Essential Oil Yield, Composition, Antioxidant and Microbial Activity of Wild Fennel (Foeniculum vulgare Mill.) from Monte Negro Coast
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Clevenger-Hydrodistillation
2.3. Gas Chromatography/Mass Spectrometry (GC/MS) and Gas Chromatography/Flame Ionization Detection (GC/FID)Analysis
2.4. Antioxidant Activity (DPPH Assay)
2.5. Antimicrobial Activity
3. Results and Discussion
3.1. Essential Oil Content
3.2. Essential Oil Composition
3.3. Antioxidant Activity
3.4. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdellaoui, M.; Bouhlali, E.D.T.; Kasrati, A.; El Rhaffari, L. The effect of domestication on seed yield, essential oil yield and antioxidant activities of fennel seed (Foeniculum vulgare Mill.) grown in Moroccan oasis. J. Assoc. Arab Univ. Basic Appl. Sci. 2017, 24, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Verghese, J. Fennel in the kaleidoscope. Indian Spices 1990, 27, 14–19. [Google Scholar]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum Species. In Secondary Metabolites of Medicinal Plants: Ethnopharmacological Properties, Biological Activity and Production Strategies; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2020; Chapter 2.39. [Google Scholar]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A Review of Its Botany, Phytochemistry, Pharmacology, Contemporary Application, and Toxicology. Biomed. Res. Int. 2014, 2014, 842674. [Google Scholar] [CrossRef] [Green Version]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef] [PubMed]
- Ferioli, F.; Giambanelli, E.; D’Antuono, L.F. Fennel (Foeniculum vulgare Mill. subsp. piperitum) florets, a traditional culinary spice in Italy: Evaluation of phenolics and volatiles in local populations, and comparison with the composition of other plant parts. J. Sci. Food Agric. 2017, 97, 5369–5380. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Shahi, S.K.; Midgely, G.; Dikshit, A. Utilization of essential oil as natural antifungal against nail infective fungi. Flavour Fragr. J. 2002, 17, 91–94. [Google Scholar] [CrossRef]
- Marinov, V.; Valcheva-Kuzmanova, S. Review on the pharmacological activities of anethole. Scr. Sci. Pharm. 2015, 2, 14–19. [Google Scholar] [CrossRef]
- Ke, W.; Zhao, X.; Lu, Z. Foeniculum vulgare seed extract induces apoptosis in lung cancer cells partly through the down-regulation of Bcl-2. Biomed. Pharmacother. 2021, 135, 111213. [Google Scholar] [CrossRef]
- Kostić, I.; Lazarević, J.; Šešlija-Jovanović, D.; Kostić, M.; Marković, T.; Milanović, S. Potential of essential oils from anise, dill and fennel seeds for the gypsy moth control. Plants 2021, 10, 2194. [Google Scholar] [CrossRef]
- Božović, M.; Garzoli, S.; Vujovic, S.; Sapienza, F.; Ragno, R. Foeniculum vulgare Miller. a New Chemotype from Montenegro. Plants 2022, 11, 42. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Božović, M.; Baldisserotto, A.; Sabatino, M.; Cesa, S.; Pepi, F.; Vicentini, C.B.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-Candida activity of Foeniculum vulgare Miller–new approaches. Nat. Prod. Res. 2017, 32, 1254–1259. [Google Scholar] [CrossRef]
- Braun, M.; Franz, G. Quality criteria of bitter fennel oil in the German pharmacopoeia. Pharm. Pharmcoel. Lett. 1999, 9, 48–51. [Google Scholar]
- Wichtel, M.; Bisset, N.G. Herbal Drugs and Phytopharmaceuticals; Medpharm Scientific Publishers: Stuttgart, Germany, 1994. [Google Scholar]
- Miguel, M.G.; Cruz, C.; Faleirob, L.; Simõesc, M.T.F.; Figueiredoc, A.C.; Barrosoc, J.G.; Pedroc, L.G. Foeniculum vulgare essential oils: Chemical composition, antioxidant and antimicrobial activities. Nat. Prod. Commun. 2010, 5, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvetkovic, D.; Stanojevic, J.; Djordjevic, N.; Karabegović, I.; Stanojevic, L.; Pavlic, B.; Danilović, B. Effect of different extraction techniques on the composition of essential oil isolated from fennel (Foeniculum vulgare Mill.) rhizome. J. Essent. Oil. Res. 2022. [Google Scholar] [CrossRef]
- Shahat, A.A.; Hammouda, F.M.; Sham, K.A.; Saleh, M.A. Comparative chemical analysis of the essential oil of wild and cultivated fennel (Foeniculum vulgare Mill). J. Essent. Oil Bear Plants. 2012, 15, 314–319. [Google Scholar] [CrossRef]
- Farmakopeja, J. Beograd: Savremena Administracija, Ph.Jug.V, The European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2004. [Google Scholar]
- Ilić, S.Z.; Milenković, L.; Tmušić, N.; Stanojević, L.; Cvetković, D. Essential oils content, composition and antioxidant activity of lemon balm, mint and sweet basil from Serbia. LWT Food Sci. Technol. 2022, 153, 112210. [Google Scholar] [CrossRef]
- Stanojević, J.S.; Stanojević, L.P.; Cvetković, D.J.; Danilović, B.R. Chemical composition, antioxidant and antimicrobial activity of the turmeric essential oil (Curcuma longa L.). Adv. Technol. 2015, 4, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Kiehlbauch, J.A.; Hannett, G.E.; Salfinger, M.; Archinal, W.; Monserrat, C.; Carlin, C. Use of the national committee for clinical laboratory standards guidelines for disk diffusion susceptibility testing in New York State Laboratories. J. Clin. Microb. 2000, 38, 3341–3348. [Google Scholar] [CrossRef] [Green Version]
- Ilić, Z.S.; Milenković, L.; Šunić, L.; Tmušić, N.; Mastilović, J.; Kevrešan, Ž.; Stanojević, L.; Danilović, B.; Stanojević, J. Efficiency of basil essential oil antimicrobial agents under different shading treatments and harvest times. Agronomy 2021, 11, 1574. [Google Scholar] [CrossRef]
- Ravid, U.; Putievsky, E.; Snir, N. The volatile components of oleoresins and the essential oils of Foeniculum vulgare in Israel. J. Natural. Prod. 1983, 6, 848–851. [Google Scholar] [CrossRef]
- Miraldi, E. Comparison of the essential oils from ten Foeniculum vulgare Mill. samples of fruits of different origin. Flav Fragr. J. 1999, 14, 379–382. [Google Scholar] [CrossRef]
- Božovic, M.; Navarra, A.; Garzoli, S.; Pepi, F.; Ragno, R. Essential oils extraction: A 24-hour steam distillation systematic methodology. Nat. Prod. Res. 2017, 31, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Piccaglia, R.; Marotti, M. Characterization of some Italian types of wild fennel (Foeniculum vulgare Mill.). J. Agric. Food Chem. 2001, 49, 239–244. [Google Scholar] [CrossRef]
- Bowes, K.M.; Zheljazkov, V.D. Essential oil yields and quality of fennel grown in Nova Scotia. Hort. Sci. 2005, 39, 1640–1643. [Google Scholar] [CrossRef]
- Pouryousef, M. Variation in the essential oil constituents in indigenous populations of Foeniculum vulgare var. vulgare from different locations of Iran. J. Essrnt. Oil Res. 2014, 26, 441–445. [Google Scholar] [CrossRef]
- Coşge, B.; Kiralan, M.; Gürbüz, B. Characteristics of fatty acids and essential oil from sweet fennel (Foeniculum vulgare Mill. var. dulce) and bitter fennel fruits (F. vulgare Mill. var. vulgare) growing in Turkey. Nat. Prod. Res. 2008, 22, 1011–1016. [Google Scholar] [CrossRef]
- Afify, E.M.M.R.; El-Beltagi, H.S.; Hammama, A.A.; Sidky, M.M.A.; Mostafa, O.F.A. Distribution of trans-anethole and estragole in fennel (Foeniculum vulgare Mill) of callus induced from different seedling parts and fruits. Electron. J. Environ. Agric. Food Chem. 2011, 10, 1897–1908. [Google Scholar] [CrossRef] [Green Version]
- Sherif, M.A.; El-Mahis, A.; Heiss, A.G.; Farag, M.A. Gas chromatography—Mass spectrometry-based classification of 12 fennel (Foeniculum vulgare Miller) varieties based on their aroma profiles and estragole levels as analyzed using chemometric tools. ACS Omega 2021, 6, 5775–5785. [Google Scholar]
- Cavaleiro, C.M.F.; Roque, O.L.; Proença da Cunha, A. Contribution for the characterization of Portuguese fennel chemotypes. J. Essent. Oil Res. 1993, 5, 223–225. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Faudale, M.; Francesc, V.; Jaume, B.; Ferruccio, P.; Codina, C. Antioxidant activity and phenolic composition of wild, edible, and medicinal fennel from different mediterranean countries. J. Agric. Food Chem. 2008, 56, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Statti, G.; Uzunov, D.; Menichini, F. Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho fruits. Biol. Pharm. Bull. 2006, 29, 2056–2064. [Google Scholar] [CrossRef] [PubMed]
- Mata, A.T.; Proenc, C.; Ferreira, A.R.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Araújo, M.E.M. Antioxidant and anti acetyl cholinesterase activities of five plants used as Portuguese food spices. Food Chem. 2007, 103, 778–786. [Google Scholar] [CrossRef]
- Dahmani, K.; Moghrani, H.; Deghbar, N.; Ouarek, S.; Allaf, K.; Arab, K. Algerian wild fennel essential oils: Chromatographic profile, acute toxicity, antioxidant, and antimicrobial activities. Chem. Pap. 2022, 76, 1639–1652. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Shi, M.; Liu, C.; Kang, W.Y. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Sci. Hum. Wellness 2019, 8, 67–72. [Google Scholar] [CrossRef]
- Anwar, F.; Ali, M.; Hussain, A.I.; Shahid, M. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill.) seeds from Pakistan. Flavour Fragr. J. 2009, 24, 170–176. [Google Scholar] [CrossRef]
- Abdellaoui, M.; Bouhlali, E.D.T.; Derouich, M.; El-Rhaffari, L. Essential oil and chemical composition of wild and cultivated fennel (Foeniculum vulgare Mill.). S. Afr. J. Bot. 2020, 135, 93–100. [Google Scholar] [CrossRef]
- Laranjo, M.A.M.; Fernández-Léon, M.E.P.; Agulheiro-Santos, A.C.; Elias, M. Use of essential oils in food preservation. In Antimicrobial Research: Novel Bioknowledge and Educational Programs; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2017; pp. 177–188. [Google Scholar]
Fennel (Foeniculum vulgare Mill.) | Essential Oil Yield, mL/100 g p.m. * |
---|---|
Stems | 0.21 ± 0.0091 |
Leaves | 0.83 ± 0.0183 |
N° | tret., min | Compound | RIexp | RIlit | Method of Identification | c % |
---|---|---|---|---|---|---|
1. | 6.70 | α-Thujene | 914 | 924 | RI, MS | tr |
2. | 6.92 | α-Pinene | 922 | 932 | RI, MS | 0.9 |
3. | 7.40 | Camphene | 937 | 946 | RI, MS, Co-I | tr |
4. | 8.15 | Sabinene | 962 | 969 | RI, MS | tr |
5. | 8.28 | β-Pinene | 967 | 974 | RI, MS, Co-I | tr |
6. | 8.70 | Myrcene | 980 | 988 | RI, MS | 0.5 |
7. | 9.26 | α-Phellandrene | 998 | 1002 | RI, MS | 1.7 |
8. | 9.40 | δ-3-Carene | 1003 | 1008 | RI, MS | 1.0 |
9. | 10.06 | p-Cymene | 1020 | 1020 | RI, MS | 3.9 |
10. | 10.19 | β-Phellandrene | 1024 | 1025 | RI, MS | 2.2 |
11. | 11.28 | γ-Terpinene | 1052 | 1054 | RI, MS, Co-I | tr |
12. | 12.45 | Fenchone | 1083 | 1083 | RI, MS | 2.0 |
13. | 13.24 | cis-Thujone | 1104 | 1101 | RI, MS | 3.7 |
14. | 13.68 | trans-Thujone | 1114 | 1112 | RI, MS | 0.5 |
15. | 14.85 | Camphor | 1142 | 1141 | RI, MS, Co-I | 2.6 |
16. | 15.63 | Pinocarvone | 1161 | 1160 | RI, MS | tr |
17. | 16.01 | δ-Terpineol | 1169 | 1162 | RI, MS | 0.4 |
18. | 16.15 | Borneol | 1173 | 1165 | RI, MS, Co-I | tr |
19. | 16.29 | p-Mentha-1,5-dien-8-ol | 1176 | 1166 | RI, MS | tr |
20. | 16.52 | Terpinen-4-ol | 1182 | 1174 | RI, MS, Co-I | tr |
21. | 17.06 | p-Cymen-9-ol | 1195 | 1204 | RI, MS | tr |
22. | 17.36 | Methyl chavicol | 1202 | 1195 | RI, MS | 7.8 |
23. | 17.79 | α-Phellandrene epoxide | 1200 | - | MS | 2.9 |
24. | 17.91 | endo-Fenchyl acetate | 1215 | 1218 | RI, MS | tr |
25. | 18.52 | exo-Fenchyl acetate | 1230 | 1229 | RI, MS | 2.4 |
26. | 19.26 | Carvone | 1247 | 1239 | RI, MS | tr |
27. | 19.61 | cis-Piperitone epoxide | 1256 | 1250 | RI, MS | tr |
28. | 19.71 | trans-Piperitone epoxide | 1258 | 1252 | RI, MS | tr |
29. | 19.97 | p-Anisaldehyde | 1265 | 1270 | RI, MS | 0.9 |
30. | 20.74 | Isobornyl acetate | 1283 | 1283 | RI, MS | 0.4 |
31. | 21.40 | (E)-Anethole | 1292 | 1282 | RI, MS | 55.7 |
32. | 22.19 | 6-hydroxy-Carvotanacetone | 1317 | 1309 | RI, MS | tr |
33. | 22.89 | Methyl o-anisate | 1334 | 1334 | RI, MS | 1.4 |
34. | 24.15 | (2E)-Undecenal | 1364 | 1357 | RI, MS | tr |
35. | 24.50 | Piperitenone oxide | 1373 | 1366 | RI, MS | tr |
36. | 24.61 | α-Copaene | 1375 | 1374 | RI, MS | tr |
37. | 26.49 | (E)-Caryophyllene | 1421 | 1417 | RI, MS | 0.7 |
38. | 27.92 | α-Humulene | 1457 | 1452 | RI, MS | 0.9 |
39. | 28.17 | (E)-β-Farnesene | 1464 | 1454 | RI, MS | tr |
40. | 29.03 | Germacrene D | 1485 | 1484 | RI, MS | 0.5 |
41. | 29.51 | Phenyl ethyl 3-methylbutanoate | 1497 | 1490 | RI, MS | tr |
42. | 30.66 | δ-Cadinene | 1527 | 1522 | RI, MS | tr |
43. | 30.98 | Myristicin | 1535 | 1525 | RI, MS | tr |
44. | 33.13 | Caryophyllene oxide | 1592 | 1582 | RI, MS | 1.3 |
45. | 33.67 | Ledol | 1606 | 1602 | RI, MS | 3.0 |
46. | 34.17 | Humulene epoxide II | 1618 | 1608 | RI, MS | tr |
47. | 46.90 | Hexadecanoic acid | 1969 | 1959 | RI, MS | 1.7 |
48. | 49.36 | 13-epi-Manool | 2069 | 2059 | RI, MS | 1.0 |
Total identified | 100.0 | |||||
Grouped components (%) | ||||||
Monoterpene hydrocarbons (1–8, 10, 11) | 6.3 | |||||
Oxygen-containing monoterpenes (12–20, 23–28, 30, 32, 35) | 14.9 | |||||
Sesquiterpene hydrocarbons (36–40, 42) | 2.1 | |||||
Oxygenated sesquiterpenes (44–46) | 4.8 | |||||
Diterpenes (47) | 1.0 | |||||
Aromatic compounds (9, 21, 22 *, 29, 31 *, 33, 41, 43) * Phenolics (22, 31) | 69.7 * 63.5 | |||||
Others (34, 47) | 1.7 |
N° | tret., min | Compound | RIexp | RIlit | Method of Identification | c, % |
---|---|---|---|---|---|---|
1. | 6.70 | α-Thujene | 914 | 924 | RI, MS | tr |
2. | 6.92 | α-Pinene | 922 | 932 | RI, MS | 1.9 |
3. | 7.40 | Camphene | 937 | 946 | RI, MS, Co-I | tr |
4. | 8.15 | Sabinene | 962 | 969 | RI, MS | 0.3 |
5. | 8.28 | β-Pinene | 967 | 974 | RI, MS, Co-I | 0.4 |
6. | 8.70 | Myrcene | 980 | 988 | RI, MS | 1.3 |
7. | 9.12 | 3-Octanol | 994 | 988 | RI, MS | tr |
8. | 9.26 | α-Phellandrene | 998 | 1002 | RI, MS | 5.9 |
9. | 9.40 | δ-3-Carene | 1003 | 1008 | RI, MS | 1.7 |
10. | 10.06 | p-Cymene | 1020 | 1020 | RI, MS | 6.5 |
11. | 10.14 | Limonene | 1022 | 1024 | RI, MS, Co-I | tr |
12. | 10.19 | β-Phellandrene | 1024 | 1025 | RI, MS | 4.9 |
13. | 10.42 | (Z)-β-Ocimene | 1030 | 1032 | RI, MS | tr |
14. | 10.96 | Benzene acetaldehyde | 1044 | 1036 | RI, MS | tr |
15. | 11.28 | γ-Terpinene | 1052 | 1054 | RI, MS, Co-I | 1.4 |
16. | 12.45 | Fenchone | 1083 | 1083 | RI, MS | 3.2 |
17. | 13.24 | cis-Thujone | 1104 | 1101 | RI, MS | 0.7 |
18. | 13.68 | trans-Thujone | 1114 | 1112 | RI, MS | tr |
19. | 14.85 | Camphor | 1142 | 1141 | RI, MS, Co-I | 1.0 |
20. | 15.63 | Pinocarvone | 1161 | 1160 | RI, MS | tr |
21. | 16.01 | δ-Terpineol | 1169 | 1162 | RI, MS | tr |
22. | 16.29 | p-Mentha-1,5-dien-8-ol | 1176 | 1166 | RI, MS | tr |
23. | 16.52 | Terpinen-4-ol | 1182 | 1174 | RI, MS, Co-I | tr |
24. | 17.06 | p-Cymen-9-ol | 1195 | 1204 | RI, MS | tr |
25. | 17.36 | Methyl chavicol | 1202 | 1195 | RI, MS | 9.3 |
26. | 17.79 | α-Phellandrene epoxide | 1200 | - | MS | 1.2 |
27. | 17.91 | endo-Fenchyl acetate | 1215 | 1218 | RI, MS | 0.5 |
28. | 18.52 | exo-Fenchyl acetate | 1230 | 1229 | RI, MS | 1.0 |
29. | 19.26 | Carvone | 1247 | 1239 | RI, MS | tr |
30. | 19.61 | cis-Piperitone epoxide | 1256 | 1250 | RI, MS | 1.2 |
31. | 19.71 | trans-Piperitone epoxide | 1258 | 1252 | RI, MS | 1.8 |
32. | 19.97 | p-Anisaldehyde | 1265 | 1270 | RI, MS | tr |
33. | 20.74 | Isobornyl acetate | 1283 | 1283 | RI, MS | tr |
34. | 21.40 | (E)-Anethole | 1292 | 1282 | RI, MS | 51.4 |
35. | 22.19 | 6-hydroxy-Carvotanacetone | 1317 | 1309 | RI, MS | tr |
36. | 22.89 | Methyl o-anisate | 1334 | 1334 | RI, MS | 1.3 |
37. | 24.15 | (2E)-Undecenal | 1364 | 1357 | RI, MS | tr |
38. | 24.50 | Piperitenone oxide | 1373 | 1366 | RI, MS | 1.2 |
39. | 26.49 | (E)-Caryophyllene | 1421 | 1417 | RI, MS | 0.3 |
40. | 27.92 | α-Humulene | 1457 | 1452 | RI, MS | tr |
41. | 28.17 | (E)-β-Farnesene | 1464 | 1454 | RI, MS | tr |
42. | 29.03 | Germacrene D | 1485 | 1484 | RI, MS | 0.9 |
43. | 30.66 | δ-Cadinene | 1527 | 1522 | RI, MS | tr |
44. | 30.98 | Myristicin | 1535 | 1525 | RI, MS | tr |
45. | 33.13 | Caryophyllene oxide | 1592 | 1582 | RI, MS | 0.4 |
46. | 33.67 | Ledol | 1606 | 1602 | RI, MS | 0.4 |
Total identified | 100.0 | |||||
Grouped components (%) | ||||||
Monoterpene hydrocarbons (1–6, 8, 9, 11–13, 15) | 17.8 | |||||
Oxygen-containing monoterpenes (16–23, 26–31, 33, 35, 38) | 11.8 | |||||
Sesquiterpene hydrocarbons (39–43) | 1.2 | |||||
Oxygenated sesquiterpenes (45, 46) | 0.8 | |||||
Aromatic compounds (10, 14, 24, 25, 32, 34, 36, 44) * Phenolics (25, 34) | 68.5 * 60.7 | |||||
Others (7, 37) | tr |
Essential Oil | EC50, mg/mL | |
---|---|---|
Without Incubation | 40 min Incubation | |
Fennel stems | / | 2.58 ± 0.101 |
Fennel leaves | / | 6.91 ± 0.014 |
Inhibition Zone (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Escherihia coli | Pseudomonas aeruginosa | Proteus vulgaris | Bacillus subtilis | Bacillus cereus | Staphylococcus aureus | Klebsiella pneumoniae | Listeria monocytogenes | Candida albicans | |
Average | 0 | 0 | 0 | 24.0 | 0 | 0 | 0 | 0 | 45.3 |
Stan dev | 1.0 | 1.527 | |||||||
Cefalexin | n.t. | n.t. | n.t. | 48.0 | n.t. | n.t. | n.t. | n.t. | n.t. |
Nystatin | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 17.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milenković, A.; Ilić, Z.; Stanojević, L.; Milenković, L.; Šunić, L.; Lalević, D.; Stanojević, J.; Danilović, B.; Cvetković, D. Essential Oil Yield, Composition, Antioxidant and Microbial Activity of Wild Fennel (Foeniculum vulgare Mill.) from Monte Negro Coast. Horticulturae 2022, 8, 1015. https://doi.org/10.3390/horticulturae8111015
Milenković A, Ilić Z, Stanojević L, Milenković L, Šunić L, Lalević D, Stanojević J, Danilović B, Cvetković D. Essential Oil Yield, Composition, Antioxidant and Microbial Activity of Wild Fennel (Foeniculum vulgare Mill.) from Monte Negro Coast. Horticulturae. 2022; 8(11):1015. https://doi.org/10.3390/horticulturae8111015
Chicago/Turabian StyleMilenković, Aleksandra, Zoran Ilić, Ljiljana Stanojević, Lidija Milenković, Ljubomir Šunić, Dragana Lalević, Jelena Stanojević, Bojana Danilović, and Dragan Cvetković. 2022. "Essential Oil Yield, Composition, Antioxidant and Microbial Activity of Wild Fennel (Foeniculum vulgare Mill.) from Monte Negro Coast" Horticulturae 8, no. 11: 1015. https://doi.org/10.3390/horticulturae8111015
APA StyleMilenković, A., Ilić, Z., Stanojević, L., Milenković, L., Šunić, L., Lalević, D., Stanojević, J., Danilović, B., & Cvetković, D. (2022). Essential Oil Yield, Composition, Antioxidant and Microbial Activity of Wild Fennel (Foeniculum vulgare Mill.) from Monte Negro Coast. Horticulturae, 8(11), 1015. https://doi.org/10.3390/horticulturae8111015