Evaluation of Biodegradable Gelatin and Gelatin–Rice Starch Coatings to Fresh Cut Zucchini Slices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Zucchini Slices
2.2. Preparation of Gelatin and Gelatin–Rice Starch Edible Coatings
2.3. Weight Loss Measurements
2.4. Texture Analysis
2.5. Color Analysis
2.6. Statistical Analysis
3. Results
3.1. Weight Loss
3.2. Texture Analysis
3.3. Color Analysis
3.3.1. Color Parameters
3.3.2. Whiteness Index (WI)
3.3.3. Total Color Difference (ΔΕ)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.Y.; Ji, L. Effect of low-oxygen storage on chilling injury and polyamides in zucchini squash. Sci. Horticufturae 1989, 39, 1–7. [Google Scholar] [CrossRef]
- Mencarelli, E.; Lipton, W.J.; Peterson, S.J. Responses of zucchini squash to storage in low-oxygen atmospheres at chilling and nonchilling temperatures. J. Am. Sot. Hort. Sci. 1983, 108, 884–890. [Google Scholar] [CrossRef]
- Vandeputte, G.E.; Delcour, J.A. From sucrose to starch granule to starch physical behaviour: A focus on rice starch. Carbohydr. Polym. 2004, 58, 245–266. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Bodbodak, S. Physiological and biochemical mechanisms regulating chilling tolerance in fruits and vegetables under postharvest salicylates and jasmonates treatments. Sci. Hortic. 2013, 156, 73–85. [Google Scholar] [CrossRef]
- Benítez, S.; Achaerandio, I.; Pujolà, M.; Sepulcre, F. Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: A case of study with kiwifruit slices. LWT-Food Sci. Technol. 2015, 61, 184–193. [Google Scholar] [CrossRef]
- Moreira, M.R.; Cassani, L.; Martín-Belloso, O.; Soliva-Fortuny, R. Effects of polysaccharide-basededible coatings enriched with dietary fiber on quality attributes of fresh-cut apples. J. Food Sci. Technol. 2015, 12, 7795–7805. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol. Technol. 2015, 110, 203–213. [Google Scholar] [CrossRef]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan-lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol. 2011, 4, 849–875. [Google Scholar] [CrossRef]
- Cutter, C.N. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci. 2006, 74, 131–142. [Google Scholar] [CrossRef]
- Liu, Q. Understanding starches and their role in foods. In Food Carbohydrates: Chemistry, Physical Properties and Applications; Cui, S.W., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 309–355. [Google Scholar] [CrossRef]
- Pagella, C.; Spigno, G.; De Faveri, D.M. Characterization of starch based edible coatings. Food Bioprod. Process. 2002, 80, 193–198. [Google Scholar] [CrossRef]
- Yao, W.; Xu, T.; Farooq, S.U.; Jin, P.; Zheng, Y. Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L.) by modulating antioxidant enzymes and membrane fatty acid metabolism. Postharvest Biol. Technol. 2018, 144, 20–28. [Google Scholar] [CrossRef]
- Mitchell, C.R. Rice Starches: Production and Properties. In Starch; Academic Press: Cambridge, MA, USA, 2009; pp. 569–578. [Google Scholar]
- Lawal, O.S. Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chem. 2004, 87, 205–218. [Google Scholar] [CrossRef]
- Garcia, M.; Martino, M.; Zaritzky, N. Composite starch-based coatings applied to strawberries (Fragaria x ananassa). Food/Nahr. 2001, 45, 267–272. [Google Scholar] [CrossRef]
- Ribeiro, C.; Vicente, A.A.; Teixeira, J.A.; Miranda, C. Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biol. Technol. 2007, 44, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Fakhouri, F.M.; Martelli, S.M.; Caon, T.; Velasco, J.I.; Mei, L.H.I. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol. Technol. 2015, 109, 57–64. [Google Scholar] [CrossRef]
- Cazon, P.; Velazquez, G.; Ramirez, J.A.; Vazquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Gelatin alternatives for the food industry: Recent developments, challenges and prospects. Trends Food Sci. Technol. 2008, 19, 644–656. [Google Scholar] [CrossRef]
- Bourtoom, T. Preparation and properties of rice starch chitosan blend biodegradable film. Food Sci. Technol. 2008, 41, 1633–1641. [Google Scholar] [CrossRef]
- Mader, A.A.; Reid, M.S.; Saltveit, M.E. Plant Science 112 Course Manual; University of California: Davis, CA, USA, 1989; p. 11. [Google Scholar]
- Nascimento, J.I.G.; Stamford, T.C.M.; Melo, N.F.C.B.; Nunes, I.D.S.; Lima, M.A.B.; Pintado, M.M.E.; Stamford-Arnaud, T.M.; Stamford, N.P.; Stamford, T.L.M. Chitosan–citric acid edible coating to control Colletotrichum gloeosporioides and maintain quality parameters of fresh-cut guava. Int. J. Biol. Macromol. 2020, 163, 1127–1135. [Google Scholar] [CrossRef]
- Sarbon, N.M.; Badii, F.; Howell, N.K. The effect of chicken skin gelatin and whey protein interactions on rheological and thermal properties. Food Hydrocoll. 2015, 45, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Dhall, R.K. Advances in edible coatings for fresh fruits and vegetables: A review. CRC Crit. Rev. Food Sci. 2013, 53, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tian, Y.; Tong, Q.; Zhang, Z.; Jin, Z. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage. Food Chem. 2017, 214, 702–709. [Google Scholar] [CrossRef]
- Basiak, E.; Linke, M.; Debeaufort, F.; Lenart, A.; Geyer, M. Dynamic behaviour of starch-based coatings on fruit surfaces. Postharvest Biol. Technol. 2019, 147, 166–173. [Google Scholar] [CrossRef]
- Keshari, D.; Tripathi, A.D.; Agarwal, A.; Rai, S.; Srivastava, S.K.; Kumar, P. Effect of α-dl tocopherol acetate (antioxidant) enriched edible coating on the physicochemical, functional properties and shelf life of minimally processed carrots (Daucus carota subsp. sativus). Future Foods 2022, 5, 100116. [Google Scholar] [CrossRef]
- Schubring, R.; Meyer, C. Quality factors of terrestrial products as affected by the species. J. Food Sci. 2002, 67, 3148–3151. [Google Scholar] [CrossRef]
- De Roeck, A.; Mols, J.; Sila, D.N.; Duvetter, T.; Van Loey, A.; Hendrickx, M. Improving the hardness of thermally processed carrots by selective pretreatments. Food Res. Int. 2010, 43, 1297–1303. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, M.; Wang, Y.; Devahastin, S.; Yu, D. Comparative study of conventional and novel combined modes of microwave-and infrared-assisted thawing on quality of frozen green pepper, carrot and cantaloupe. LWT 2022, 154, 112842. [Google Scholar] [CrossRef]
- Rotta, J.; Ozório, R.A.; Kehrwald, A.M.; de Oliveira Barra, G.M.; de Melo Castanho Amboni, R.D.; Barreto, P.L.M. Parameters of color, transparency, water solubility, wettability and surface free energy of chitosan/hydroxypropyl/methylcellulose (HPMC) films plasticized with sorbitol. Mater Sci Eng C 2009, 29, 619–623. [Google Scholar] [CrossRef]
- Cserhalmi, Z.; Sass-Kiss, A.; Tóth-Markus, M.; Lechner, N. Study of pulsed electric field treated citrus juices. Innovative Food Sci. Emerg. Technol. 2006, 7, 49–54. [Google Scholar] [CrossRef]
- Goyeneche, R.; Aguero, M.V.; Roura, S.; Scala, K.D. Application of citric acid and mild heat shock to minimally processed sliced radish: Color evaluation. Postharvest Biol. Technol. 2014, 93, 106–113. [Google Scholar] [CrossRef]
- Avena-Bustillos, R.J.; Cisneros-Zevallos, L.A.; Krochta, J.M.; Saltveit Jr, M.E. Application of casein-lipid edible film emulsions to reduce white blush on minimally processed carrots. Postharvest Biol. Technol. 1994, 4, 319–329. [Google Scholar] [CrossRef]
- Bourtoom, T. Edible films and coatings: Characteristics and properties. Int. Food Res. J. 2008, 15, 237–248. [Google Scholar]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.Y.; Su-Ling Brooks, M. Development of pea protein-based films and coatings with haskap leaf extracts. Appl. Food Res. 2022, 2, 100102. [Google Scholar] [CrossRef]
- Akbari, Z.; Ghomashchi, T.; Moghadam, S. Improvement in food packaging industry with biobased nanocomposites. Int. J. Food Eng. 2007, 3, 1–26. [Google Scholar] [CrossRef]
- Tiozon, R.J.N.; Bonto, A.P.; Sreenivasulu, N. Enhancing the functional properties of rice starch through biopolymer blending for industrial applications: A review. Int. J. Biol. Macromol. 2021, 192, 100–117. [Google Scholar] [CrossRef]
- Domene-Lopez, D.; Garcia-Quesada, J.C.; Martin-Gullon, I.; Montalban, M.G. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymer 2019, 11, 1084. [Google Scholar] [CrossRef] [Green Version]
- Bourne, M.C. Preserving food after harvest is an integral component of food security. In Global Food Security and Wellness; Barbosa-Canovas, G.V., Pastore, G.M., Candogan, K., Meza IG, M., da SLannes, S.C., Buckle, K., Yada, R.Y., Rosenthal, A., Eds.; Springer: New York, NY, USA, 2017; pp. 15–17. [Google Scholar] [CrossRef]
- Nawab, A.; Alam, F.; Hasnain, A. Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato (Solanum lycopersicum) fruit. Int. J. Biol. Macromol. 2017, 103, 581–586. [Google Scholar] [CrossRef]
- Johnston, J.W.; Hewett, E.W.; Hertog, M.L.A.T.M. Postharvest softening of apple (Malus domestica) fruit: A review. New Zeal. J. Crop Hort. Sci. 2002, 30, 145–160. [Google Scholar] [CrossRef]
- Pan, Y.; Cheng, J.; Sun, D. Inhibition of fruit softening by cold plasma treatments: Affecting factors and applications. Crit. Rev. Food Sci. Nutr. 2020, 61, 127164. [Google Scholar] [CrossRef] [PubMed]
- Fai, A.E.C.; de Souza, M.R.A.; de Barros, S.T.; Bruno, N.V.; Ferreira, M.S.L.; Gonçalves, C.B.D.A. Development and evaluation of biodegradable films and coatings obtained from fruit and vegetable residues applied to fresh-cut carrot (Daucus carota L.). Postharvest Biol. Technol. 2016, 112, 194–204. [Google Scholar] [CrossRef]
- Sapper, M.; Chiralt, A. Starch-based coatings for preservation of fruits and vegetables. Coatings 2018, 8, 152. [Google Scholar] [CrossRef] [Green Version]
- Susmitha, A.; Sasikumar, K.; Rajan, D.; Padmakumar, M.A.; Nampoothiri, K.M. Development and characterization of corn starch-gelatin based edible films incorporated with mango and pineapple for active packaging. Food Biosci. 2021, 41, 100977. [Google Scholar] [CrossRef]
- Silva, O.A.; Pella, M.C.G.; Friedrich, J.C.C.; Pellá, M.G.; Beneton, A.G.; Faria, M.G.I.; Colauto, G.A.L.; Caetano, J.; Simões, M.R.; Dragunski, D.C. Effects of a native cassava starch, chitosan, and gelatin-based edible coating over guavas (Psidium guajava L.). ACS Food Sci. Technol. 2021, 1, 1247–1253. [Google Scholar] [CrossRef]
- Chiumarelli, M.; Hubinger, M.D. Stability, solubility, mechanical and barrier properties of cassava starch—Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocoll. 2012, 28, 59–67. [Google Scholar] [CrossRef]
- Chiumarelli, M.; Ferrari, C.C.; Sarantopoulos, C.I.G.L.; Hubinger, M.D. Fresh cut ‘Tommy Atkins’ mango pre-treated with citric acid and coated with cassava (Manihot esculenta Crantz) starch or sodium alginate. Innov. Food Sci. Emerg. Technol. 2011, 12, 381–387. [Google Scholar] [CrossRef]
- Cisneros-Zevallos, L.; Saltveit, M.; Krochta, J. Hygroscopic coating control surface white discoloration of peeled (minimally processed) carrots during storage. J. Food Sci. 1997, 62, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Espin, J.C.; Garcia-Conesa, M.T.; Tomas-Barberan, F.A. Nutraceuricals: Facts and fiction. Phytochemistry 2007, 68, 2986–3008. [Google Scholar] [CrossRef]
Day | Treatment | L* | a* | b* | Chroma* | Hue* |
---|---|---|---|---|---|---|
0 | Ctr | 89.98 ± 0.02 a | −1.13 ± 0.03 c | 25.01 ± 0.01 c | 25.04 ± 0.02 c | 92.59 ± 0.07 a |
Gel | 88.92 ± 0.05 b | −0.65 ± 0.01 b | 25.62 ± 0.03 b | 25.63 ± 0.05 b | 91.45 ± 0.03 b | |
Gel-RS | 87.30 ± 0.06 c | −0.43 ± 0.01 a | 27.26 ± 0.02 a | 27.26 ± 0.03 a | 90.90 ± 0.01 c | |
1 | Ctr | 90.48 ± 0.04 a | −0.86 ± 0.02 c | 24.59 ± 0.02 c | 24.61 ± 0.04 c | 92.00 ± 0.06 a |
Gel | 88.33 ± 0.07 b | −0.66 ± 0.03 b | 26.82 ± 0.03 b | 26.83 ± 0.05 b | 91.40 ± 0.09 b | |
Gel-RS | 85.99 ± 0.01 c | −0.24 ± 0.03 a | 32.02 ± 0.04 a | 32.02 ± 0.07 a | 90.43 ± 0.06 c | |
2 | Ctr | 89.55 ± 0.01 a | −0.65 ± 0.02 c | 25.44 ± 0.02 c | 25.45 ± 0.03 c | 91.47 ± 0.05 a |
Gel | 88.02 ± 0.08 b | −0.46 ± 0.01 a | 26.85 ± 0.02 b | 26.85 ± 0.04 b | 90.98 ± 0.02 b | |
Gel-RS | 83.90 ± 0.11 c | 0.50 ± 0.02 b | 34.63 ± 0.02 a | 34.63 ± 0.04 a | 89.17 ± 0.04 c | |
3 | Ctr | 89.10 ± 0.05 a | −0.53 ± 0.02 c | 24.61 ± 0.03 c | 24.62 ± 0.05 c | 90.61 ± 0.08 a |
Gel | 87.72 ± 0.002 b | −0.43 ± 0.02 b | 27.26 ± 0.03 b | 27.26 ± 0.05 b | 88.81 ± 0.03 b | |
Gel-RS | 83.51 ± 0.01 c | 0.23 ± 0.03 a | 33.82 ± 0.03 a | 33.82 ± 0.05 a | 89.62 ± 0.06 c | |
4 | Ctr | 88.15 ± 0.08 a | −0.28 ± 0.03 c | 26.19 ± 0.03 c | 26.19 ± 0.05 c | 90.61 ± 0.08 a |
Gel | 87.34 ± 0.00 b | 0.61 ± 0.01 b | 29.44 ± 0.03 b | 29.45 ± 0.06 b | 88.81 ± 0.03 b | |
Gel-RS | 81.57 ± 0.04 c | 1.49 ± 0.02 a | 31.31 ± 0.04 a | 31.34 ± 0.07 a | 87.28 ± 0.04 c | |
7 | Ctr | 87.15 ± 0.02 a | 0.60 ± 0.01 c | 29.44 ± 0.02 c | 29.45 ± 0.03 c | 88.84 ± 0.02 a |
Gel | 85.76 ± 0.04 b | 1.26 ± 0.02 b | 33.07 ± 0.02 b | 33.09 ± 0.03 b | 87.82 ± 0.04 b | |
Gel-RS | 75.67 ± 0.06 c | 2.33 ± 0.01 a | 36.44 ± 0.02 a | 36.51 ± 0.03 a | 86.35 ± 0.02 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bari, A.; Giannouli, P. Evaluation of Biodegradable Gelatin and Gelatin–Rice Starch Coatings to Fresh Cut Zucchini Slices. Horticulturae 2022, 8, 1031. https://doi.org/10.3390/horticulturae8111031
Bari A, Giannouli P. Evaluation of Biodegradable Gelatin and Gelatin–Rice Starch Coatings to Fresh Cut Zucchini Slices. Horticulturae. 2022; 8(11):1031. https://doi.org/10.3390/horticulturae8111031
Chicago/Turabian StyleBari, Anastasia, and Persephoni Giannouli. 2022. "Evaluation of Biodegradable Gelatin and Gelatin–Rice Starch Coatings to Fresh Cut Zucchini Slices" Horticulturae 8, no. 11: 1031. https://doi.org/10.3390/horticulturae8111031
APA StyleBari, A., & Giannouli, P. (2022). Evaluation of Biodegradable Gelatin and Gelatin–Rice Starch Coatings to Fresh Cut Zucchini Slices. Horticulturae, 8(11), 1031. https://doi.org/10.3390/horticulturae8111031