Research on the Use of Thermal Imaging as a Method for Detecting Fungal Growth in Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apple Samples
2.2. Thermal Imaging Measurement
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graca, A.; Santo, D.; Esteves, E.; Nunes, C.; Abadias, M.; Quintas, C. Evaluation of microbial quality and yeast diversity in fresh-cut apple. Food Microbiol. 2015, 51, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Vongsangnak, W.; Nielsen, J. Microbial Production of Food Ingredients, Enzymes and Nutraceuticals. 2—Systems biology methods and developments of filamentous fungi in relation to the production of food ingredients. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2013; pp. 19–41. [Google Scholar]
- Bryk, H.; Kruczyńska, D. Występowanie chorób przechowalniczych na jabłkach odmian parchoodpornych. Acta Agrobot. 2005, 58, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Elad, Y.; Pertot, I.; Prado, A.M.C.; Stewart, A. Plant hosts of Botrytis spp. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Elad, Y.Y., Fillinger, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 413–486. [Google Scholar]
- Toe, E.; Dadié, A.; Dako, E.; Loukou, G. Bacteriological Quality and Risk Factors for Contamination of Raw Mixed Vegetable Salads Served in Collective Catering in Abidjan (Ivory Coast). Adv. Microbiol. 2017, 7, 405–419. [Google Scholar] [CrossRef] [Green Version]
- Barbin, D.; El Masry, G.; Sun, D.; Allen, P.; Morsy, N. Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2013, 17, 180–191. [Google Scholar] [CrossRef]
- Gade, R.; Moeslund, T.B. Thermal Cameras and Applications: A Survey. Mach. Vis. Appl. 2014, 25, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A.; Raman, V.; Ng, E.Y.K. Study on methods to extract high contrast image in active dynamic thermography. Quant. InfraRed Thermogr. J. 2019, 16, 243–259. [Google Scholar] [CrossRef]
- Voss, M.; Alessio, K.O.; Santos, R.C.V.; Ebling de Souza, M.; Clerici, D.J.; Wagner, R.; Cichoski, A.J.; Ben da Costa, A.; Helfer, G.A.; Machado, G.S.; et al. Rapid, Noninvasive, and Nondestructive Method for Biofilm Imaging on Metallic Surfaces Using Active Thermography. Anal. Chem. 2020, 92, 5682–5687. [Google Scholar] [CrossRef]
- Baranowski, P.; Mazurek, W.; Walczak, R.T. Termografia w agrofizyce. Acta Agrophysica 2003, 2, 663–675. [Google Scholar]
- Ishimwe, R.; Abutaleb, K.; Ahmed, F. Applications of Thermal Imaging in Agriculture—A Review. Adv. Remote Sens. 2014, 3, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Knížková, I.; Kunc, P.; Gurdil, G.A.K.; Pinar, Y.; Selvi, K.C. Applications of infrared thermography in animal production. J. Fac. Agric. 2007, 22, 329–336. [Google Scholar]
- Ring, F. Thermal imaging today and its relevance to diabetes. J. Diabetes Sci. Technol. 2010, 4, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy 2014, 134, 531–549. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D.S. Applications of thermal imaging in agriculture and food industry—A Review. Food Bioprocess Technol. 2011, 4, 186–199. [Google Scholar] [CrossRef]
- Correira, R.M.; Tosatoa, F.; Domingosa, E.; Rodriguesa, R.R.T.; Aquinob, L.F.M.; Filgueirasa, P.R.; Lacerda, V., Jr.; Romãoa, W. Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Talanta 2018, 176, 59–68. [Google Scholar] [CrossRef]
- Ding, L.; Dong, D.; Jiao, L.; Zheng, W. Potential using of infrared thermal imaging to detect volatile compounds released from decayed grapes, National Engineering Research Center for Information Technology in Agriculture. PLoS ONE 2017, 12, e0180649. [Google Scholar] [CrossRef] [Green Version]
- Niemira, B.A.; Zhang, H.Q. Advanced Technologies for Detection and Elimination of Pathogens. In The Produce Contamination Problem—Causes and Solutions; Sapers, G., Solomon, E., Matthews, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 425–443. [Google Scholar]
- Baranowski, P.; Mazurek, W.; Wozniak, J.; Majewska, U. Detection of early bruises in apples using hyperspectral data and thermal imaging. J. Food Eng. 2012, 110, 345–355. [Google Scholar] [CrossRef]
- Li, X.; Li, R.; Wang, M.; Liu, Y.; Zhang, B.; Zhou, J. Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment of Fruits and Vegetables. In Hyperspectral Imaging in Agriculture, Food and Environment; Intech Open: London, UK, 2018; pp. 27–63. [Google Scholar]
- Satone, M.; Diwakar, S.; Joshi, V. Automatic Bruise Detection in Fruits Using Thermal Images. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2017, 7, 727–732. [Google Scholar] [CrossRef]
- Ekramirad, N.; Akinbode, A.A.; Alimardani, R. A Review of Non-Destructive Methods for Detection of Insect Infestation in Fruits and Vegetables. Innov. Food Res. 2015, 2, 6–12. [Google Scholar]
- Lahiri, B.B.; Divya, M.P.; Bagavathiappan, S.; Thomas, S.; Philip, J. Detection of pathogenic gram negative bacteria using infrared thermography. Infrared Phys. Technol. 2012, 55, 485–490. [Google Scholar] [CrossRef]
- Chelladurai, V.; Jayas, D.S.; White, N.D.G. Thermal imaging for detecting fungal infection in stored wheat. J. Stored Prod. Res. 2010, 46, 174–179. [Google Scholar] [CrossRef]
- Hahn, F.; Hernandez, G.; Echeverria, E.; Romanchick, E. Escherichia coli detection using thermal images. Biosyst. Eng. 2006, 48, 4.7–4.13. [Google Scholar]
- Salaimeh, A.A.; Campion, J.J.; Gharaibeh, B.Y.; Evans, M.E.; Saito, K. Real-time quantification of viable bacteria in liquid medium using infrared thermography. Infrared Phys. Technol. 2011, 54, 517–524. [Google Scholar] [CrossRef]
- Salaimeh, A.A.; Campion, J.J.; Gharaibeh, B.Y.; Evans, M.E.; Saito, K. Real-time quantification of Staphylococcus aureus in liquid medium using infrared thermography. Infrared Phys. Technol. 2012, 55, 170–172. [Google Scholar] [CrossRef]
- Stoll, M.; Schultz, H.R.; Baecker, G.; Berkelmann-Loehnertz, B. Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precis. Agric. 2008, 9, 407–417. [Google Scholar] [CrossRef]
- Varith, J.; Hyde, G.M.; Baritelle, A.L.; Fellman, J.K.; Sattabongkot, T. Non-contact bruise detection in apples by thermal imaging. Innov. Food Sci. Emerg. Technol. 2003, 4, 211–218. [Google Scholar] [CrossRef]
Contamination Variant | Temperature (°C) | |||
---|---|---|---|---|
2 h | 4 h | 24 h | 48 h | |
R. stolonifer | 23.54 B | 23.83 A | 24.69 E | 23.05 B |
P. expansum | 22.38 C | 22.65 D | 25.31 A | 23.65 A |
B. cinerea | 23.30 AB | 23.28 B | 25.90 B | 23.83 D |
R. stolonifer, P. expansum | 24.21 D | 24.22 C | 25.89 B | 23.65 A |
R. stolonifer, B. cinerea | 23.37 AB | 23.81 A | 24.27 C | 23.62 A |
P. expansum, B. cinerea | 23.15 A | 23.93 AC | 24.57 D | 23.42 C |
P. expansum, B. cinerea, R. stolonifer | 23.66 B | 25.00 E | 25.21 A | 23.64 A |
Control | 23.03 A | 23.15 B | 25.03 F | 23.98 E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipińska, E.; Pobiega, K.; Piwowarek, K.; Błażejak, S. Research on the Use of Thermal Imaging as a Method for Detecting Fungal Growth in Apples. Horticulturae 2022, 8, 972. https://doi.org/10.3390/horticulturae8100972
Lipińska E, Pobiega K, Piwowarek K, Błażejak S. Research on the Use of Thermal Imaging as a Method for Detecting Fungal Growth in Apples. Horticulturae. 2022; 8(10):972. https://doi.org/10.3390/horticulturae8100972
Chicago/Turabian StyleLipińska, Edyta, Katarzyna Pobiega, Kamil Piwowarek, and Stanisław Błażejak. 2022. "Research on the Use of Thermal Imaging as a Method for Detecting Fungal Growth in Apples" Horticulturae 8, no. 10: 972. https://doi.org/10.3390/horticulturae8100972
APA StyleLipińska, E., Pobiega, K., Piwowarek, K., & Błażejak, S. (2022). Research on the Use of Thermal Imaging as a Method for Detecting Fungal Growth in Apples. Horticulturae, 8(10), 972. https://doi.org/10.3390/horticulturae8100972