Identification and Characterization of Major Flavonoids in Extracts from an Unexplored Medicinal Herb Orostachys fimbriata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Collection and Voucher Specimen Information
2.3. Preparation of Orostachys fimbriata Extracts
2.4. Quantification of Total Polyphenol Content
2.5. Quantification of Total Flavonoid Content
2.6. Determination of Antioxidant Activity
2.6.1. DPPH Assay
2.6.2. ABTS Assay
2.6.3. FRAP Assay
2.7. Analytical Methods
3. Results and Discussion
3.1. Investigation of Antioxidant Properties of Orostachys fimbriata Extracts
3.2. Identification of Major Flavonoid in Orostachys fimbriata Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, S.M.; Park, H.J.; Cho, Y.J. Antioxidative and Biological Activity of Extracts from Orostachys japonicus. J. Appl. Biol. Chem. 2017, 60, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Su, F.; Yang, G.; Wang, J.; Zhang, Y. Purification, Structural Characterization, and Anti-Inflammatory Effects of a Novel Polysaccharide Isolated from Orostachys fimbriata. Molecules 2021, 26, 7116. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, S.J.; Park, S.; Kim, H.K.; Jeong, W.Y.; Choi, J.Y.; Sung, N.-J.; Lee, W.S.; Lim, C.S.; Kim, G.-S. Characterisation of Flavonoids in Orostachys japonicus A. Berger Using HPLC–MS/MS: Contribution to the Overall Antioxidant Effect. Food Chem. 2011, 124, 1627–1633. [Google Scholar] [CrossRef]
- Eid, O.; Gonaid, M. Crassulaceae (Chemistry and Pharmacology)—A Review. Futur. J. Pharm. Sci. 2018, 4, 234–240. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Lee, S.Y.; Kim, K.B.W.R.; Song, E.J.; Kim, S.J.; Lee, S.J.; Lee, C.-J.; Ahn, D.H. Antimicrobial Activity of the Solvent Extract from Different Parts of Orostachys japonicus. J. Korean Soc. Food Sci. Nutr. 2009, 38, 14–18. [Google Scholar] [CrossRef]
- Park, H.J.; Yang, H.J.; Kim, K.H.; Kim, S.H. Aqueous Extract of Orostachys japonicus A. Berger Exerts Immunostimulatory Activity in RAW 264.7 Macrophages. J. Ethnopharmacol. 2015, 170, 210–217. [Google Scholar] [CrossRef]
- Yu, E.; Lee, S.J.; Lee, S.G.; Kang, J.H.; Shin, S.C. Total Phenol Contents and Antioxidant Activity in Orostachys japonicus A. Berger Grown Under Various Cultivation Conditions. Korean J. Med. Crop Sci. 2006, 14, 234–238. [Google Scholar]
- Ko, M.J.; Nam, H.H.; Chung, M.S. Subcritical Water Extraction of Bioactive Compounds from Orostachys japonicus A. Berger (Crassulaceae). Sci. Rep. 2020, 10, 10890. [Google Scholar] [CrossRef]
- Liu, J.; Yu, L.L.; Wu, Y. Bioactive Components and Health Beneficial Properties of Whole Wheat Foods. J. Agric. Food Chem. 2020, 68, 12904–12915. [Google Scholar] [CrossRef]
- Kejík, Z.; Kaplánek, R.; Masařík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P.; et al. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Int. J. Mol. Sci. 2021, 22, 646. [Google Scholar] [CrossRef]
- Tong, C.; Shi, F.; Tong, X.; Shi, S.; Ali, I.; Guo, Y. Shining Natural Flavonols in Sensing and Bioimaging. Trends Analyt. Chem. 2021, 137, 116222. [Google Scholar] [CrossRef]
- Hao, Y.J.; Cui, X.H.; Li, J.R.; An, X.L.; Sun, H.D.; Piao, X.C.; Lian, M.L. Cell Bioreactor Culture of Orostachys Cartilaginous A. Bor. and Involvement of Nitric Oxide in Methyl Jasmonate-Induced Flavonoid Synthesis. Acta Physiol. Plant. 2020, 42, 9. [Google Scholar] [CrossRef]
- Safafar, H.; Van Wagenen, J.; Møller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Chun, Y.; Jang, Y.W.; Lee, S.K.; Kim, H.R.; Lee, J.H.; Kim, S.W.; Park, C.; Yoo, H.Y. Fabrication of Functional Bioelastomer for Food Packaging from Aronia (Aronia melanocarpa) Juice Processing By-Products. Foods 2020, 9, 1565. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Jang, Y.W.; Kim, H.; Ki, J.-S.; Yoo, H.Y. Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology. Biomolecules 2021, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.H.; Kim, H.S.; Seong, J.H.; Chung, H.S. Comparison of Total Phenol, Flavonoid Contents, and Antioxidant Activities of Orostachys japonicus A. Berger extracts. J. Environ. Sci. Int. 2016, 25, 695–703. [Google Scholar] [CrossRef]
- Muflihah, Y.M.; Gollavelli, G.; Ling, Y.-C. Correlation Study of Antioxidant Activity with Phenolic and Flavonoid Compounds in 12 Indonesian Indigenous Herbs. Antioxidants 2021, 10, 1530. [Google Scholar] [CrossRef]
- Jaganjac, M.; Sredoja Tisma, V.; Zarkovic, N. Short Overview of Some Assays for the Measurement of Antioxidant Activity of Natural Products and Their Relevance in Dermatology. Molecules 2021, 26, 5301. [Google Scholar] [CrossRef]
- Xiong, Y.; Teixeira, T.V.D.; Zhang, P.; Warner, R.D.; Shen, S.; Fang, Z. Cellular Antioxidant Activities of Phenolic Extracts from Five Sorghum Grain Genotypes. Food Biosci. 2021, 41, 101068. [Google Scholar] [CrossRef]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [Green Version]
- Chatoui, K.; Harhar, H.; El Kamli, T.; Tabyaoui, M. Chemical Composition and Antioxidant Capacity of Lepidium sativum Seeds from Four Regions of Morocco. Evid.-Based Complementary Altern. Med. 2020, 2020, 7302727. [Google Scholar] [CrossRef] [PubMed]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Lee, S.J.; Seo, J.K.; Shin, J.H.; Lee, H.J.; Sung, N.J. Antioxidant Activity of Wa-song (Orostachys japonicus A. Berger) According to Drying Methods. J. Korean Soc. Food Sci. Nutr. 2008, 37, 605–611. [Google Scholar] [CrossRef]
- Lee, S.J.; Shin, J.H.; Kang, J.R.; Hwang, C.R.; Sung, N.J. In vitro Evaluation of Biological Activities of Wa-Song (Orostachys japonicus A. Berger) and Korean Traditional Plants Mixture. J. Korean Soc. Food Sci. Nutr. 2012, 41, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.J.; Choe, T.B. Antioxidant Activities and Anti-Aging Effects of Orostachys japonicus A. Berger Extracts. J. Korean Oil Chem. Soc. 2016, 33, 361–373. [Google Scholar] [CrossRef]
- Hwang, E.S.; Do Thi, N. Antioxidant and Anti-Inflammatory Activities of Orostachys japonicus. Asian Pac. J. Trop. Biomed. 2020, 10, 516. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, S.K.; Lee, J.; Kim, S.; Kim, S.W.; Park, C.; Yoo, H.Y. Energy-Efficient Glucose Recovery from Chestnut Shell by Optimization of NaOH Pretreatment at Room Temperature and Application to Bioethanol Production. Environ. Res. 2022, 208, 112710. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.H.; Kim, S.; Son, H.; Chun, Y.; Park, C.; Yoo, H.Y. Microbial Production of Bacterial Cellulose Using Chestnut Shell Hydrolysates by Gluconacetobacter xylinus ATCC 53524. J. Microbiol. Biotechnol. 2022, 32, 1–6. [Google Scholar] [CrossRef]
- Yeo, H.J.; Kim, Y.J.; Nguyen, B.V.; Park, Y.E.; Park, C.H.; Kim, H.H.; Kim, J.K.; Park, S.U. Comparison of Secondary Metabolite Contents and Metabolic Profiles of Six Lycoris Species. Horticulturae 2021, 7, 5. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, E.; Wei, Z.; Zheng, Y.; Yan, R.; Ma, X. Phytochemical Analysis, Cellular Antioxidant and α-glucosidase Inhibitory Activities of Various Herb Plant Organs. Ind. Crops Prod. 2019, 141, 111771. [Google Scholar] [CrossRef]
- Zhu, M.; Pan, J.; Hu, X.; Zhang, G. Epicatechin Gallate as Xanthine Oxidase Inhibitor: Inhibitory Kinetics, Binding Characteristics, Synergistic Inhibition, and Action Mechanism. Foods 2021, 10, 2191. [Google Scholar] [CrossRef] [PubMed]
- Miean, K.H.; Mohamed, S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.C.; Lian, T.W.; Yen, J.H.; Chen, Z.T.; Wu, M.J. Antiatherogenic Effects of Kaempferol and Rhamnocitrin. J. Agric. Food Chem. 2007, 55, 9969–9976. [Google Scholar] [CrossRef] [PubMed]
Parameters | Sample | |
---|---|---|
O. fimbriata Extracts | Ascorbic Acid | |
TPC (mg GAE/g extract) | 288.5 ± 7.4 | - |
TFC (mg RE/g extract) | 159.7 ± 8.3 | - |
DPPH IC50 (μg/mL) | 27.6 ± 5.5 | 9.4 ± 1.9 |
ABTS IC50 (μg/mL) | 125.7 ± 6.0 | 71.8 ± 0.2 |
FRAP value (mmol/L) | 115.0 ± 4.4 | 388.0 ± 16.7 |
Species | Method | Extraction Conditions | Extract Type | Antioxidant Properties | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Solvent | °C | h | g/L | TPC (mg/g) | TFC (mg/g) | DPPH IC50 (μg/mL) | ABTS IC50 (μg/mL) | ||||
O. japonicus | SLE | MeOH (pure) | 50 | 10 | 50 | freeze-dried | 7.8 (CAE) | - | - | - | [7] |
O. japonicus | SLE | MeOH (85%) | 95 | 3 | 100 | freeze-dried | 8.3 (CAE) | 7.2 (QE) | - | - | [23] |
O. japonicus | SLE | Water | 95 | 3 | 100 | dried | 9.2 (CAE) | 6.2 (QE) | - | - | [24] |
O. japonicus | SLE | DW | 70 | 2 | 100 | dried | 15.4 (CAE) | 11.5 (QE) | 1942 | 2638 | [16] |
O. japonicus | SLE | MeOH (70%) | RT | 24 | 100 | dried | 23.8 (CAE) | 15.8 (QE) | 615 | 1313 | [16] |
O. japonicus | SLE | EtOH (70%) | RT | 24 | 100 | dried | 24.1 (CAE) | 16.0 (QE) | 585 | 1135 | [16] |
O. japonicus | SLE | EtOH (70%) | RT | 72 | 100 | freeze-dried | 120.0 (CAE) | 17.0 (QE) | - | - | [25] |
O. japonicus | SLE | Water | 85 | 2 | 40 | freeze-dried | 16.0 (GAE) | 16.4 (CE) | - | - | [26] |
O. japonicus | SLE | EtOH (70%) | 60 | 2 | 40 | freeze-dried | 60.0 (GAE) | 55.5 (CE) | - | - | [26] |
O. fimbriata | USLE | MeOH (pure) | 45 | 0.25 | - | freeze-dried | 288.5 (GAE) | 159.7 (RE) | 28 | 126 | This study |
Compounds | Content in O. fimbriata Extracts (mg/g) |
---|---|
Epicatechin gallate | 34.5 |
Quercetin | 10.6 |
Kaempferol | 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Son, H.; Lee, K.H.; Kim, S.; Myagmar, G.; Kim, S.-Y.; Chun, Y.; Yoo, H.Y. Identification and Characterization of Major Flavonoids in Extracts from an Unexplored Medicinal Herb Orostachys fimbriata. Horticulturae 2022, 8, 1092. https://doi.org/10.3390/horticulturae8111092
Lee J, Son H, Lee KH, Kim S, Myagmar G, Kim S-Y, Chun Y, Yoo HY. Identification and Characterization of Major Flavonoids in Extracts from an Unexplored Medicinal Herb Orostachys fimbriata. Horticulturae. 2022; 8(11):1092. https://doi.org/10.3390/horticulturae8111092
Chicago/Turabian StyleLee, Jeongho, Hyerim Son, Kang Hyun Lee, Seunghee Kim, Ganzorig Myagmar, Soo-Yong Kim, Youngsang Chun, and Hah Young Yoo. 2022. "Identification and Characterization of Major Flavonoids in Extracts from an Unexplored Medicinal Herb Orostachys fimbriata" Horticulturae 8, no. 11: 1092. https://doi.org/10.3390/horticulturae8111092
APA StyleLee, J., Son, H., Lee, K. H., Kim, S., Myagmar, G., Kim, S. -Y., Chun, Y., & Yoo, H. Y. (2022). Identification and Characterization of Major Flavonoids in Extracts from an Unexplored Medicinal Herb Orostachys fimbriata. Horticulturae, 8(11), 1092. https://doi.org/10.3390/horticulturae8111092