 E | 32.47 ± 0.10 E | 95.17 ± 0.06 G | 94.02 ± 0.04 H | |
F | OF | 4.63 ± 0.06 b | 3.73 ± 0.06 a | 0.19 ± 0.01 a | 0.26 ± 0.01 a | 24.52 ± 1.09 a | 14.54 ± 0.74 a | 27.61 ± 0.05 d | 28.54 ± 0.01 g | 37.70 ± 0.02 d | 43.59 ± 0.05 g |
PT | 4.73 ± 0.06 A | 5.20 ± 0.17 BC | 0.21 ± 0.01 A | 0.26 ± 0.01 A | 22.14 ± 0.46 A | 20.26 ± 1.40 AB | 27.69 ± 0.03 D | 34.25 ± 0.04 D | 39.45 ± 0.14 E | 32.95 ± 0.03 E | |
MR | OF | 6.03 ± 0.15 c | 5.60 ± 0.10 e | 0.42 ± 0.01 d | 0.49 ± 0.01 e | 14.53 ± 0.40 cd | 11.47 ± 0.40 bc | 31.47 ± 0.03 b | 32.12 ± 0.03 e | 47.73 ± 0.09 f | 40.20 ± 0.16 f |
PT | 5.93 ± 0.06 B | 6.43 ± 0.12 D | 0.41 ± 0.01 E | 0.59 ± 0.00 D | 14.44 ± 0.45 C | 10.98 ± 0.20 E | 33.63 ± 0.13 A | 34.79 ± 0.06 C | 41.97 ± 0.12 F | 43.66 ± 0.05 G | |
MT | OF | 4.53 ± 0.06 b | 4.40 ± 0.00 c | 0.27 ± 0.01 bc | 0.32 ± 0.01 b | 16.96 ± 0.39 b | 13.81 ± 0.39 a | 29.76 ± 0.11 c | 34.30 ± 0.07 c | 34.15 ± 0.05 b | 31.86 ± 0.09 a |
PT | 5.90 ± 0.00 B | 5.50 ± 0.00 C | 0.37 ± 0.01 DE | 0.21 ± 0.03 A | 16.12 ± 0.32 C | 24.71 ± 0.86 A | 27.78 ± 0.21 D | 35.14 ± 0.08 B | 28.74 ± 0.12 A | 27.50 ± 0.04 A | |
SA | OF | 4.63 ± 0.06 b | 4.43 ± 0.06 cd | 0.29 ± 0.01 c | 0.44 ± 0.01 d | 16.10 ± 0.19 bc | 10.03 ± 0.34 cd | 31.37 ± 0.03 b | 36.85 ± 0.01 b | 40.15 ± 0.05 e | 37.31 ± 0.10 d |
PT | 4.90 ± 0.10 A | 4.60± 0.00 B | 0.25 ± 0.01 B | 0.33 ± 0.01 B | 19.53 ± 0.29 B | 13.77 ± 0.37 BD | 31.38 ± 0.01 B | 34.58 ± 0.04 C | 37.49 ± 0.06 D | 33.71 ± 0.05 F | |
TA | OF | 4.60 ± 0.10 b | 4.30 ± 0.00 bc | 0.24 ± 0.01 b | 0.32 ± 0.00 b | 19.30 ± 0.95 b | 13.28 ± 0.00 ab | 35.95 ± 0.07 a | 39.42 ± 0.03 a | 32.52 ± 0.08 a | 33.54 ± 0.04 b |
PT | 4.60 ± 0.00 A | 4.10 ± 0.00 A | 0.23 ± 0.01 AB | 0.26 ± 0.01 A | 19.66 ± 1.04 AB | 15.96 ± 0.56 BC | 33.68 ± 0.02 A | 28.08 ± 0.05 F | 32.55 ± 0.06 C | 29.50 ± 0.05 B | |
TO | OF | 4.40 ± 0.00 b | 3.90 ± 0.00 ab | 0.33 ± 0.01 c | 0.40 ± 0.02 cd | 13.39 ± 0.57 d | 9.73 ± 0.37 d | 30.00 ± 0.06 c | 33.12 ± 0.05 d | 38.19 ± 0.11 d | 34.93 ± 0.07 c |
PT | 4.77 ± 0.06 A | 5.43 ± 0.06 C | 0.33 ± 0.01 CD | 0.42 ± 0.01 C | 14.32 ± 0.57 C | 12.89 ± 0.36 D | 28.19 ± 1.00 BCDE | 35.67 ± 0.03 A | 36.14 ± 1.56 BCDEF | 30.56 ± 0.05 C |
PGR Code | Location | TPC (mg GAE/L) | FRAP (mg AAE/L) | DPPH (i%) | ABTS | CUPRAC | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | ||
B | OF | 35.40 ± 4.88 a | 11.09 ± 1.56 ab | 15.22 ± 2.41 a | 6.65 ± 0.34 ab | 34.87 ± 1.79 b | 40.83 ± 1.57 a | 61.08 ± 1.61 a | 41.56 ± 4.28 ab | 790.94 ± 167.60 a | 328.21 ± 13.65 a |
PT | 41.31 ± 2.90 A | 14.37 ± 3.59 AB | 20.47 ± 1.32 A | 5.25 ± 0.18 A | 39.64 ± 0.34 BC | 29.48 ± 0.70 A | 64.24 ± 3.34 BC | 39.31 ± 1.10 B | 1075.11 ± 36.30 A | 259.10 ± 9.79 A | |
C | OF | 44.92 ± 8.69 ab | 12.79 ± 1.16 acd | 16.96 ± 1.18 a | 6.36 ± 0.20 ab | 27.88 ± 0.45 a | 37.80 ± 1.07 a | 65.00 ± 10.65 ab | 43.19 ± 2.41 ab | 836.08 ± 304.67 ab | 359.35 ± 13.87 ab |
PT | 48.33 ± 9.43 A | 17.59 ± 1.97 BC | 20.27 ± 1.19 A | 6.22 ± 0.17 A | 41.83 ± 0.84 C | 49.18 ± 2.35 C | 57.97 ± 6.36 AB | 41.44 ± 1.98 BD | 1263.55 ± 29.72 B | 274.81 ± 12.62 A | |
F | OF | 64.72 ± 8.22 b | 13.22 ± 1.00 ade | 31.76 ± 2.53 b | 6.56 ± 0.18 ab | 60.63 ± 4.19 de | 37.12 ± 2.64 a | 77.16 ± 7.77 ab | 43.57 ± 1.75 ab | 1721.56 ± 43.49 e | 402.67 ± 9.26 bc |
PT | 77.79 ± 10.91 B | 18.21 ± 1.21 C | 43.90 ± 2.4 C A | 5.19 ± 0.07 A | 80.43 ± 2.32 F | 39.86 ± 2.66 B | 75.99 ± 3.35 D | 45.28 ± 1.94 CDE | 2224.47 ± 95.88 D | 272.77 ± 13.41 A | |
MR | OF | 91.25 ± 24.82 ab | 19.70 ± 1.00 f | 46.67 ± 2.79 d | 12.22 ± 0.40 c | 89.64 ± 1.53 f | 48.90 ± 0.91 b | 80.82 ± 2.14 b | 69.08 ± 2.50 d | 2852.85 ± 147.91 f | 564.73 ± 8.23 d |
PT | 91.24 ± 21.76 AB | 19.31 ± 0.78 C | 43.70 ± 3.65 C | 13.94 ± 1.33 B | 80.01 ± 1.18 F | 90.85 ± 0.37 D | 81.79 ± 2.06 D | 51.67 ± 1.90 F | 2375.96 ± 79.88 D | 607.02 ± 21.12 D | |
MT | OF | 37.78 ± 16.40 ab | 11.24 ± 0.34 ab | 16.76 ± 4.24 a | 6.78 ± 0.38 b | 39.28 ± 0.30 c | 40.83 ± 1.27 a | 60.83 ± 1.03 a | 39.80 ± 2.07 a | 1266.70 ± 78.56 bcd | 368.74 ± 8.72 ab |
PT | 56.09 ± 10.10 AB | 13.89 ± 1.07 B | 21.19 ± 3.17 A | 5.19 ± 0.43 A | 39.28 ± 1.12 B | 47.33 ± 1.52 C | 55.05 ± 1.37 A | 34.19 ± 2.15 A | 1346.86 ± 52.01 B | 252.54 ± 9.55 A | |
SA | OF | 56.39 ± 8.54 ab | 15.20 ± 0.92 ce | 38.45 ± 1.43 c | 11.81 ± 0.23 c | 68.03 ± 1.88 e | 77.29 ± 2.02 e | 78.81 ± 9.84 ab | 51.93 ± 2.61 c | 1753.78 ± 264.54 de | 459.12 ± 17.24 c |
PT | 58.19 ± 13.37 AB | 10.53 ± 1.25 A | 32.78 ± 2.45 B | 5.20 ± 0.25 A | 68.30 ± 0.90 E | 83.25 ± 5.99 D | 65.90 ± 4.34 C | 49.57 ± 2.75 EF | 1794.65 ± 56.26 C | 303.33 ± 7.29 B | |
TA | OF | 63.02 ± 9.06 b | 14.03 ± 0.46 bde | 29.55 ± 2.29 b | 5.63 ± 0.50 a | 56.05 ± 1.12 d | 58.31 ± 0.32 d | 80.28 ± 3.89 b | 53.29 ± 4.21 c | 1473.70 ± 41.43 cde | 277.16 ± 92.88 abc |
PT | 51.94 ± 9.4 A AB | 9.82 ± 0.54 A | 21.21 ± 4.92 A | 4.62 ± 0.43 A | 44.63 ± 0.62 D | 29.90 ± 0.66 A | 64.93 ± 1.8 BC | 39.23 ± 2.77 ABC | 1689.20 ± 31.00 C | 319.79 ± 9.91 B | |
TO | OF | 45.79 ± 5.33 ab | 14.93 ± 1.65 bde | 15.60 ± 0.53 a | 8.00 ± 0.86 b | 30.91 ± 1.03 ab | 52.32 ± 0.82 c | 60.21 ± 1.74 a | 50.42 ± 3.41 bc | 1157.15 ± 89.49 bc | 382.57 ± 19.91 ab |
PT | 58.62 ± 7.08 AB | 13.55 ± 2.26 AB | 16.51 ± 2.19 A | 7.79 ± 3.26 AB | 34.22 ± 0.48 A | 45.37 ± 0.55 BC | 59.08 ± 2.87 ABC | 36.33 ± 2.38 AB | 1304.66 ± 131.71 AB | 384.02 ± 13.42 C |
PGR Code | Location | Lycopene (mg/100 g) | AsPOX (µg) | GST (µg) | POX (µg) | ||||
---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | ||
B | OF | 4.48 ± 0.51 b | 0.09 ± 0.09 a | 10.71 ± 2.50 abc | 3.67 ± 0.36 a | 0.24 ± 0.06 abc | 0.53 ± 0.05 a | 4.04 ± 0.19 a | 6.54 ± 0.87 ab |
PT | 7.65 ± 1.46 ABC | 6.76 ± 0.35 B | 6.79 ± 1.07 AB | 6.10 ± 0.55 A | 0.38 ± 0.06 AB | 0.48 ± 0.02 B | 7.72 ± 0.93 A | 13.19 ± 1.02 A | |
C | OF | 0.06 ± 0.08 a | 4.62 ± 0.49 bc | 3.45 ± 0.90 ab | 5.06 ± 0.93 ab | 0.42 ± 0.00 c | 0.46 ± 0.02 ab | 6.64 ± 2.16 ab | 17.24 ± 1.37 bc |
PT | 0.01 ± 0.01 A | 0.06 ± 0.04 A | 5.00 ± 0.71 AB | 14.39 ± 1.66 BC | 0.28 ± 0.06 AB | 0.40 ± 0.02 A | 17.42 ± 6.94 AB | 26.74 ± 1.17 B | |
F | OF | 8.59 ± 0.30 e | 4.98 ± 0.39 b | 11.90 ± 0.74 c | 11.49 ± 2.56 abc | 0.21 ± 0.00 b | 0.51 ± 0.03 ab | 12.73 ± 2.49 abc | 16.73 ± 2.76 abc |
PT | 6.50 ± 0.66 BC | 8.68 ± 0.13 C | 7.14 ± 0.00 B | 21.81 ± 2.77 BCD | 0.38 ± 0.06 AB | 0.32 ± 0.02 A | 10.46 ± 1.81 A | 59.80 ± 5.99 CD | |
MR | OF | 7.22 ± 0.65 cde | 6.79 ± 0.04 bcd | 2.38 ± 0.55 a | 33.29 ± 3.55 d | 0.10 ± 0.00 a | 0.49 ± 0.06 ab | 22.66 ± 1.39 c | 40.59 ± 1.80 d |
PT | 7.99 ± 0.43 C | 5.44 ± 0.28 B | 3.57 ± 0.71 AB | 31.04 ± 2.20 D | 0.10 ± 0.00 A | 0.47 ± 0.01 B | 24.16 ± 3.20 B | 38.06 ± 5.43 ABCD | |
MT | OF | 7.04 ± 0.37 cd | 7.91 ± 1.33 bcd | 7.38 ± 1.80 abc | 7.11 ± 0.35 bc | 0.24 ± 0.06 abc | 0.55 ± 0.01 b | 12.42 ± 3.34 abc | 6.12 ± 0.91 a |
PT | 9.00 ± 1.19 C | 10.53 ± 0.17 D | 5.24 ± 0.74 AB | 13.07 ± 1.44 BC | 0.28 ± 0.06 AB | 0.36 ± 0.07 AB | 18.63 ± 2.78 AB | 28.08 ± 1.67 B | |
SA | OF | 5.11 ± 0.58 bc | 6.95 ± 0.13 cd | 5.83 ± 1.49 abc | 11.74 ± 1.50 c | 0.31 ± 0.10 abc | 0.43 ± 0.03 ab | 11.40 ± 1.21 b | 12.55 ± 1.52 bc |
PT | 5.24 ± 0.87 B | 6.00 ± 0.19 B | 4.40 ± 0.74 AB | 18.21 ± 0.38 C | 0.24 ± 0.06 AB | 0.35 ± 0.03 A | 10.26 ± 3.06 A | 50.41 ± 3.49 CD | |
TA | OF | 7.55 ± 0.53 de | 8.96 ± 0.57 d | 3.10 ± 0.41 ab | 9.74 ± 1.84 abc | 0.28 ± 0.06 abc | 0.50 ± 0.05 ab | 15.63 ± 3.49 abc | 12.07 ± 1.85 abc |
PT | 9.04 ± 1.07 C | 7.70 ± 0.90 BCD | 5.48 ± 0.90 AB | 11.87 ± 1.21 B | 0.28 ± 0.06 AB | 0.49 ± 0.03 B | 11.68 ± 2.29 AB | 55.95 ± 2.57 D | |
TO | OF | 7.63 ± 1.13 bcde | 7.09 ± 1.42 abcd | 5.12 ± 0.55 b | 6.38 ± 2.74 abc | 0.28 ± 0.06 abc | 0.43 ± 0.01 a | 22.01 ± 0.68 c | 14.71 ± 1.24 bc |
PT | 6.83 ± 0.16 BC | 7.77 ± 1.31 BCD | 3.21 ± 0.62 A | 17.69 ± 1.41 C | 0.31 ± 0.00 B | 0.43 ± 0.03 AB | 16.07 ± 2.11 AB | 39.49 ± 3.63 BC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Divéky-Ertsey, A.; Ladányi, M.; Biró, B.; Máté, M.; Drexler, D.; Tóth, F.; Boziné Pullai, K.; Gere, A.; Pusztai, P.; Csambalik, L. Tomato Landraces May Benefit from Protected Production—Evaluation on Phytochemicals. Horticulturae 2022, 8, 937. https://doi.org/10.3390/horticulturae8100937
Divéky-Ertsey A, Ladányi M, Biró B, Máté M, Drexler D, Tóth F, Boziné Pullai K, Gere A, Pusztai P, Csambalik L. Tomato Landraces May Benefit from Protected Production—Evaluation on Phytochemicals. Horticulturae. 2022; 8(10):937. https://doi.org/10.3390/horticulturae8100937
Chicago/Turabian StyleDivéky-Ertsey, Anna, Márta Ladányi, Barbara Biró, Mónika Máté, Dóra Drexler, Ferenc Tóth, Krisztina Boziné Pullai, Attila Gere, Péter Pusztai, and László Csambalik. 2022. "Tomato Landraces May Benefit from Protected Production—Evaluation on Phytochemicals" Horticulturae 8, no. 10: 937. https://doi.org/10.3390/horticulturae8100937
APA StyleDivéky-Ertsey, A., Ladányi, M., Biró, B., Máté, M., Drexler, D., Tóth, F., Boziné Pullai, K., Gere, A., Pusztai, P., & Csambalik, L. (2022). Tomato Landraces May Benefit from Protected Production—Evaluation on Phytochemicals. Horticulturae, 8(10), 937. https://doi.org/10.3390/horticulturae8100937