Assessment of Genetic Variability for Fruit Nutritional Composition in the Ex-Situ Collection of Jujube (Ziziphus spp.) Genotypes of Arid Regions of India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Materials
2.2. Determination of Physico-Biochemical Parameters of Fruits
2.3. Statistical Analysis
3. Results and Discussions
3.1. Variations among Germplasms for Different Fruit Morphometric Traits
3.2. Estimation of Genetic Variability for Different Biochemical Parameters
3.3. Genetic Correlations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.J.; Zhao, Z.H. Germplasm resources and production of jujube in China. Acta Hortic. 2009, 840, 25–32. [Google Scholar] [CrossRef]
- Meena, V.S.; Gora, J.S.; Singh, A.; Ram, C.; Meena, N.K.; Pratibha; Rouphael, Y.; Basile, B.; Kumar, P. Underutilized Fruit Crops of Indian Arid and Semi-Arid Regions: Importance, Conservation and Utilization Strategies. Horticulturae 2022, 8, 171. [Google Scholar] [CrossRef]
- Awasthi, O.P.; More, T.A. Genetic diversity and status of Zizyphus in India. Acta Hortic. 2009, 840, 33–40. [Google Scholar] [CrossRef]
- Bal, J.S.; Mann, S.S. Ascorbic acid content of ber (Ziziphus mauritiana L.) during growth and maturity. Sci. Cult. 1978, 44, 238–239. [Google Scholar]
- Singh, S.K.; Chhajer, S.; Pathak, R.; Bhatt, R.K.; Kalia, R.K. Genetic diversity of Indian jujube cultivars using SCoT, ISSR, and rDNA markers. Tree Genet. Genomes 2017, 13, 12. [Google Scholar] [CrossRef]
- Durazzo, A. The Close Linkage between Nutrition and Environment through Biodiversity and Sustainability: Local Foods, Traditional Recipes, and Sustainable Diets. Sustainability 2019, 11, 2876. [Google Scholar] [CrossRef]
- Pareek, O.P. Fruits for the Future Ber; International Centre for Underutilized Crops, University of Southampton: Southampton, UK, 2001; 290p. [Google Scholar]
- Gowd, V.; Karim, N.; Xie, L.; Shishir, M.R.I.; Xu, Y.; Chen, W. In vitro study of bioaccessibility, antioxidant, and α-glucosidase inhibitory effect of pelargonidin-3-O-glucoside after interacting with beta-lactoglobulin and chitosan/pectin. Int. J. Biol. Macromol. 2020, 154, 380–389. [Google Scholar] [CrossRef]
- Hosne, A.; Abdul Md, H.; Mahbuba, K. Taxonomic study of the genus Ziziphus Mill. (Rhamnaceae) of Bangladesh. Bangladesh J. Plant Taxon. 2008, 15, 47–61. [Google Scholar]
- Suksamrarn, S.; Suwannapoch, N.; Aunchai, N.; Kuno, M.; Ratananukul, P.; Haritakun, R.; Jansakul, C.; Ruchirawat, S. Ziziphine N, O, P and Q, new antiplasmodial cyclopeptide alkaloids from Ziziphus oenoplia var. brunoniana. Tetrahedron 2005, 61, 1175–1180. [Google Scholar] [CrossRef]
- Mishra, T.; Bhatia, A. Antiplasmodial effects of the aqueous ethanolic seed extract of Ziziphus mauritiana against Plasmodium berghei in Swiss albino mice. Int. J. Pharm. Res. 2014, 4, 111–116. [Google Scholar]
- Kumar, P.; Syamal, M.M. Character association studies in bottle gourd. Indian J. Hortic. 2010, 67, 461–463. [Google Scholar]
- Arivalagan, M.; Roy, T.K.; Yasmeen, A.M.; Pavithra, K.C.; Jwala, P.N.; Shivasankara, K.S.; Manikantan, M.R.; Hebbar, K.B.; Kanade, S.R. Extraction of phenolic compounds with antioxidant potential from coconut (Cocos nucifera L.) testa and identification of phenolic acids and flavonoids using UPLC coupled with TQD-MS/MS. LWT Food Sci. Technol. 2018, 92, 116–126. [Google Scholar] [CrossRef]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; Tata McGraw Hill Publishing Co., Ltd.: New Delhi, India, 1986; pp. 190–210. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Panse, V.S.; Sukhatme, P.V. Statistical Methods for Agricultural Workers, 4th ed.; ICAR Publication: New Delhi, India, 1985; 381p. [Google Scholar]
- Burton, G.W.; DeVane, D.H. Estimating heritability in fall fescue from replicated clonal material. Agron. J. 1953, 4, 78–81. [Google Scholar]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 22, 4–9. [Google Scholar]
- Revelle, W.R. psych: Procedures for Psychological, Psychometric, and Personality Research. Software. 2017. Available online: https://cran.r-project.org/web/packages/psych/index.html (accessed on 12 September 2022).
- Godi, N.F.; Joshi, V.R.; Supe, V.S. Physical fruit characteristics assessment of selected Ber (Zizyphus mauritiana Lamk.) Genotypes. Int. J. App. Res. 2016, 2, 757–761. [Google Scholar]
- Navjot, A.T.; Dalal, R.P.J.; Arora, N.K. Evaluation of ber (Zizyphus mauritiana L.) in arid conditions of Punjab. Haryana J. Hortic. Sci. 2007, 36, 57. [Google Scholar]
- Zhang, S.; Hu, J.; Zhang, C.-F.; Guan, Y.-J.; Zhang, Y. Genetic analysis of fruit shape traits at different maturation stages in sponge gourd. J. Zhejiang Univ. Sci. B 2007, 8, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Orozco, E.; Shekasteband, R.; Illa-Berenguer, E.; Snouffer, A.; van der Knaap, E.; Lee, T.G.; Hutton, S.F. Identification and characterization of GLOBE, a major gene controlling fruit shape and impacting fruit size and marketability in tomato. Hortic. Res. 2021, 8, 138. [Google Scholar] [CrossRef]
- Sano, T.; Miura, S.; Furusawa, H.; Kaneko, S.; Yoshida, T.; Nomura, T.; Ohara, S. Composition of inorganic elements and the leaching behavior of biomass combustion ashes discharged from wood pellet boilers in Japan. J. Wood Sci. 2013, 59, 307–320. [Google Scholar] [CrossRef]
- Canti, M.; Brochier, J.E. Plant Ash. In Archaeological Soil and Sediment Micromorphology Edition; Nicosia, C., Stoops, G., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; Available online: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118941055.html (accessed on 17 December 2022).
- Brekke, J.; Conrad, R. Moisture by GLC, Gas-Liquid Chromatography and Vacuum Oven Determination of Moisture in Fruits and Fruit Products. J. Agric. Food Chem. 1965, 13, 591–593. [Google Scholar] [CrossRef]
- Pomeranz, Y.; Meloan, C.E. Determination of Moisture. In Food Analysis; Springer: Boston, MA, USA, 1994; pp. 575–601. [Google Scholar] [CrossRef]
- Aro, R.; Ben Ayoub, M.W.; Leito, I.; Georgin, É.; Savanier, B. Calibration and Uncertainty Estimation for Water Content Measurement in Solids. Int. J. Thermophys. 2021, 42, 42. [Google Scholar] [CrossRef]
- Ibrahim, A.; Alghannam, A.; Eissa, A.; Firtha, F.; Kaszab, T.; Kovacs, Z.; Helyes, L. Preliminary Study for Inspecting Moisture Content, Dry Matter Content, and Firmness Parameters of Two Date Cultivars Using an NIR Hyperspectral Imaging System. Front. Bioeng. Biotechnol. 2021, 9, 720630. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability: As a Hurdle in Food Preservation. In Water Activity in Foods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 239–271. [Google Scholar] [CrossRef]
- Erkmen, O.; Bozoglu, T.F. Food Preservation by Reducing Water Activity. In Food Microbiology: Principles into Practice; Erkmen, O., Bozoglu, T.F., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 44–58. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Tang, J.; Villa-Rojas, R.; Sablani, S.; Carter, B.; Campbell, G. Influence of water activity on thermal resistance of microorganisms in low-moisture foods: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 353–370. [Google Scholar] [CrossRef]
- Harris, G.K.; Marshall, M.R. Ash analysis. In Food Analysis; Nielsen, S.S., Ed.; Food Science Text Series; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Okwunodulu, I.N.; Anthony, U.C.; Okwunodulu, F.U. Potential Mineral Exploration of Food Grade Ash from Dried Empty Palm Bunch, Palm Inflorescence and Unripe Plantain Peels: A Comparative Assessment. Niger. J. Agric. Food Environ. 2018, 14, 64–73. [Google Scholar] [CrossRef]
- Ukom, A.N.; Egejuru, F.C.; Ojimelukwe, P.C.; Fabian, U.U. Effect of Plant Ash on Nutrient Quality and Antioxidant Activity of African Yam Bean Seed Porridge in Relation to Cooking Time. Food Nutr. Sci. 2021, 11, 591–602. [Google Scholar] [CrossRef]
- Baxter, C.J.; Carrari, F.; Bauke, A.; Overy, S.; Hill, S.; Quick, P.W.; Fernie, A.R.; Sweetlove, L.J. Fruit Carbohydrate Metabolism in an Introgression Line of Tomato with Increased Fruit Soluble Solids. Plant Cell Physiol. 2005, 46, 425–437. [Google Scholar] [CrossRef]
- Valverde-Miranda, D.; Díaz-Pérez, M.; Gómez-Galán, M.; Callejón-Ferre, Á.-J. Total soluble solids and dry matter of cucumber as indicators of shelf life. Postharv. Biol. Technol. 2021, 180, 111603. [Google Scholar] [CrossRef]
- El-Kobisy, D.S.; Kady, K.A.; Medani, R.A. Response of pea plant Pisum sativum L. to treatment with ascorbic acid. Egypt. J. Appl. Sci. 2005, 20, 36–50. [Google Scholar]
- Rao, M.V.; Koch, J.R.; Davis, K. Ozone: A tool for probing programmed cell death in plants. Plant Mol. Biol. 2000, 44, 345–358. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 462. [Google Scholar] [CrossRef] [PubMed]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in Plants: From Functions to Biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef] [PubMed]
- Faroda, A.S. Developed resistance to fruit fly in ber through hybridization. ICAR News Sci. Technol. Newsl. 1996, 2, 23. [Google Scholar]
- Li, J.-W.; Ding, S.-D.; Ding, X.-L. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochem. 2005, 40, 3607–3613. [Google Scholar] [CrossRef]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, L.; Ariza, M.; Miranda, L.; Lozano, D.; Medina, J.; Soria, C.; Martínez-Ferri, E. Stability of Fruit Quality Traits of Different Strawberry Varieties under Variable Environmental Conditions. Agronomy 2020, 10, 1242. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Ferreira, I.C. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects. J. Sci. Food Agric. 2016, 96, 1068–1084. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, R.; Kumar, S.; Bhardwaj, M.L.; Thakur, M.C.; Kumar, R.; Thakur, K.S.; Dogra, B.S.; Vikram, A.; Thakur, A.; et al. Genetic Variability, Correlation and Path Coefficient Analysis in Tomato. Int. J. Veg. Sci. 2013, 19, 313–323. [Google Scholar] [CrossRef]
- Schulz, E.; Tohge, T.; Zuther, E.; Fernie, A.R.; Hincha, D.K. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 2016, 6, 34027. [Google Scholar] [CrossRef]
- Pratyusha, S. Phenolic Compounds in the Plant Development and Defense: An Overview. In Plant Stress Physiology—Perspectives in Agriculture; Hasanuzzaman, M., Nahar, K., Eds.; Intech: London, UK, 2022. [Google Scholar] [CrossRef]
- Bhaduri, A.M.; Fulekar, M.H. Antioxidant enzyme responses of plants to heavy metal stress. Rev. Environ. Sci. Bio/Technol. 2012, 11, 55–69. [Google Scholar] [CrossRef]
- Cui, X.; Lin, Q.; Liang, Y. Plant-Derived Antioxidants Protect the Nervous System From Aging by Inhibiting Oxidative Stress. Front. Aging Neurosci. 2020, 12, 209. [Google Scholar] [CrossRef]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef]
- Pajk, T.; Rezar, V.; Levart, A.; Salobir, J. Efficiency of Apples, strawberries, and tomatoes for reduction of oxidative stress in pigs: A model for humans. Nutrition 2006, 22, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, M.; Serce, S.; Kaya, C. Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and M. rubra fruits. Sci. Hortic. 2009, 119, 275–279. [Google Scholar] [CrossRef]
- Anjum, M.A.; Rauf, A.; Bashir, M.A.; Ahmad, R. The evaluation of biodiversity in some indigenous Indian jujube (Zizyphus mauritiana L.) germplasm through physico-chemical analysis. Acta Sci. Pol. Hortorum Cultus 2018, 17, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.K.; Singh, B.; Singh, J.P.; Singh, S. Combining ability in tomato (Solanum lycopersicon Gul (Mill.) Wettsd). Veg. Sci. 2006, 33, 85–87. [Google Scholar]
- Khan, B.A.; Mehboob, S.F.; Ahmad, M.; Iqbal, M.; Ullah, I.; Saleem, M.; Rehman, A.; Shaid, M. Genetic analysis of F2 population of tomato for studying quantitative traits in the cross between Coldera x KHT5. Int. J. Plant Res. 2017, 7, 90–93. [Google Scholar]
- Dar, R.A.; Sharma, J.P. Genetic Variability Studies of Yield and Quality Traits in Tomato (Solanum lycopersicum L.). Int. J. Plant Breed. Genet. 2011, 5, 168–174. [Google Scholar]
- Islam, M.; Mohanta, H.C.; Ismail, M.; Rafii, M.Y.; Malek, M. Genetic variability and trait relationship in cherry tomato (Solanum lycopersicum L. var. cerasiforme (Dunnal) A. Gray). Bangladesh J. Bot. 2013, 41, 163–167. [Google Scholar] [CrossRef]
- Ara, A.; Narayan, R.; Ahmed, N.; Khan, S.H. Genetic variability and selection parameters for yield and quality attributes in tomato. Indian J. Hortic. 2009, 66, 73–78. [Google Scholar]
- Sreekala, C.; Raghava, S. Exploitation of heterosis for carotenoid content in African marigold (Tagetes erecta L.) and its correlation with esterase polymorphism. Theor. Appl. Genet. 2003, 106, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Sharma, S.R.; Singh, B. Heterosis for antioxidants and horticultural traits in single-cross hybrids of cabbage (Brassica oleracea var. capitata L.). Indian J. Agric. Sci. 2009, 79, 703–708. [Google Scholar]
- Singh, B.K.; Sharma, S.R.; Singh, B. Combining ability for superoxide dismutase, peroxidase and catalase enzymes in cabbage head (Brassica oleracea var. capitata L.). Sci. Hortic. 2009, 122, 195–199. [Google Scholar] [CrossRef]
- Pathak, S.; Kumar, J.; Sagar, V.; Verma, S. Heterosis and combining ability for marketable yield and component traits in cabbage (Brassica oleracea var. capitata). Indian J. Agric. Sci. 2007, 77, 97–100. [Google Scholar]
- Meena, O.P.; Bahadur, V.; Jagtap, A.B.; Saini, P. Genetic variability studies of fruit yield and its traits among indeterminate tomato genotypes under open field condition. Afr. J. Agric. Res. 2015, 10, 3170–3177. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Osman, M.A.; Mahmoud, G.I.; Shoman, S.S. Correlation between total phenols content, antioxidant power and cytotoxicity. Biointerface Res. Appl. Chem. 2021, 11, 10640–10653. [Google Scholar] [CrossRef]
- Biswas, S.C.; Kumar, P.; Kumar, R.; Das, S.; Misra, T.K.; Dey, D. Nutritional Composition and Antioxidant Properties of the Wild Edible Fruits of Tripura, Northeast India. Sustainability 2022, 14, 12194. [Google Scholar] [CrossRef]
- Samee, W.; Engkalohakul, M.; Nebbua, N.; Direkrojanavuti, P.; Sornchaithawatwong, C.; Kamkaen, N. Correlation analysis between total acid, total phenolic and ascorbic acid contents in fruit extracts and their antioxidant activities. Thai Pharm Health Sci. J. 2006, 1, 196–203. [Google Scholar]
- Du, G.; Li, M.; Ma, F.; Liang, D. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem. 2009, 113, 557–562. [Google Scholar] [CrossRef]
Z. rotundifolia | Z. mauritiana | Z. oenoplia |
---|---|---|
IC 625848 | IC 625849, IC 625850, IC 625851, IC 625852, IC 625853, IC 625854, IC 625855, IC 625856, IC 625857, IC 625858, IC 625859, IC 625862, IC 625863, IC 625870, IC 625871 | IC 625864, IC 625869, |
Source of Variations | df | Mean Sum of Squares | |||||||
---|---|---|---|---|---|---|---|---|---|
Edible Portion (%) | Moisture (%) | Ascorbic Acid (mg/100 g) | Protein (%) | Phenols (mg/100 g) | Sugars (%) | Antioxidants (mg/100 g) | Ash (%) | ||
Replication | 2 | 86.03 | 8.74 | 39 * | 0.111 | 181 | 0.40 | 2156 | 0.0165 |
Genotype (G) | 17 | 245.43 *** | 170.29 *** | 4934 *** | 1.500 *** | 28,305 *** | 11.86 *** | 125,341 *** | 0.2002 *** |
Environment (E) | 1 | 123.10 ** | 130.36 *** | 0 | 11.561 *** | 0 | 74.25 | 4 | 1.1824 *** |
G × E | 17 | 2.17 | 2.19 | 0 | 0.398 | 0 | 0.66 | 0 | 0.1464 ** |
Error | 70 | 11.50 | 10.76 | 12 | 0.416 | 11 | 1.36 | 13 | 0.0604 |
Treatments | Total Soluble Solids (°B) | Ascorbic Acid (mg 100 g−1) | Total Phenols (mg GAE 100 g−1) | Total Antioxidants (FRAP, mg 100 g−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020-21 | 2021-22 | Pooled | 2020-21 | 2021-22 | Pooled | 2020-21 | 2021-22 | Pooled | 2020-21 | 2021-22 | Pooled | |
IC 625848 | 12.83 | 13.37 | 13.10 | 90.00 | 90.16 | 90.08 | 155.30 | 155.63 | 155.47 | 364.55 | 365.22 | 364.88 |
IC 625849 | 16.47 | 16.40 | 16.43 | 139.24 | 139.00 | 139.12 | 163.41 | 163.00 | 163.20 | 486.71 | 487.30 | 487.00 |
IC 625850 | 23.33 | 22.77 | 23.05 | 67.93 | 69.00 | 68.47 | 18.41 | 18.19 | 18.30 | 40.71 | 42.37 | 41.54 |
IC 625851 | 20.00 | 20.97 | 20.48 | 28.34 | 29.00 | 28.67 | 12.86 | 13.34 | 13.10 | 21.38 | 22.62 | 22.00 |
IC 625852 | 23.70 | 23.90 | 23.80 | 64.17 | 61.67 | 62.92 | 29.58 | 30.21 | 29.90 | 49.77 | 67.33 | 58.55 |
IC 625853 | 21.33 | 21.83 | 21.58 | 54.30 | 53.00 | 53.65 | 30.06 | 30.06 | 30.06 | 98.43 | 95.97 | 97.20 |
IC 625854 | 21.40 | 22.00 | 21.70 | 61.06 | 62.00 | 61.53 | 26.09 | 26.13 | 26.11 | 79.87 | 81.47 | 80.67 |
IC 625855 | 20.00 | 20.57 | 20.28 | 61.71 | 62.67 | 62.19 | 28.48 | 28.87 | 28.67 | 80.31 | 81.98 | 81.14 |
IC 625856 | 20.47 | 22.47 | 22.48 | 89.65 | 89.66 | 89.65 | 26.69 | 26.99 | 26.84 | 77.86 | 80.19 | 79.03 |
IC 625857 | 20.67 | 18.17 | 19.42 | 76.49 | 77.08 | 76.79 | 14.96 | 15.31 | 15.14 | 32.63 | 34.29 | 33.46 |
IC 625858 | 15.00 | 14.00 | 14.50 | 52.24 | 52.79 | 52.52 | 15.15 | 15.33 | 15.24 | 30.22 | 30.89 | 30.56 |
IC 625859 | 13.00 | 12.00 | 12.50 | 71.03 | 71.33 | 71.18 | 17.87 | 18.10 | 17.98 | 28.04 | 30.69 | 29.36 |
IC 625862 | 21.87 | 21.00 | 21.43 | 82.68 | 83.68 | 83.18 | 30.69 | 30.95 | 30.82 | 93.03 | 92.68 | 92.85 |
IC 625863 | 24.40 | 24.00 | 24.20 | 121.58 | 122.67 | 122.12 | 45.86 | 46.13 | 46.00 | 126.21 | 135.21 | 130.71 |
IC 625864 | 14.00 | 14.20 | 14.00 | 66.43 | 50.76 | 58.59 | 256.36 | 256.05 | 256.20 | 422.41 | 424.07 | 423.24 |
IC 625870 | 23.67 | 23.23 | 23.45 | 106.35 | 106.35 | 106.35 | 20.11 | 20.56 | 20.33 | 51.23 | 52.90 | 52.07 |
IC 625871 | 22.97 | 23.23 | 23.45 | 125.27 | 125.67 | 125.47 | 42.88 | 42.55 | 42.72 | 128.06 | 129.73 | 128.90 |
Mean | 19.71 | 19.65 | 19.76 | 79.91 | 79.21 | 79.56 | 54.99 | 55.14 | 55.06 | 130.08 | 132.64 | 131.36 |
Range | 12.8–24.4 | 12.0–24.0 | 12.5–24.2 | 52.2–139.2 | 29.0–139.0 | 28.7–139.1 | 12.9–256.4 | 13.3–256.1 | 13.1–256.1 | 21.4–422.4 | 22.6–424.1 | 22.0–423.2 |
CV | 4.15 | 3.93 | 1.24 | 3.3 | 8.09 | 3.16 | 1.75 | 1.77 | 0.43 | 6.58 | 4.8 | 2.19 |
LSD at 5% | 1.40 | 1.20 | 0.50 | 4.00 | 10.80 | 5.30 | 1.70 | 1.70 | 0.50 | 14.10 | 10.50 | 6.00 |
Fruit Quality Parameters | Genotypic Variance | Phenotypic Variance | Environmental Variance | GCV | PCV |
---|---|---|---|---|---|
Total Soluble Solids (°B) | 3.76 | 17.57 | 13.82 | 9.44 | 20.41 |
Ascorbic acid (mg 100 g−1) | 823.55 | 834.45 | 10.90 | 34.79 | 35.02 |
Total Phenols (mg 100 g−1) | 4266.10 | 4276.38 | 10.28 | 111.33 | 111.46 |
Total Antioxidants (mg 100 g−1) | 17,513.30 | 17,523.82 | 10.53 | 102.42 | 102.45 |
Sugars (%) | 3.43 | 3.82 | 0.39 | 58.80 | 62.03 |
Protein (%) | 1.60 | 1.67 | 0.08 | 87.91 | 89.99 |
Moisture (%) | 42.95 | 59.41 | 16.46 | 8.81 | 10.36 |
Ash (%) | 0.13 | 0.15 | 0.02 | 50.92 | 53.74 |
Fruit Quality Parameters | Heritability (%) | GA | GA as % of Mean |
---|---|---|---|
Total Soluble Solids (°B) | 21.37 | 1.85 | 8.99 |
Ascorbic acid (mg 100 g−1) | 98.69 | 58.73 | 71.21 |
Total Phenols (mg 100 g−1) | 99.76 | 134.39 | 229.06 |
Total Antioxidants (mg 100 g−1) | 99.94 | 272.53 | 210.91 |
Sugars (%) | 89.87 | 3.62 | 114.83 |
Protein (%) | 95.43 | 2.54 | 176.90 |
Moisture (%) | 72.29 | 11.48 | 15.44 |
Ash (%) | 89.79 | 0.71 | 99.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meena, V.S.; Singh, K.; Shekhawat, N.; Bhardwaj, R.; Lal, H.; Rani, K.; Gupta, V.; Kumar, A.; Singh, A.; Gora, J.S.; et al. Assessment of Genetic Variability for Fruit Nutritional Composition in the Ex-Situ Collection of Jujube (Ziziphus spp.) Genotypes of Arid Regions of India. Horticulturae 2023, 9, 210. https://doi.org/10.3390/horticulturae9020210
Meena VS, Singh K, Shekhawat N, Bhardwaj R, Lal H, Rani K, Gupta V, Kumar A, Singh A, Gora JS, et al. Assessment of Genetic Variability for Fruit Nutritional Composition in the Ex-Situ Collection of Jujube (Ziziphus spp.) Genotypes of Arid Regions of India. Horticulturae. 2023; 9(2):210. https://doi.org/10.3390/horticulturae9020210
Chicago/Turabian StyleMeena, Vijay Singh, Kartar Singh, Neelam Shekhawat, Rakesh Bhardwaj, Hanuman Lal, Kirti Rani, Veena Gupta, Ashok Kumar, Akath Singh, Jagan Singh Gora, and et al. 2023. "Assessment of Genetic Variability for Fruit Nutritional Composition in the Ex-Situ Collection of Jujube (Ziziphus spp.) Genotypes of Arid Regions of India" Horticulturae 9, no. 2: 210. https://doi.org/10.3390/horticulturae9020210
APA StyleMeena, V. S., Singh, K., Shekhawat, N., Bhardwaj, R., Lal, H., Rani, K., Gupta, V., Kumar, A., Singh, A., Gora, J. S., & Kumar, P. (2023). Assessment of Genetic Variability for Fruit Nutritional Composition in the Ex-Situ Collection of Jujube (Ziziphus spp.) Genotypes of Arid Regions of India. Horticulturae, 9(2), 210. https://doi.org/10.3390/horticulturae9020210