Relative Cleanability and Sanitization of Blueberry Mechanical Harvester Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvester Surface Selection and Preparation
2.2. Physical Surface Characterization
2.3. Cleanability of Surfaces with Water in Relation to Rinse Time
2.4. Cleanability of Surfaces with Different Cleaning Agents
2.5. Surface Sanitization
3. Results
3.1. Physical Surface Characterization
3.2. Cleanability of Surfaces with Water in Relation to Rinse Time
3.3. Cleanability of Surfaces with Different Cleaning Agents
3.4. Surface Sanitization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallardo, R.K.; Stafne, E.T.; DeVetter, L.W.; Zhang, Q.; Li, C.; Takeda, F.; Williamson, J.; Yang, W.Q.; Cline, W.O.; Beaudry, R.; et al. Blueberry producers’ attitudes toward harvest mechanization for fresh market. HortTechnology 2018, 28, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Sargent, S.A.; Takeda, F.; Williamson, J.G.; Berry, A.D. Harvest of southern highbush blueberry with a modified, over-the-row mechanical harvester: Use of soft-catch surfaces to minimize impact bruising. Agronomy 2021, 11, 1412. [Google Scholar] [CrossRef]
- Yu, P.; Li, C.; Takeda, F.; Krewer, G.; Rains, G.; Hamrita, T. Quantitative evaluation of a rotary blueberry mechanical harvester using a miniature instrumented sphere. Comput. Electron. Agric. 2012, 88, 25–31. [Google Scholar] [CrossRef]
- Takeda, F.; Krewer, G.; Li, C.; MacLean, D.; Olmstead, J.W. Olmstead. Techniques for increasing machine harvest efficiency in highbush blueberry. HortTechnology 2013, 23, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Casamali, B.; Williamson, J.G.; Kovaleski, A.P.; Sargent, S.A.; Darnell, R.L. Mechanical harvesting and postharvest storage of two southern highbush blueberry cultivars grafted onto Vaccinium arboreum rootstocks. HortScience 2016, 51, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- DeVetter, L.W.; Yang, W.Q.; Takeda, F.; Korthuis, S.; Li, C. Modified over-the-row machine harvesters to improve northern highbush blueberry fresh fruit quality. Agriculture 2019, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Takeda, F.; Foote, B.; DeVetter, L.W. Effects of machine-harvest interval on fruit quality of fresh market northern highbush blueberry. Horticulturae 2021, 7, 245. [Google Scholar] [CrossRef]
- Mehra, L.K.; MacLean, D.D.; Savelle, A.T.; Scherm, H. Postharvest disease development on southern highbush blueberry fruit in relation to berry flesh type and harvest method. Plant Dis. 2013, 97, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, R.K.; Zilberman, D. The economic feasibility of adopting mechanical harvesters by the highbush blueberry industry. HortTechnology 2016, 26, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Holland, R.M.; Chen, J.; Gazula, H.; Scherm, H. Environmental and fecal indicator organisms on fruit contact surfaces and fruit from blueberry mechanical harvesters. Horticulturae 2022, 8, 20. [Google Scholar] [CrossRef]
- Gerhards, C.; Kudermann, T.; Schramm, M.; Schmid, A. Schmid. Assessing the cleanability of stainless steel surfaces—Effect of surface roughness and various parameters on cleaning of protein based soils. J. Hyg. Eng. Des. 2014, 7, 3–7. [Google Scholar]
- Pesonen-Leinonen, E.; Kuisma, R.; Redsven, I.; Sjöberg, A.M.; Hautala, M. Cleanability of plastic flooring materials related to their surface properties. Tenside Surfact. Det. 2005, 42, 148–153. [Google Scholar] [CrossRef]
- Schmidt, R.H. Basic Elements of Equipment Cleaning and Sanitizing in Food Processing and Handling Operations; Publication FS14; UF/IFAS Extension: Gainesville, FL, USA, 1997; Available online: https://edis.ifas.ufl.edu/pdffiles/FS/FS07700.pdf (accessed on 20 September 2022).
- Gazula, H.; Scherm, H.; Li, C.; Takeda, F.; Wang, P.; Chen, J. Ease of biofilm accumulation, and efficacy of sanitizing treatments in removing the biofilms formed, on coupons made of materials commonly used in blueberry packing environment. Food Control 2019, 104, 167–173. [Google Scholar] [CrossRef]
- Gazula, H.; Quansah, J.; Allen, R.; Scherm, H.; Li, C.; Takeda, F.; Chen, J. Microbial loads on selected fresh blueberry packing lines. Food Control 2019, 100, 315–320. [Google Scholar] [CrossRef]
- Fatica, M.K.; Schneider, K.R. The use of chlorination and alternative sanitizers in the produce industry. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 1–10. [Google Scholar] [CrossRef]
- Qu, Q.; Jiang, S.; Li, L.; Bai, W.; Zhou, J. Corrosion behavior of cold rolled steel in peracetic acid solutions. Corros. Sci. 2008, 50, 35–40. [Google Scholar] [CrossRef]
- DeQueiroz, G.A.; Day, D.F. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. J. Appl. Microbiol. 2007, 103, 794–802. [Google Scholar] [CrossRef]
- Smilanick, J. Use of ozone in storage and packing facilities. In Proceedings of the Washington Tree Fruit Postharvest Conference, Wenatchee, WA, USA, 2–3 December 2003. WSU-TFREC Postharvest Information Network. [Google Scholar]
- Sopher, C.D.; Battles, G.T.; Knueve, E.A. Ozone applications in catfish processing. Ozone Sci. Eng. 2007, 29, 221–228. [Google Scholar] [CrossRef]
- Banach, J.L.; Sampers, I.; Van Haute, S.; Van der Fels-Klerx, H.J. Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. Int. J. Environ. Res. Public Health 2015, 12, 8658–8677. [Google Scholar] [CrossRef] [Green Version]
- Bernat, M.; Casals, C.; Teixidó, N.; Torres, R.; Carballo, B.C.; Usall, J. Efficacy of environmental friendly disinfectants against the major postharvest pathogens of stone fruits on plastic and wood surfaces. Food Sci. Technol. Int. 2018, 25, 109–119. [Google Scholar] [CrossRef]
- Mamvura, T.A.; Iyuke, S.E.; Paterson, A.E. Paterson. Investigation on the effect of ultrasound waves on stainless steel surfaces during removal of soil films. Adv. Environ. Biol. 2014, 8, 572–581. [Google Scholar]
- Verran, J.; Boyd, R.D. The relationship between substratum surface roughness and microbiological and organic soiling: A review. Biofouling 2001, 17, 59–71. [Google Scholar] [CrossRef]
- Martelo, J.B.; Andersson, M.; Liguori, C.; Lundgren, J. Three-dimensional scanning electron microscopy used as a profilometer for the surface characterization of polyethylene-coated paperboard. Nord. Pulp Paper Res. J. 2021, 36, 276–283. [Google Scholar] [CrossRef]
- Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallant, D.; Eskandarian, M. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Appl. Surf. Sci. 2012, 261, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Bobzin, K.; Brögelmann, T.; Grundmeier, G.; de los Arcos, T.; Wiesing, M.; Kruppe, N.C. (Cr,Al)N/(Cr,Al)ON oxy-nitride coatings deposited by hybrid dcMS/HPPMS for plastics processing applications. Surf. Coat. 2016, 308, 394–403. [Google Scholar] [CrossRef]
- Nakanishi, E.Y.; Palacios, J.H.; Godbout, S.; Fournel, S. Interaction between biofilm formation, surface material and cleanability considering different materials used in pig facilities—An overview. Sustainability 2021, 13, 5836. [Google Scholar] [CrossRef]
- Ahmed, K.W.; Hasan, R.M.A. The effect of addition of barium sulphate nanoparticles on some properties of Acetal resin. Zanco J. Med. Sci. 2017, 21, 1818–1828. [Google Scholar] [CrossRef] [Green Version]
- Moeller, R.-S.; Nirschl, H. Adhesion and cleanability of surfaces in the baker’s trade. J. Food Eng. 2017, 194, 99–108. [Google Scholar] [CrossRef]
- Goode, K.R.; Asteriadou, K.; Robbins, P.T.; Fryer, P.J. Fouling and cleaning studies in the food and beverage industry classified by cleaning type. Compr. Rev. Food Sci. Food Saf. 2013, 12, 121–143. [Google Scholar] [CrossRef]
- Whitehead, K.A.; Benson, P.; Smith, L.A.; Verran, J. The use of physiochemical methods to detect organic food soils on stainless steel surfaces. Biofouling 2009, 25, 749–756. [Google Scholar] [CrossRef]
- Saikhwan, P.; Geddert, T.; Augustin, W.; Scholl, S.; Paterson, W.R.; Wilson, D.I. Effect of surface treatment on cleaning of a model food soil. Surf. Coat. 2006, 201, 943–951. [Google Scholar] [CrossRef]
- Cogan, T.A.; Slader, J.; Bloomfield, S.F.; Humphrey, T.J. Achieving hygiene in the domestic kitchen: The effectiveness of commonly used cleaning procedures. J. Appl. Microbiol. 2002, 92, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Nicolella, C.; Casini, B.; Rossi, F.; Chericoni, A.; Pardini, G. Thermal sanitizing in a commercial dishwashing machine. J. Food Saf. 2011, 31, 81–90. [Google Scholar] [CrossRef]
- Corrieu, G.; Lalande, M.; Roussel, C. Roussel. Simplified method to calculate the optimum energy recovery on a plate type milk pasteurizer. Lait 1981, 61, 233–249. [Google Scholar] [CrossRef] [Green Version]
- Fryer, P.J.; Asteriadou, K. A prototype cleaning map: A classification of industrial cleaning processes. Trends Food Sci. Technol. 2009, 20, 255–262. [Google Scholar] [CrossRef]
- Reynolds, T.B.; Fink, G.R. Bakers’ yeast, a model for fungal biofilm formation. Science 2001, 291, 878–881. [Google Scholar] [CrossRef]
- Brugnoni, L.I.; Lozano, J.E.; Cubitto, M.A. Potential of yeast isolated from apple juice to adhere to stainless steel surfaces in the apple juice processing industry. Food Res. Int. 2007, 40, 332–340. [Google Scholar] [CrossRef]
- Ozzello, E.; Mollea, C.; Bosco, F.; Bongiovanni, R. Fouling release of UV-cured acrylic coatings: Set-up of an in vitro test with Rhodoturula mucilaginosa. Surf. Coat. 2017, 325, 377–385. [Google Scholar] [CrossRef]
- Gattlen, J.; Zinn, M.; Guimond, S.; Körner, E.; Amberg, C.; Mauclaire, L. Biofilm formation by the yeast Rhodoturula mucilaginosa: Process, repeatability and cell attachment in a continuous biofilm reactor. Biofouling 2011, 27, 979–991. [Google Scholar] [CrossRef]
- Hutchison, E.A.; Miller, D.A.; Angert, E.R. Sporulation in bacteria: Beyond the standard model. Microbiol. Spectr. 2014, 2, TBS-0013-2012. [Google Scholar] [CrossRef] [Green Version]
- Cregenzán-Alberti, O.; Arroyo, C.; Dorozko, A.; Whyte, P.; Lyng, J.G. Thermal characterization of Bacillus subtilis endospores and a comparative study of their resistance to high temperature pulsed electric fields (HTPEF) and thermal-only treatments. Food Control 2017, 73, 1490–1498. [Google Scholar] [CrossRef]
- Wagner, A.; Green, C.F.; Pedregon, V.; Barth, E.; Gibbs, S.G.; Scarpino, P.V. Inactivation of Bacillus subtilis on gypsum board using aerosolized chemical agents. J. Environ. Eng. Sci. 2008, 7, 159–164. [Google Scholar] [CrossRef]
- Setlow, B.; Yu, J.; Li, Y.Q.; Setlow, P. Analysis of the germination kinetics of individual Bacillus subtilis spores treated with hydrogen peroxide or sodium hypochlorite. Lett. Appl. Microbiol. 2013, 57, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Salo, S.; Wirtanen, G. Disinfectant efficacy on foodborne spoilage yeast strains. Food Bioprod. Process. 2005, 83, 288–296. [Google Scholar] [CrossRef]
- Brugnoni, L.I.; Lozano, J.E.; Cubitto, M.A. Efficacy of sodium hypochlorite and quaternary ammonium compounds on yeasts isolated from apple juice. J. Food Process Eng. 2011, 35, 104–119. [Google Scholar] [CrossRef]
- Rabie, C.J.; Lübben, A.; Marais, G.J.; Van Vuuren, H.J. Enumeration of fungi in barley. Int. J. Food Microbiol. 1997, 35, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Popa, I.; Hanson, E.J.; Todd, E.C.; Schilder, A.C.; Ryser, E.T. Efficacy of chlorine dioxide gas sachets for enhancing the microbiological quality and safety of blueberries. J. Food Protect. 2007, 70, 2084–2088. [Google Scholar] [CrossRef] [PubMed]
Surface | Material | Source | Sa (µm) a | Sq (µm) a | Contact Angle (°) b |
---|---|---|---|---|---|
Shaking rod | Polyethylene | Bennett’s Tractor Service, Waycross, GA | 0.79 | 0.97 | 87.0 |
Tunnel side wall | Aluminum (grade 6061) | Haven Harvesters, South Haven, MI | 0.37 | 0.46 | 95.5 |
Catcher plate | Extruded polycarbonate | Bennett’s Tractor Service, Waycross, GA | 0.04 | 0.07 | 82.3 |
Conveyor belt | Acetal plastic | Bennett’s Tractor Service, Waycross, GA | 1.57 | 1.99 | 84.2 |
Conveyor belt | Stainless steel (grade 316) | Bennett’s Tractor Service, Waycross, GA | 0.23 | 0.32 | 94.4 |
Berry lug | High-density polyethylene | Alma Pak, Alma, GA | 0.29 | 0.37 | 86.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holland, R.M.; Dunn, L.L.; Chen, J.; Gazula, H.; Oliver, J.E.; Scherm, H. Relative Cleanability and Sanitization of Blueberry Mechanical Harvester Surfaces. Horticulturae 2022, 8, 1017. https://doi.org/10.3390/horticulturae8111017
Holland RM, Dunn LL, Chen J, Gazula H, Oliver JE, Scherm H. Relative Cleanability and Sanitization of Blueberry Mechanical Harvester Surfaces. Horticulturae. 2022; 8(11):1017. https://doi.org/10.3390/horticulturae8111017
Chicago/Turabian StyleHolland, Renee M., Laurel L. Dunn, Jinru Chen, Himabindu Gazula, Jonathan E. Oliver, and Harald Scherm. 2022. "Relative Cleanability and Sanitization of Blueberry Mechanical Harvester Surfaces" Horticulturae 8, no. 11: 1017. https://doi.org/10.3390/horticulturae8111017
APA StyleHolland, R. M., Dunn, L. L., Chen, J., Gazula, H., Oliver, J. E., & Scherm, H. (2022). Relative Cleanability and Sanitization of Blueberry Mechanical Harvester Surfaces. Horticulturae, 8(11), 1017. https://doi.org/10.3390/horticulturae8111017