Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Samples
2.2. Experimental Design
2.3. Extraction of Phenolic Compounds from Mango Peel Byproducts Using Ultrasonic Bath
2.4. Extraction of Phenolic Compounds from Mango Peel Byproducts Using Sonotrode
2.5. Antioxidant Activity
2.6. Determination of Total Phenolic Compound Using Folin–Ciocâlteu Assay
2.7. Determination of Phenolic Compounds by HPLC–ESI-TOF-MS
3. Results and Discussion
3.1. Fitting the Models
3.2. Optimization of Extraction Conditions
3.3. Identification of Polar Compounds Using HPLC–MS-ESI-TOF
3.4. Quantification of Phenolic Compounds in Mango Peel Byproducts by HPLC–MS-ESI-TOF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Standard | LOD (µg/mL) | LOQ (µg/mL) | Calibration Ranges (µg/mL) | Calibration Curves (µg/mL) | R2 |
---|---|---|---|---|---|
1-O-Galloyl-β-D-glucose | 2.2443 | 7.4812 | LOQ-237 | y = 6.1459x + 122.9 | 0.9976 |
Chlorogenic acid | 0.2160 | 0.7201 | LOQ-247 | y = 63.853x + 135.09 | 0.9978 |
Ferulic acid | 1.1142 | 3.7139 | LOQ-227 | y = 12.38x + 92.068 | 0.9980 |
Catechin | 0.2184 | 0.7281 | LOQ-230 | y = 63.149x + 124.93 | 0.9921 |
Rutin | 0.7026 | 2.3420 | LOQ-220 | y = 19.632x + 403.42 | 0.9924 |
Quercetin | 0.1631 | 0.5436 | LOQ-227 | y = 84.589x + 287.32 | 0.9957 |
References
- Altendorf, S. Major Tropical Fruits. Stat. Compend. Rome FAO 2019, 1, 18. [Google Scholar]
- Kaur, B.; Panesar, P.S.; Anal, A.K. Standardization of Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Mango Peels. J. Food Sci. Technol. 2022, 59, 2813–2820. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, K.G.; Shivashankara, K.S.; Roy, T.K.; Dinesh, M.R.; Geetha, G.A.; Pavithra, K.C.G.; Ravishankar, K.V. Profiling of Anthocyanins and Carotenoids in Fruit Peel of Different Colored Mango Cultivars. J. Food Sci. Technol. 2018, 55, 4566–4577. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Caravaca, A.M.; López-Cobo, A.; Verardo, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-q-TOF-MS as a Powerful Platform for the Determination of Phenolic and Other Polar Compounds in the Edible Part of Mango and Its by-Products (Peel, Seed, and Seed Husk). Electrophoresis 2016, 37, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- Safdar, M.N.; Kausar, T.; Nadeem, M. Comparison of Ultrasound and Maceration Techniques for the Extraction of Polyphenols from the Mango Peel. J. Food Process. Preserv. 2017, 41, e13028. [Google Scholar] [CrossRef]
- Noratto, G.D.; Bertoldi, M.C.; Krenek, K.; Talcott, S.T.; Stringheta, P.C.; Mertens-Talcott, S.U. Anticarcinogenic Effects of Polyphenolics from Mango (Mangifera Indica) Varieties. J. Agric. Food Chem. 2010, 58, 4104–4112. [Google Scholar] [CrossRef]
- Ajila, C.M.; Prasada Rao, U.J.S. Protection against Hydrogen Peroxide Induced Oxidative Damage in Rat Erythrocytes by Mangifera Indica L. Peel Extract. Food Chem. Toxicol. 2008, 46, 303–309. [Google Scholar] [CrossRef]
- Núñez Selles, A.J.; Daglia, M.; Rastrelli, L. The Potential Role of Mangiferin in Cancer Treatment through Its Immunomodulatory, Anti-Angiogenic, Apoptopic, and Gene Regulatory Effects. BioFactors 2016, 42, 475–491. [Google Scholar] [CrossRef]
- Gondi, M.; Prasada Rao, U.J.S. Ethanol Extract of Mango (Mangifera Indica L.) Peel Inhibits α-Amylase and α-Glucosidase Activities, and Ameliorates Diabetes Related Biochemical Parameters in Streptozotocin (STZ)-Induced Diabetic Rats. J. Food Sci. Technol. 2015, 52, 7883–7893. [Google Scholar] [CrossRef] [Green Version]
- Masibo, M.; Qian, H. Major Mango Polyphenols and Their Potential Significance to Human Health. Compr. Rev. Food Sci. Food Saf. 2008, 7, 309–319. [Google Scholar] [CrossRef]
- Mugwagwa, L.R.; Chimphango, A.F.A. Comparison of Physicochemical Properties and Economic Gain from Three-Stage and Two-Stage Sequential Valorization of Mango Peels. Biofuels Bioprod. Biorefin. 2021, 15, 454–467. [Google Scholar] [CrossRef]
- Castañeda-Valbuena, D.; Ayora-Talavera, T.; Luján-Hidalgo, C.; Álvarez-Gutiérrez, P.; Martínez-Galero, N.; Meza-Gordillo, R. Ultrasound Extraction Conditions Effect on Antioxidant Capacity of Mango By-Product Extracts. Food Bioprod. Process. 2021, 127, 212–224. [Google Scholar] [CrossRef]
- Nuralın, L.; Gürü, M. Berberis Vulgaris Fruit: Determination of Phenolic Compounds in Extracts Obtained by Supercritical CO2 and Soxhlet Methods Using HPLC. Food Anal. Methods 2022, 15, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Rojas, R.; Contreras-Esquivel, J.C.; Orozco-Esquivel, M.T.; Muñoz, C.; Aguirre-Joya, J.A.; Aguilar, C.N. Mango Peel as Source of Antioxidants and Pectin: Microwave Assisted Extraction. Waste Biomass Valorization 2015, 6, 1095–1102. [Google Scholar] [CrossRef]
- Garcia-Mendoza, M.P.; Paula, J.T.; Paviani, L.C.; Cabral, F.A.; Martinez-Correa, H.A. Extracts from Mango Peel By-Product Obtained by Supercritical CO2 and Pressurized Solvent Processes. Lwt 2015, 62, 131–137. [Google Scholar] [CrossRef]
- Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; De La Ossa, E.M. Use of High Pressure Techniques to Produce Mangifera Indica L. Leaf Extracts Enriched in Potent Antioxidant Phenolic Compounds. Innov. Food Sci. Emerg. Technol. 2015, 29, 94–106. [Google Scholar] [CrossRef]
- Al Jitan, S.; Alkhoori, S.A.; Yousef, L.F. Phenolic Acids From Plants: Extraction and Application to Human Health, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 58, ISBN 9780444640567. [Google Scholar]
- Soria, A.C.; Brokl, M.; Sanz, M.L.; Martínez-Castro, I. Sample Preparation for the Determination of Carbohydrates in Food and Beverages. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 213–243. ISBN 9780123813749. [Google Scholar]
- Martín-García, B.; Aznar-Ramos, M.J.; Verardo, V.; Gómez-Caravaca, A.M. The Establishment of Ultrasonic-Assisted Extraction for the Recovery of Phenolic Compounds and Evaluation of Their Antioxidant Activity from Morus Alba Leaves. Foods 2022, 11, 314. [Google Scholar] [CrossRef]
- Sukor, N.; Jusoh, R.; Rahim, S.A.; Kamarudin, N. Ultrasound Assisted Methods for Enhanced Extraction of Phenolic Acids from Quercus Infectoria Galls. Mater. Today Proc. 2018, 5, 21990–21999. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Contreras, M.D.M.; Carvalheiro, F.; Duarte, L.C.; Roseiro, L.B.; Romero, I.; Castro, E. Recovery of Bioactive Compounds from Industrial Exhausted Olive Pomace through Ultrasound-Assisted Extraction. Biology 2021, 10, 514. [Google Scholar] [CrossRef]
- Borrás-Enríquez, A.J.; Reyes-Ventura, E.; Villanueva-Rodríguez, S.J.; Moreno-Vilet, L. Effect of Ultrasound-Assisted Extraction Parameters on Total Polyphenols and Its Antioxidant Activity from Mango Residues (Mangifera Indica L. Var. Manililla). Separations 2021, 8, 94. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols as Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants Part A; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Verni, M.; Pontonio, E.; Krona, A.; Jacob, S.; Pinto, D.; Rinaldi, F.; Verardo, V.; Díaz-de-Cerio, E.; Coda, R.; Rizzello, C.G. Bioprocessing of Brewers’ Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides. Front. Microbiol. 2020, 11, 1831. [Google Scholar] [CrossRef] [PubMed]
- de Menezes Rodrigues, G.; Cardozo-Filho, L.; da Silva, C. Pressurized Liquid Extraction of Oil from Soybean Seeds. Can. J. Chem. Eng. 2017, 95, 2383–2389. [Google Scholar] [CrossRef]
- Sai-Ut, S.; Benjakul, S.; Kraithong, S.; Rawdkuen, S. Optimization of Antioxidants and Tyrosinase Inhibitory Activity in Mango Peels Using Response Surface Methodology. LWT—Food Sci. Technol. 2015, 64, 742–749. [Google Scholar] [CrossRef]
- Martínez-Ramos, T.; Benedito-Fort, J.; Watson, N.J.; Ruiz-López, I.I.; Che-Galicia, G.; Corona-Jiménez, E. Effect of Solvent Composition and Its Interaction with Ultrasonic Energy on the Ultrasound-Assisted Extraction of Phenolic Compounds from Mango Peels (Mangifera Indica L.). Food Bioprod. Process. 2020, 122, 41–54. [Google Scholar] [CrossRef]
- Jirasuteeruk, C.; Theerakulkait, C. Ultrasound-Assisted Extraction of Phenolic Compounds from Mango (Mangifera Indica Cv. Chok Anan) Peel and Its Inhibitory Effect on Enzymatic Browning of Potato Puree. Food Technol. Biotechnol. 2019, 57, 350–357. [Google Scholar] [CrossRef]
- Ordoñez-Torres, A.; Torres-León, C.; Hernández-Almanza, A.; Flores-Guía, T.; Luque-Contreras, D.; Aguilar, C.N.; Ascacio-Valdés, J. Ultrasound-Microwave-Assisted Extraction of Polyphenolic Compounds from Mexican “Ataulfo” Mango Peels: Antioxidant Potential and Identification by HPLC/ESI/MS. Phytochem. Anal. 2021, 32, 495–502. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Microwave-Assisted Extraction for Recovery of Polyphenolic Antioxidants from Ripe Mango (Mangifera Indica L.) Peel Using Lactic Acid/Sodium Acetate Deep Eutectic Mixtures. Food Sci. Technol. Int. 2020, 26, 78–92. [Google Scholar] [CrossRef]
- Villacís-Chiriboga, J.; Voorspoels, S.; Uyttebroek, M.; Ruales, J.; Camp, J.V.; Vera, E.; Elst, K. Supercritical CO2 Extraction of Bioactive Compounds from Hibiscus Sabdariffa. J. Supercrit. Fluids 2019, 147, 213–221. [Google Scholar] [CrossRef]
- Pierson, J.T.; Monteith, G.R.; Roberts-Thomson, S.J.; Dietzgen, R.G.; Gidley, M.J.; Shaw, P.N. Phytochemical Extraction, Characterisation and Comparative Distribution across Four Mango (Mangifera Indica L.) Fruit Varieties. Food Chem. 2014, 149, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, P. Ultra High-Performance Liquid Chromatography with High-Resolution Mass Spectrometry Analysis of African Mango (Irvingia Gabonensis) Seeds, Extract, and Related Dietary Supplements. J. Agric. Food Chem. 2012, 60, 8703–8709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, A.; Toth, G.; Kery, A. Polyphenol Composition and Antioxidant Capacity of Three Lysimachia Species. Nat. Prod. Commun. 2014, 9, 1473–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramberger, K.; Barlič-Maganja, D.; Bandelj, D.; Baruca Arbeiter, A.; Peeters, K.; Miklavčič Višnjevec, A.; Pražnikar, Z.J. HPLC-DAD-ESI-QTOF-MS Determination of Bioactive Compounds and Antioxidant Activity Comparison of the Hydroalcoholic and Water Extracts from Two Helichrysum Italicum Species. Metabolites 2020, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yao, W.; Liu, Q.; Xu, J.; Bao, B.; Shan, M.; Cao, Y.; Cheng, F.; Ding, A.; Zhang, L. Application of UHPLC-ESI-Q-TOF-MS to Identify Multiple Constituents in Processed Products of the Herbal Medicine Ligustri Lucidi Fructus. Molecules 2017, 22, 689. [Google Scholar] [CrossRef] [Green Version]
- Dorta, E.; González, M.; Lobo, M.G.; Sánchez-Moreno, C.; de Ancos, B. Screening of Phenolic Compounds in By-Product Extracts from Mangoes (Mangifera Indica L.) by HPLC-ESI-QTOF-MS and Multivariate Analysis for Use as a Food Ingredient. Food Res. Int. 2014, 57, 51–60. [Google Scholar] [CrossRef] [Green Version]
- López-Cobo, A.; Verardo, V.; Diaz-de-Cerio, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Gómez-Caravaca, A.M. Use of HPLC- and GC-QTOF to Determine Hydrophilic and Lipophilic Phenols in Mango Fruit (Mangifera Indica L.) and Its by-Products. Food Res. Int. 2017, 100, 423–434. [Google Scholar] [CrossRef]
- Hu, K.; Dars, A.G.; Liu, Q.; Xie, B.; Sun, Z. Phytochemical Profiling of the Ripening of Chinese Mango (Mangifera Indica L.) Cultivars by Real-Time Monitoring Using UPLC-ESI-QTOF-MS and Its Potential Benefits as Prebiotic Ingredients. Food Chem. 2018, 256, 171–180. [Google Scholar] [CrossRef]
- Ajila, C.M.; Jaganmohan Rao, L.; Prasada Rao, U.J.S. Characterization of Bioactive Compounds from Raw and Ripe Mangifera Indica L. Peel Extracts. Food Chem. Toxicol. 2010, 48, 3406–3411. [Google Scholar] [CrossRef]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MC Profiling of Australian Mango Peel By-Product Polyphenols and Their PotentialAntioxidant Activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef]
Sonotrode | Ultrasonic Bath | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Independent Factors | Dependent Factors | Independent Factors | Dependent Factors | |||||||||||
Run | Ethanol X1 | Time X2 | Amplitude X3 | TPC | DPPH | ABTS | FRAP | Ethanol X1 | Time X2 | Ratio w/v X3 | TPC | DPPH | ABTS | FRAP |
1 | 20 (−1) | 5 (−1) | 60 (0) (94 W) | 5.4 ± 0.4 | 12.0 ± 0.3 | 18.5 ± 1.4 | 15.0± 1.1 | 20 (−1) | 10 (−1) | 285 (0) | 6.5 ± 0.1 | 12.8 ± 1.4 | 20.1 ± 0.9 | 10.7 ± 0.5 |
2 | 100 (1) | 5 (−1) | 60 (0) (72 W) | 4.1 ± 0.4 | 12.5 ± 0.7 | 16.4 ± 0.3 | 15.0 ± 0.3 | 100 (1) | 10 (−1) | 285 (0) | 3.0 ± 0.3 | 5.3 ± 0.2 | 13.2 ± 0.7 | 6.0 ± 0.1 |
3 | 20 (−1) | 45 (1) | 60 (0) (95 W) | 4.6 ± 0.5 | 15.7 ± 0.8 | 22.1 ± 0.1 | 15.9 ± 0.4 | 20 (−1) | 90 (1) | 285 (0) | 7.0 ± 0.2 | 14.4 ± 1.1 | 16.6 ± 0.4 | 11.5 ± 0.3 |
4 | 100 (1) | 45 (1) | 60 (0) (74 W) | 5.9 ± 0.2 | 16.3 ± 0.9 | 20.8 ± 1.0 | 21.1 ± 0.4 | 100 (1) | 90 (1) | 285(0) | 3.00 ± 0.2 | 6.4 ± 0.3 | 11.8 ± 2.5 | 6.8 ± 0.2 |
5 | 20 (−1) | 25 (0) | 20 (−1) (39 W) | 5.6 ± 0.8 | 14.4 ± 0.1 | 21.0 ± 0.3 | 16.6 ± 0.1 | 20 (−1) | 50 (0) | 70 (−1) | 4.9 ± 0.1 | 10.8 ± 0.0 | 10.8 ± 1.7 | 6.6 ± 0.0 |
6 | 100 (1) | 25 (0) | 20 (−1) (29 W) | 3.9 ± 0.1 | 10.1 ± 0.3 | 13.6 ± 0.4 | 13.7 ± 0.3 | 100 (1) | 50 (0) | 70 (−1) | 1.6 ± 0.0 | 3.4 ± 0.1 | 3.9 ± 0.5 | 4.0 ± 0.3 |
7 | 20 (−1) | 25 (0) | 100 (1) (157 W) | 6.0 ± 0.3 | 18.7 ± 0.6 | 26.6 ± 1.1 | 20.3 ± 0.7 | 20 (−1) | 50 (0) | 500 (1) | 7.4 ± 0.0 | 17.0 ± 0.5 | 22.5 ± 1.0 | 14.1 ± 0.4 |
8 | 100 (1) | 25 (0) | 100 (1) (130 W) | 5.5 ± 0.2 | 17.7 ± 0.4 | 20.7 ± 0.5 | 20.6 ± 0.3 | 100 (1) | 50 (0) | 500 (1) | 4.8 ± 0.2 | 7.0 ± 0.3 | 14.0 ± 1.1 | 7.0 ± 0.4 |
9 | 60 (0) | 5 (−1) | 20 (−1) (34 W) | 9.2 ± 0.9 | 23.2 ± 0.1 | 32.2 ± 0.5 | 29.6 ± 0.1 | 60 (0) | 10 (−1) | 70 (−1) | 4.7 ± 0.2 | 11.2 ± 0.2 | 12.0 ± 1.5 | 6.7 ± 0.0 |
10 | 60 (0) | 45 (1) | 20 (−1) (33 W) | 8.3 ± 0.3 | 22.2 ± 0.4 | 31.3 ± 1.0 | 28.5 ± 0.9 | 60 (0) | 90 (1) | 70 (−1) | 6.0 ± 0.1 | 11.3 ± 0.1 | 12.6 ± 1.0 | 6.8 ± 0.0 |
11 | 60 (0) | 5 (−1) | 100 (1) (151 W) | 9.2 ± 0.4 | 23.8 ± 0.8 | 34.1 ± 1.2 | 30.85 ± 0.1 | 60 (0) | 10 (−1) | 500 (1) | 8.6 ± 0.1 | 17.8 ± 2.3 | 24.3 ± 1.5 | 14.0 ± 0.8 |
12 | 60 (0) | 45 (1) | 100 (1) (142 W) | 6.7 ± 0.8 | 20.8 ± 0.1 | 30.9 ± 0.1 | 24.1 ± 0.5 | 60 (0) | 90 (1) | 500 (1) | 8.7 ± 0.2 | 17.8 ± 1.2 | 24.8 ± 1.6 | 16.5 ± 0.6 |
13 | 60 (0) | 25 (0) | 60 (0) (90 W) | 9.2 ± 0.1 | 28.0 ± 0.7 | 44.0 ± 0.8 | 32.9 ± 1.2 | 60 (0) | 50 (0) | 285 (0) | 7.3 ± 0.3 | 16.8 ± 1.1 | 20.7 ± 1.9 | 13.8 ± 0.0 |
14 | 60 (0) | 25 (0) | 60 (0) (89 W) | 9.4 ± 0.4 | 28.0 ± 0.8 | 43.9 ± 0.8 | 33.5 ± 1.0 | 60 (0) | 50 (0) | 285 (0) | 7.4 ± 0.5 | 17.1 ± 1.0 | 20.2 ± 1.1 | 14.7 ± 0.5 |
15 | 60 (0) | 25 (0) | 60 (0) (90 W) | 9.3 ± 0.3 | 28.7 ± 0.8 | 44.3 ± 0.5 | 33.8 ± 1.3 | 60 (0) | 50 (0) | 285 (0) | 7.4 ± 0.1 | 16.8 ± 0.8 | 20.4 ± 1.7 | 14.4 ± 0.2 |
Ultrasonic Bath | Sonotrode | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TPC | DPPH | ABTS | FRAP | TPC | DPPH | ABTS | FRAP | |||||||||
Effect | p-Value | Effect | p-Value | Effect | p-Value | Effect | p-Value | Effect | p-Value | Effect | p-Value | Effect | p-Value | Effect | p-Value | |
β0 | 5.5355 * | 0.0000 | 11.2496 * | 0.0000 | 15.4920 * | 0.0000 | 9.2175 * | 0.0002 | 6.2021 | 0.0000 | 17.2753 * | 0.0000 | 24.0143 * | 0.0000 | 20.9256 * | 0.0000 |
Lineal | ||||||||||||||||
β1 | −3.4867 * | 0.0003 | −8.1799 * | 0.0002 | −6.4299 * | 0.0007 | −4.7598 * | 0.0040 | 0.3547 * | 0.0228 | −0.5233 | 0.2061 | −3.3403 * | 0.0026 | 1.2959 | 0.0594 |
β2 | 0.3973 * | 0.0197 | 0.9010 * | 0.0188 | −1.4636 * | 0.0136 | 0.9540 | 0.0961 | −0.2332 | 0.0505 | 1.8276 * | 0.0232 | 2.0101 * | 0.0071 | 1.0430 | 0.0876 |
β3 | 3.0925 * | 0.0003 | 5.4419 * | 0.0005 | 11.6027 * | 0.0002 | 6.3139 * | 0.0025 | 0.4140 * | 0.0169 | 3.8119 * | 0.0054 | 4.4745 * | 0.0014 | 3.0140 * | 0.0118 |
Crossed | ||||||||||||||||
β12 | 2.3981 * | 0.0003 | 6.0902 * | 0.0002 | 5.3633 * | 0.0005 | 4.3031 * | 0.0027 | 1.3334 * | 0.0030 | 0.0030 | 0.8862 | 0.4361 | 0.1958 | 2.6155 * | 0.0276 |
β13 | 0.0899 | 0.1510 | 1.1203 * | 0.0060 | −0.3348 | 0.1086 | 1.2314 * | 0.0312 | 0.6125 * | 0.0140 | 0.0140 | 0.0501 | 0.8154 | 0.0700 | 1.5791 | 0.0707 |
β23 | 0.2633 * | 0.0217 | 1.2760 * | 0.0047 | 2.3397 * | 0.0026 | 2.0726 * | 0.0114 | 0.7910 * | 0.0084 | 0.0084 | 0.1193 | −1.1366 * | 0.0379 | −2.8725 * | 0.0230 |
Quadratic | ||||||||||||||||
β11 | −0.2178 | 0.1033 | −0.2790 | 0.2391 | 1.0865 * | 0.0425 | −0.0160 | 0.9736 | 3.6936 * | 0.0001 | 10.7067 * | 0.0003 | 18.1533 * | 0.0000 | 13.5639 * | 0.0003 |
β22 | 0.3454 * | 0.0452 | −1.2767 * | 0.0169 | −0.7717 | 0.0793 | −2.2605 * | 0.0341 | 0.5824 * | 0.0042 | 3.4036 * | 0.0034 | 6.4731 * | 0.0003 | 3.0676 * | 0.0053 |
β33 | −0.5770 * | 0.0169 | −0.0248 | 0.8964 | −0.0240 | 0.9269 | 1.2136 | 0.1053 | 0.3732 * | 0.0102 | 2.3264 * | 0.0072 | 5.4665 * | 0.0005 | 2.0479 * | 0.0125 |
R2 | 0.9928 | 0.9955 | 0.9903 | 0.9648 | 0.9915 | 0.9786 | 0.9977 | 0.9828 | ||||||||
p model | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0031 | 0.0008 | 0.0000 | 0.0012 | ||||||||
p lack of fit | 0.1026 | 0.1504 | 0.1022 | 0.2068 | 0.0505 | 0.1075 | 0.1083 | 0.0707 |
Parameter | Optimal Conditions Ultrasonic Bath | Parameter | Optimal Conditions Sonotrode | |||||
---|---|---|---|---|---|---|---|---|
Ethanol/water (v/v) | 45 | Ethanol/water (v/v) | 55 | |||||
Time (min) | 60 | Time (min) | 18 | |||||
Ratio sample/solvent (w/v) | 1/450 | Amplitude (%) | 65 | |||||
TPC (mg/g) | DPPH (mg/g) | ABTS (mg/g) | FRAP (mg/g) | TPC (mg/g) | DPPH (mg/g) | ABTS (mg/g) | FRAP (mg/g) | |
Predicted value (mg/g dw) | 8.6 ± 0.5 | 19.5 ± 1.2 | 24.0 ± 1.6 | 16.8 ± 1.5 | 9.5 ± 0.5 | 27.7 ± 2.6 | 43.3 ± 1.6 | 33.7 ± 3.1 |
Obtained value (mg/g dw) | 8.3 ± 0.2 | 19.0 ± 1.4 | 24.9 ± 0.9 | 17.6 ± 1.7 | 9.7 ± 0.2 | 27.7 ± 1.3 | 43.2 ± 1.5 | 33.5 ± 0.8 |
N.S. | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. |
Technology Used | Optimum Conditions | TPC (mg GAE/g dw) | Ref. |
---|---|---|---|
Maceration | 80% ethanol/water (v/v), 1:15 sample-to-solvent ratio (w/v), 40 °C, 20 h | 59.7 mg GAE/ g of powder extract | [5] |
Maceration | 49% ethanol/water (v/v), 1:30 sample-to-solvent ratio, 61 °C, 221 min | 1.1 mg GAE/g dry sample | [29] |
Conventional solvent extraction | 1:20 sample to solvent ratio (w/v) ethanol–acetone blend (60–40%), 15 min, 1000 rpm stirring | 2.0 mg GAE/g dry sample | [30] |
Maceration | 3.33 ratio of sample/solvent (w/v) with ethanol 100%, magnetic stirring for 24 h, 25 °C | 41.6 mg GAE/g of extract | [15] |
Ultrasound-assisted extraction (ultrasonic bath) | 50% ethanol/water (v/v), 1:50 ratio of solvent to solid (w/v), 20 min, 60% amplitude, 200 W, 80 kHz | 18.1 mg/g d.w. sample | [22] |
Ultrasound-assisted extraction (ultrasonic bath) +stirring | Liquid nitrogen + distilled water 1:6 sample/solvent (m/V), 25 °C, 15 min ultrasound extraction +15 min stirring, 50 kHz, 160 W | 9.7 mg/g d.w. sample powder | [31] |
Ultrasound-assisted extraction (ultrasonic probe) | 50% ethanol/water 1:30 sample/solvent (v/w), 45 °C, 10 min, 30% amplitude | 35.5 mg GAE/g of raw sample | [2] |
Ultrasound-assisted extraction (sonicator) | 80% ethanol, sample-to-solvent ratio of 1:20, 45 °C, 60 min, 35 kHz, 100% amplitude | 67.6 mg/g of extract | [5] |
Ultrasound-assisted extraction (ultrasonic probe) | Ethanol–acetone blend (60–40%), 1:20 sample to solvent ratio (w/v), 24 kHz, 15 min | 14.9 mg GAE/g dry sample | [30] |
No. | Retention Time (min) | m/z Experimental | m/z Calculated | Error (ppm) | Score (%) | Fragments | Molecular Formula | Compound | Ultrasonic Bath | Sonotrode |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.319 | 341.1073 | 341.1084 | −3.2 | 98.42 | 191.0537, 165.0367, 113.0212 | C12H22O11 | Hexosyl-hexose | X | X |
2 | 0.34 | 377.0877 | 377.0873 | 1.1 | 94.83 | 341.1050, 191.0179 | C18H18O9 | Caffeic acid derivative | X | X |
3 | 0.39 | 191.0549 | 191.0556 | −3.7 | 100 | 111.0016 | C7H12O6 | Quinic acid | X | X |
4 | 0.4895 | 191.0186 | 191.0192 | −3.1 | 100 | 111.0063 | C6H8O7 | Citric acid | X | X |
5 | 0.659 | 331.0656 | 331.0665 | −2.7 | 90.28 | 169.0085, 125.0135 | C13H16O10 | Galloylglucose isomer I | X | X |
6 | 0.803 | 169.0129 | 169.0137 | −4.7 | 100 | 125.0271 | C7H6O5 | Gallic acid | X | X |
7 | 1.006 | 343.0663 | 343.0665 | −0.6 | 90.12 | 169.013, 191.0536 | C14H16O10 | 3-Galloylquinic acid | X | X |
8 | 1.097 | 493.1197 | 493.1193 | 0.8 | 91.64 | 169.0131, 125.0214 | C19H26O15 | Galloyl diglucoside | X | X |
9 | 1.217 | 331.0652 | 331.0665 | −3.9 | 99.8 | 169.0112, 125.0219 | C13H16O10 | Galloylglucose isomer II | X | X |
10 | 1.498 | 299.0769 | 299.0767 | 0.7 | 100 | 137.0212 | C13H16O8 | p-Hydroxybenzoic acid glucoside | X | |
11 | 2.359 | 183.029 | 183.0293 | −1.6 | 99.7 | 124.0117 | C8H8O5 | Methylgallate | X | X |
12 | 3.278 | 483.076 | 483.0775 | −3.1 | 92.58 | 169.0083, 125.0222 | C20H20O14 | Digalloylglucose | X | X |
13 | 3.865 | 289.0698 | 289.0712 | −4.8 | 94.78 | 123.0458 | C15H14O6 | Catechin | X | X |
14 | 3.878 | 443.191 | 443.1917 | −1.6 | 99.25 | 137.0241, 101, 151,213,303 | C21H21O10 | Unknown | X | X |
15 | 4.331 | 355.1043 | 355.1029 | 3.9 | 91.12 | 193.0481, 134.0353 | C16H20O9 | Ferulic acid hexoside | X | X |
16 | 4.465 | 401.1445 | 401.1448 | −0.7 | 96.24 | 313.0528, 125.0237 | C18H26O10 | 6-pentyl-O-galloyl-beta-d-glucose isomer I | X | X |
17 | 4.718 | 401.1435 | 401.1448 | −3.2 | 90.2 | 161.0387 | C18H26O10 | 6-pentyl-O-galloyl-beta-d-glucose isomer II | X | |
18 | 4.854 | 197.0445 | 197.045 | −2.5 | 99.91 | 124.0143, 125.0232, 169.0094 | C9H10O5 | Syringic acid | X | X |
19 | 5.164 | 517.2298 | 517.2285 | 2.5 | 96.76 | 153.0894, 205.1173, 385.1864 | C24H38O12 | Sinapic acid hexoside-pentoside | X | X |
20 | 5.305 | 519.2421 | 519.2442 | −4 | 97.11 | 387.2, 225.1477 | C24H40O12 | Dihydro sinapic acid hexoside-pentoside | X | X |
21 | 5.367 | 533.1869 | 533.187 | −0.2 | 90.47 | 401.1404 | C23H34O14 | Dicaffeoylhexaric acid | X | X |
22 | 5.404 | 451.0872 | 451.0877 | −1.1 | 90.42 | 169.0043 | C20H20O12 | Hydroxybenzoyl galloyl glucoside | X | X |
23 | 5.768 | 635.0894 | 635.0884 | 1.6 | 92.79 | 169.0086 | C27H24O18 | Trigalloyl glucose | X | |
24 | 5.859 | 443.1904 | 443.1917 | −2.9 | 99 | 314.043 | C21H32O10 | Cynaroside A | X | |
25 | 7.27 | 553.1551 | 553.1557 | −1.1 | 90.82 | 391.621 | C25H30O14 | Ligustrosidic acid | X | X |
26 | 7.063 | 477.1017 | 477.1033 | −3.4 | 91.41 | 313.0555, 163.0370, 119.0459, 169.0117 | C22H22O12 | Coumaroyl galloyl glucoside | X | X |
27 | 7.99 | 183.0291 | 183.0293 | −1.1 | 99.4 | 124.0122 | C8H8O5 | Methylgallate isomer I | X | X |
28 | 8.057 | 335.0391 | 335.0403 | −3.6 | 96.35 | 183.0244, 124.0123 | C15H12O9 | Methyl-digallate ester | X | |
29 | 8.995 | 463.0875 | 463.0877 | −0.4 | 99.81 | 300.0253 | C21H20O12 | Quercetin glucoside | X | X |
30 | 9.17 | 463.0868 | 463.0877 | −1.9 | 96.82 | 300.0253 | C21H20O12 | Quercetin galactoside | X | X |
31 | 9.707 | 433.075 | 433.0771 | −4.8 | 99.95 | 271.0219, 241.0106, 300.0254 | C20H18O11 | Quercetin xyloside | X | X |
32 | 9.757 | 447.0913 | 447.0927 | −3.1 | 90.17 | 300.0252, 271.0215 | C21H20O11 | Quercetin 3-rhamnoside isomer I | X | X |
33 | 9.79 | 153.091 | 153.0916 | −3.9 | n/a | 149.6901 | C9H14O2 | Protocatechuic acid | X | X |
34 | 9.844 | 433.0754 | 433.0771 | −3.9 | 93.23 | 300.0242 | C20H18O11 | Quercetin arabinopyranoside | X | X |
35 | 9.906 | 349.0544 | 349.056 | −4.6 | 95.21 | 124.014, 197.04 | C16H14O9 | Ethyl 2,4-dihydroxy-3-(3,4,5- trihydroxybenzoyl)oxybenzoate | X | |
36 | 9.972 | 197.0443 | 197.045 | −3.6 | 93.87 | 124.0131 | C9H10O5 | Syringic acid | X | X |
37 | 10.092 | 447.092 | 447.0927 | −1.6 | 94.18 | 284.025, 255.0225, 227.0386 | C21H20O11 | Quercetin 3-rhamnoside isomer II | X | X |
38 | 10.293 | 447.0925 | 447.0927 | −0.4 | n/a | 255.0284 | C21H20O11 | Quercetin 3-rhamnoside isomer III | X | X |
39 | 11.156 | 477.1035 | 477.1033 | 0.4 | 90.36 | 299.0186 | C22H22O12 | Rhamnetin hexoside | X | X |
Compound | Ultrasonic Bath (µg/g dw) | Sonotrode (µg/g dw) |
---|---|---|
Caffeic acid derivate | 995.3 ± 0.6 | 843.4 ± 0.2 |
Galloylglucose isomer I | 2736.6 ± 0.2 | 2795.4 ± 0.3 |
Galloylglucose isomer II | 2291.9 ± 0.7 | 2246.9 ± 0.6 |
Gallic acid | 141.3 ± 0.1 | 270.0 ± 0.02 |
p-Hydroxybenzoic acid glucoside | <LOQ | 39.7 ± 0.01 |
Methylgallate | 237.7 ± 0.05 | 2037.0 ± 0.3 |
Digalloylglucose | <LOQ | 536.8 ± 0.2 |
Catechin | <LOQ | 37.5 ± 0.01 |
6-pentyl-O-galloyl-beta-d-glucose isomer I | <LOQ | 68.4 ± 0.05 |
6-pentyl-O-galloyl-beta-d-glucose isomer II | n.d. | 32.3 ± 0.03 |
Syringic acid | 37.3 ± 0.01 | 1014.7 ± 0.05 |
Sinapic acid hexoside-pentoside | 651.9 ± 0.2 | 482.5 ± 0.03 |
Dicaffeoylhexaric acid | 96.7 ± 0.002 | 40.8 ± 0.002 |
Hydroxybenzoyl galloyl glucoside | 1268.8 ± 0.3 | 1043.8 ± 0.1 |
Cynaroside A isomer I | 247.1 ± 0.2 | 316.2 ± 0.01 |
Ligustrosidic acid | 128.7 ± 0.003 | 70.8 ± 0.002 |
Coumaroyl galloyl glucoside | 112.3 ± 0.002 | 119.2 ± 0.03 |
Quercetin glucoside | 225.7 ± 0.09 | 232.0 ± 0.03 |
Quercetin galactoside | 68.6 ± 0.05 | 54.2 ± 0.009 |
Quercetin xyloside | 15.2 ± 0.02 | 45.6 ± 0.005 |
Protocatechuic acid | <LOQ | 29.1 ± 0.003 |
Quercetin arabinopyranoside | <LOQ | 12.5 ± 0.002 |
Rhamnetin hexoside | <LOQ | <LOQ |
Sum of phenolic compounds | 9225.1 ± 0.8 | 12368.8 ± 0.9 |
Sum of flavonoids | 556.6 ± 0.3 | 968.0 ± 0.1 |
Sum of phenolic acids | 8698.5 ± 0.5 | 11670.8 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aznar-Ramos, M.J.; Razola-Díaz, M.d.C.; Verardo, V.; Gómez-Caravaca, A.M. Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products. Horticulturae 2022, 8, 1014. https://doi.org/10.3390/horticulturae8111014
Aznar-Ramos MJ, Razola-Díaz MdC, Verardo V, Gómez-Caravaca AM. Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products. Horticulturae. 2022; 8(11):1014. https://doi.org/10.3390/horticulturae8111014
Chicago/Turabian StyleAznar-Ramos, María José, María del Carmen Razola-Díaz, Vito Verardo, and Ana María Gómez-Caravaca. 2022. "Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products" Horticulturae 8, no. 11: 1014. https://doi.org/10.3390/horticulturae8111014
APA StyleAznar-Ramos, M. J., Razola-Díaz, M. d. C., Verardo, V., & Gómez-Caravaca, A. M. (2022). Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products. Horticulturae, 8(11), 1014. https://doi.org/10.3390/horticulturae8111014