In Vitro Propagation by Axillary Shoot Culture and Somatic Embryogenesis of Daucus carota L. subsp. sativus, ‘Polignano’ Landrace, for Biodiversity Conservation Purposes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Culture Establishment and Micropropagation by Axillary Shoots
2.3. Regeneration via Somatic Embryogenesis
2.4. Culture Conditions
2.5. Acclimatization and Transfer of Micropropagated and Regenerated Plants to the Field
2.6. Statistical Analysis
3. Results
3.1. Micropropagation by Axillary Bud Development
3.1.1. Culture Establishment and Shoot Proliferation
3.1.2. Rooting and Acclimatization
3.2. Somatic Embryogenesis Regeneration
3.2.1. Embryogenic Callus Induction and Somatic Embryos Regeneration
3.2.2. Acclimatization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 December 2022).
- Arscott, S.A.; Tanumihardjo, S.A. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as functional foods. Compr. Rev. Food Sci. Food Saf. 2010, 9, 223–239. [Google Scholar] [CrossRef]
- Blando, F.; Marchello, S.; Maiorano, G.; Durante, M.; Signore, A.; Laus, M.N.; Soccio, M.; Mita, G. Bioactive compounds and antioxidant capacity in anthocyanin-rich carrots: A comparison between the black carrot and the Apulian landrace “Polignano” carrot. Plants 2021, 10, 564. [Google Scholar] [CrossRef] [PubMed]
- Banga, O. Origin and domestication of the western cultivated carrot. Genet. Agrar. 1963, 17, 357–370. [Google Scholar]
- Stolarczyk, J.; Janick, J. Carrot: History and iconography. Chron. Hort. 2011, 51, 13–18. [Google Scholar]
- Iorizzo, M.; Senalik, D.A.; Ellison, S.L.; Grzebelus, D.; Cavagnaro, P.F.; Allender, C.; Brunet, J.; Spooner, D.M.; van Deynze, A.; Simon, P.W. Genetic structure and domestication of carrot (Daucus carota subsp. sativus). Am. J. Bot. 2013, 100, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Banga, O. The development of the original European carrot material. Euphytica 1957, 6, 64–76. [Google Scholar] [CrossRef]
- Cefola, M.; Mariani, R.; Pace, B.; Renna, M.; Santamaria, P.; Serio, F.; Signore, A. La Carota di Polignano. In La Biodiversita’ delle Colture Pugliesi; Trotta, L., Ed.; INEA: Bari, Italy, 2013; pp. 61–73. [Google Scholar]
- Renna, M.; Serio, F.; Signore, A.; Santamaria, P. The yellow–purple Polignano carrot (Daucus carota L.): A multicoloured landrace from the Puglia region (Southern Italy) at risk of genetic erosion. Genet. Resour. Crop Evol. 2014, 61, 1611–1619. [Google Scholar] [CrossRef]
- Renna, M.; Montesano, F.F.; Signore, A.; Gonnella, M.; Santamaria, P. BiodiverSO: A case study of integrated project to preserve the biodiversity of vegetable crops in Puglia (Southern Italy). Agriculture 2018, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Ruta, C.; Lambardi, M.; Ozudogru, E.A. Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation. Biodivers. Conserv. 2020, 29, 3495–3532. [Google Scholar] [CrossRef]
- Panis, B.; Lambardi, M. Status of cryopreservation technologies in plants (crops and forest trees). In The Role of Biotechnology in Exploring and Protecting Agricultural Genetic Resources; Ruane, J., Sonnino, A., Eds.; FAO: Rome, Italy, 2006; pp. 61–78. [Google Scholar]
- Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell. Dev. Biol. Plant 2011, 47, 5–16. [Google Scholar] [CrossRef]
- Pence, V.C. The application of biotechnology for the conservation of endangered species. In Plant Conservation Biotechnology; Benson, E.E., Ed.; Taylor and Francis: London, UK, 1999; pp. 227–241. [Google Scholar]
- Rao, R.V.; Hodgkin, T. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult. 2002, 68, 1–19. [Google Scholar] [CrossRef]
- George, E.F.; Debergh, P.C. Micropropagation: Uses and methods. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.A., De Klerk, G.-J., Eds.; Springer: Dordrecht, Germany, 2008; pp. 29–64. [Google Scholar]
- Reed, B.M.; Sarasan, V.; Kane, M.; Bunn, E.; Pence, V.C. Biodiversity conservation and conservation biotechnology tools. In Vitro Cell. Dev. Biol. Plant 2011, 47, 1–4. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Jain, S.M. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 2020, 9, 702. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.-J. Plant Propagation by Tissue Culture, Volume 1. The Background; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Krishna, H.; Alizadeh, M.; Singh, D.; Singh, U.; Chauhan, N.; Eftekhari, M.; Sadh, R.K. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Steward, F.C.; Mapes, M.O.; Mears, K. Growth and organized development of cultured cells. II. Organization in culture grown freely suspended cells. Am. J. Bot. 1958, 45, 705–708. [Google Scholar] [CrossRef]
- Reinert, J. Uber die kontrolle der morphogenese und die induktion von adventivembryonen an gewebekulturen aus karotten. (The control of morphogenesis and induction of adventitious embryos in cell cultures of carrots). Planta 1959, 53, 318–333. [Google Scholar] [CrossRef]
- Krikorian, A.D.; Smith, D.L. Somatic Embryogenesis in Carrot (Daucus carota). In Plant Tissue Culture Manual; Lindsey, K., Ed.; Springer: Boston, MA, USA, 1992; pp. 19–50. [Google Scholar] [CrossRef]
- Sarasan, V.A.; Cripps, R.; Ramsay, M.M.; Atherton, C.; McMichen, P.G.; Rowntree, J.K. Conservation in vitro of threatened plants—Progress in the past decade. Plant Cell Tissue Organ Cult. 2006, 42, 206–214. [Google Scholar] [CrossRef]
- Tavares, A.C.; Salgueiro, L.R.; Canhoto, J.M. In vitro propagation of the wild carrot Daucus carota L. subsp. halophilus (Brot.) A. Pujadas for conservation purposes. In Vitro Cell. Dev. Biol. Plant. 2010, 46, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Blando, F.; Onlu, S.; Colella, G.; Konczak, I. Plant regeneration from immature seeds of Eugenia myrtifolia Sims. In Vitro Cell. Dev. Biol. Plant. 2013, 49, 388–395. [Google Scholar] [CrossRef]
- Lata, H.; Chandra, S.; Techen, N.; Khan, I.A.; ElSohly, M.A. Molecular analysis of genetic fidelity in Cannabis sativa L. plants grown from synthetic (encapsulated) seeds following in vitro storage. Biotechnol. Lett. 2011, 33, 2503–2508. [Google Scholar] [CrossRef] [PubMed]
- Guzzo, F.; Baldan, B.; Mariani, P.; Lo Schiavo, F.; Terzi, M. Studies on the origin of totipotent cells in explants of Daucus carota L. J. Exp. Bot. 1994, 45, 1427–1432. [Google Scholar] [CrossRef]
- Guzzo, F.; Baldan, B.; Levi, M.; Sparvoli, E.; Lo Schiavo, F.; Terzi, M.; Mariani, P. Early cellular events during induction of carrot explants with 2,4-D. Protoplasma 1995, 185, 28–36. [Google Scholar] [CrossRef]
- Takeda, T.; Mizukami, M.; Matsuoka, H. Characterization of two-step direct somatic embryogenesis in carrot. Biochem. Eng. J. 2008, 38, 206–211. [Google Scholar] [CrossRef]
- Larkin, P.J.; Scowcroft, W. Somaclonal Variation—A Novel Source of Variability from Cell Cultures for Plant Improvement. Theor. Appl. Genet. 1981, 60, 197–214. [Google Scholar] [CrossRef]
- Fehér, A. Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology? Front. Plant Sci. 2019, 10, 536. [Google Scholar] [CrossRef]
Color | BA (μM) | MMI * (n) | Leaves Number | Leaves Length (cm) |
---|---|---|---|---|
Orange | 0.22 | 4.27 ab | 9.3 a | 4.3 a |
0.44 | 2.30 c | 7.7 a | 4.1 a | |
Yellow | 0.22 | 6.08 a | 7.0 a | 4.6 a |
0.44 | 3.09 c | 7.0 a | 4.5 a | |
Purple | 0.22 | 4.38 ab | 8.7 a | 4.2 a |
0.44 | 2.65 c | 8.3 a | 4.3 a |
Color | NAA (μM) | Rooting (%) | Root Number | Root Length (cm) |
---|---|---|---|---|
Orange | 0 | 78 b | 4 a | 3 a |
2.68 | 80 b | 3.9 a | 3 a | |
5.37 | 80 b | 4.2 a | 2.9 a | |
Yellow | 0 | 89 a | 4.2 a | 2.8 a |
2.68 | 88 a | 4 a | 3.1 a | |
5.37 | 90 a | 4.3 a | 3 a | |
Purple | 0 | 65 c | 3.9 a | 3.1 a |
2.68 | 66 c | 3.8 a | 3.2 a | |
5.37 | 69 c | 4.1 a | 2.9 a |
Color | Survival Rate (%) | Leaves Number | Leaves Length (cm) | |
---|---|---|---|---|
Orange | Microplants | 93 a | 14.3 a | 6.0 a |
Somatic embryos | 91 a | 13.9 a | 6.6 a | |
Yellow | Microplants | 91 a | 13.3 a | 5.9 a |
Somatic embryos | 91 a | 13.7 a | 6.2 a | |
Purple | Microplants | 90 a | 14.0 a | 6.4 a |
Somatic embryos | 92 a | 14.2 a | 6.3 a |
Color | Medium | 2,4-D (μM) | Callus Induction (%) | Embryogenic Callus Induction (%) |
---|---|---|---|---|
Orange | BM | 0 | 0 f | 0 d |
2.26 | 10 e | 0 d | ||
4.52 | 12 e | 0 d | ||
MS | 0 | 0 f | 0 d | |
2.26 | 40 c | 5 b | ||
4.52 | 90 a | 85 a | ||
Yellow | BM | 0 | 0 f | 0 d |
2.26 | 10 e | 0 d | ||
4.52 | 18 de | 0 d | ||
0 | 0 f | 0 d | ||
2.26 | 60 b | 8 b | ||
4.52 | 88 a | 81 a | ||
Purple | BM | 0 | 0 f | 0 d |
2.26 | 13 e | 0 d | ||
4.52 | 20 de | 0 d | ||
0 | 0 f | 0 d | ||
2.26 | 25 d | 2 c | ||
4.52 | 76 ab | 73 ab |
Color | SEs Induction (Day) | SEs (%) | SEs/Explant | Leaves Number | Leaves Length (cm) | Root Number | Root Length (cm) |
---|---|---|---|---|---|---|---|
Orange | 22 | 83 ab | 28 a | 5.4 a | 4.7 a | 3.1 a | 2.2 a |
Yellow | 24 | 95 a | 34 a | 6.3 a | 4.9 a | 3.3 a | 2.4 a |
Purple | 28 | 72 b | 21 b | 5.9 a | 4.4 a | 3.1 a | 2.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruta, C.; Campanelli, A.; De Mastro, G.; Blando, F. In Vitro Propagation by Axillary Shoot Culture and Somatic Embryogenesis of Daucus carota L. subsp. sativus, ‘Polignano’ Landrace, for Biodiversity Conservation Purposes. Horticulturae 2022, 8, 1150. https://doi.org/10.3390/horticulturae8121150
Ruta C, Campanelli A, De Mastro G, Blando F. In Vitro Propagation by Axillary Shoot Culture and Somatic Embryogenesis of Daucus carota L. subsp. sativus, ‘Polignano’ Landrace, for Biodiversity Conservation Purposes. Horticulturae. 2022; 8(12):1150. https://doi.org/10.3390/horticulturae8121150
Chicago/Turabian StyleRuta, Claudia, Angela Campanelli, Giuseppe De Mastro, and Federica Blando. 2022. "In Vitro Propagation by Axillary Shoot Culture and Somatic Embryogenesis of Daucus carota L. subsp. sativus, ‘Polignano’ Landrace, for Biodiversity Conservation Purposes" Horticulturae 8, no. 12: 1150. https://doi.org/10.3390/horticulturae8121150
APA StyleRuta, C., Campanelli, A., De Mastro, G., & Blando, F. (2022). In Vitro Propagation by Axillary Shoot Culture and Somatic Embryogenesis of Daucus carota L. subsp. sativus, ‘Polignano’ Landrace, for Biodiversity Conservation Purposes. Horticulturae, 8(12), 1150. https://doi.org/10.3390/horticulturae8121150