Agronomic Performance of Sweet Orange Genotypes under the Brazilian Humid Subtropical Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Location
2.2. Plant Materials
2.3. Orchard Management
2.4. Vegetative Growth Measurements
2.5. Fruit Yield
2.6. Fruit Quality Evaluations
2.7. Estimates for Planting Density and Yield
2.8. Data Analyses
3. Results
3.1. Tree Vegetative Growth
3.2. Yield Performance
3.3. Fruit Quality Evaluation
3.4. Estimates for Planting Density and Yield
3.5. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO—Food and Agriculture Organization of the United Nations. FAOSTAT: Food and Agriculture Data. 2019. Available online: http://www.faostat.fao.org (accessed on 3 October 2021).
- Barry, G.H.; Caruso, M.; Gmitter, F.G., Jr. Commercial scion varieties. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 83–104. [Google Scholar]
- USDA—United States Department of Agriculture. Citrus: World Markets and Trade; FAS Foreign Agricultural Service: Washington, DC, USA, 2021. Available online: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf (accessed on 22 July 2021).
- Spreen, T.H.; Gao, Z.; Fernandes, W., Jr.; Zansler, M.L. Global economics and marketing of citrus products. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 471–493. [Google Scholar]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal (Agricultural Production in Brazil). 2019. Available online: https://sidra.ibge.gov.br/Tabela/1613 (accessed on 4 October 2021).
- Carvalho, S.A.; Girardi, E.A.; Mourão Filho, F.A.A.; Ferrarezi, R.S.; Coletta Filho, H.D. Advances in citrus propagation in Brazil. Rev. Bras. Frutic. 2019, 41, e422. [Google Scholar] [CrossRef] [Green Version]
- Bassanezi, R.B.; Lopes, S.A.; Miranda, M.P.; Wulff, N.A.; Volpe, H.X.L.; Ayres, A.J. Overview of citrus huanglongbing spread and management strategies in Brazil. Trop. Plant Pathol. 2020, 45, 251–264. [Google Scholar] [CrossRef]
- Carvalho, L.M.; Carvalho, H.W.; Barros, I.; Martins, C.R.; Soares Filho, W.D.S.; Girardi, E.A.; Passos, O.S. New scion-rootstock combinations for diversification of sweet orange orchards in tropical hardsetting soils. Sci. Hortic. 2019, 243, 169–176. [Google Scholar] [CrossRef]
- Silveira, L.K.; Pavão, G.C.; Dias, C.T.S.; Quaggio, J.A.; Pires, R.C.M. Deficit irrigation effect on fruit yield, quality and water use efficiency: A long-term study on Pêra-IAC sweet orange. Agric. Water Manag. 2020, 231, 106019. [Google Scholar] [CrossRef]
- Carvalho, D.U.; Cruz, M.A.; Colombo, R.C.; Tazima, Z.H.; Neves, C.S.V.J. Fruit quality of ‘Salustiana’ seedless oranges during cold storage: Effect of carnauba-based wax and rootstocks. J. Food Meas. Charact. 2020, 14, 3397–3407. [Google Scholar] [CrossRef]
- IAPAR—Instituto Agronômico do Paraná. A Citricultura no Paraná (Citrus Industry in Paraná), 1st ed.; IAPAR: Londrina, Brazil, 1992. [Google Scholar]
- Behlau, F. An overview of citrus canker in Brazil. Trop. Plant Pathol. 2021, 46, 1–12. [Google Scholar] [CrossRef]
- Leite, R.P., Jr.; Mohan, S.K. Integrated management of the citrus bacterial canker disease caused by Xanthomonas citri subsp. citri in the State of Paraná, Brazil. Crop Prot. 1990, 9, 3–7. [Google Scholar] [CrossRef]
- Ference, C.M.; Gochez, A.M.; Behlau, F.; Wang, N.; Graham, J.H.; Jones, J.B. Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Mol. Plant Pathol. 2018, 19, 1302–1318. [Google Scholar] [CrossRef] [Green Version]
- Leite, R.P., Jr.; Mohan, S.K.; Pereira, A.L.G.; Campacci, C.A. Integrated control of citrus canker: Effect of genetic resistance and application of bactericides. Fitopatol. Bras. 1987, 12, 257–263. [Google Scholar]
- Behlau, F.; Belasque, J., Jr.; Leite, R.P., Jr.; Filho, A.B.; Gottwald, T.R.; Graham, J.H.; Scandelai, L.H.M.; Primiano, I.V.; Bassanezi, R.B.; Ayres, A.J. Relative contribution of windbreak, copper sprays, and leafminer control for citrus canker management and prevention of crop loss in sweet orange trees. Plant Dis. 2021, 105, 2097–2105. [Google Scholar] [CrossRef]
- Auler, P.A.M.; Leite, R.P., Jr.; Tazima, Z.H.; Andrade, P.F.S.A. Citricultura no Paraná (Citriculture in Paraná). Citric. Atual 2014, 99, 17–20. [Google Scholar]
- Tazima, Z.H.; Leite, R.P., Jr. Novas cultivares de citros (New citrus cultivars). Synerg. Scyentífica 2018, 13, 49–52. [Google Scholar]
- Carvalho, D.U.; Neves, C.S.V.J.; Cruz, M.A.; Colombo, R.C.; Yada, I.F.U.; Leite, R.P., Jr.; Tazima, Z.H. Performance of ‘Salustiana’ sweet orange on different rootstocks under Brazilian subtropical conditions. Sci. Hortic. 2021, 287, 110226. [Google Scholar] [CrossRef]
- Castle, W.S. A career perspective on Citrus rootstocks, their development, and commercialization. HortScience 2010, 45, 11–15. [Google Scholar] [CrossRef] [Green Version]
- IDR-Paraná—Instituto de Desenvolvimento Rural do Paraná. Weather Data. 2019. Available online: http://www.iapar.br/arquivos/Image/monitoramento/Medias_Historicas/Londrina.htm (accessed on 3 July 2021).
- Larach, J.O.I.; Cardoso, A.; de Carvalho, A.P.; Hochmüller, D.P.; Martins, J.S.; Rauen, M.D.J.; Fasolo, P.J.; Pötter, R.O. Levantamento de Reconhecimento dos Solos do Estado do Paraná (Survey of Soil Identification in the State of Paraná); Embrapa Solos: Recife, Brazil, 1984. [Google Scholar]
- Nunes, W.M.C.; Souza, E.B.; Leite, R.P., Jr.; Salvador, C.A.; Rinaldi, D.A.; Croce Filho, J.; Paiva, P.G. Plan of action for the control of Huanglongbing in the Paraná state, Brazil. Citrus Res. Technol. 2010, 31, 169–177. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Mendel, K. Rootstock-scion relationships in Shamouti trees on light soil. Ktavim 1956, 6, 35–60. [Google Scholar]
- Pearce, S.C.; Doberšek-Urbanc, S. The measurement of irregularity in growth and cropping. J. Hortic. Sci. 1967, 42, 295–305. [Google Scholar] [CrossRef]
- OECD—Organisation for Economic Co-operation and Development. International Standards for Fruit and Vegetables: Citrus, 1st ed.; OECD: Paris, France, 2010. [Google Scholar]
- CEAGESP—Companhia de Entrepostos e Armazéns Gerais de São Paulo. Normas de Classificação de Citros de Mesa (Brazilian Standards for Table Citrus), 2nd ed.; CEAGESP: São Paulo, Brazil, 2011.
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the AOAC International, 21st ed.; AOAC International: Arlington, VA, USA, 2019. [Google Scholar]
- Di Giorgi, F.; Ide, B.Y.; Dib, K.; March, R.J.; Triboni, H.D.; Wagner, R.L. Contribuição ao estudo do comportamento de algumas variedades de citros e suas implicações agroindustriais (Contribution to the study of the behavior of some citrus varieties and their agro-industrial implications). Laranja 1990, 11, 567–612. [Google Scholar]
- De Negri, J.D.; Blasco, E.E.A. Planejamento e implantação de um pomar cítrico (Planning and implementation of citrus orchards). In Citricultura Brasileira, 2nd ed.; Rodriguez, O., Pompeu, J., Jr., Pinto Viegas, V., Eds.; Fundação Cargill: Campinas, Brazil, 1991; pp. 318–332. [Google Scholar]
- Stuchi, E.S. Controle do tamanho de plantas cítricas (Size control of citrus trees). Laranja 1994, 15, 295–342. [Google Scholar]
- Wheaton, T.A.; Castle, W.S.; Whitney, J.D.; Tucker, D.P.H. Performance of citrus scion cultivars and rootstock in a high-density planting. HortScience 1991, 26, 837–840. [Google Scholar] [CrossRef] [Green Version]
- Fundecitrus Fundo de Defesa da Citricultura. Tree Inventory and Orange Production Forecast for São Paulo and West-Southwest Minas Gerais Citrus Belt: 2021–2022. Available online: https://www.fundecitrus.com.br/pdf/pes_relatorios/2021_07_30_Tree_Inventory_and_Orange_Crop_Forecast_2021-2022_Plantio_2020_Revisado.pdf (accessed on 15 October 2021).
- Hodgson, R.W. Horticultural varieties of citrus. In The Citrus Industry, 1st ed.; Reuther, W., Batchelor, L.D., Webber, H.J., Eds.; University of California: Berkeley, CA, USA, 1967; pp. 431–587. [Google Scholar]
- Wutscher, H.K.; Shull, A.V. Performance of ‘Marrs’ early orange on eleven rootstocks in South Texas. J. Am. Soc. Hortic. Sci. 1976, 101, 158–161. [Google Scholar]
- Mehrotra, N.K.; Harish, K.; Vij, V.K.; Aulakh, P.S. Performance of Jaffa cultivar of sweet orange (Citrus sinensis (L.) Osbeck) on different rootstocks. J. Res. 2000, 37, 56–60. [Google Scholar]
- Teodoro, A.V.; Carvalho, H.W.L.D.; Barros, I.D.; Carvalho, L.M.D.; Martins, C.R.; Soares, W.D.S.; Passos, O.S. Performance of ‘Jaffa’ sweet orange on different rootstocks for orchards in the Brazilian Northeast. Pesqui. Agropecu. Bras. 2019, 55, e01665. [Google Scholar] [CrossRef]
- Albrigo, L.G.; Stelinski, L.L.; Timmer, L. Citrus, 2nd ed.; CABI: Boston, MA, USA, 2019. [Google Scholar]
- Stover, E.; Castle, W.S.; Spyke, P. The citrus grove of the future and its implications for huanglongbing management. Proc. Fla. State Hortic. Soc. 2008, 121, 155–159. [Google Scholar]
- Bergamin Filho, A.; Nagata, A.; Bassanezi, R.B.; Belasque Junior, J.; Amorim, L.; Macedo, M.A.; Barbosa, J.C.; Willocquet, L.; Savary, S. The importance of primary inoculum and area-wide disease management to crop health and food security. Food Sec. 2016, 8, 221–238. [Google Scholar] [CrossRef]
- Moreira, A.S.; Stuchi, E.S.; Silva, P.R.; Bassanezi, R.B.; Girardi, E.A.; Laranjeira, F.F. Could tree density play a role in managing Citrus Huanglongbing epidemics? Trop. Plant Pathol. 2019, 44, 268–274. [Google Scholar] [CrossRef]
- Bassal, M.A. Growth, yield and fruit quality of ‘Marisol’ clementine grown on four rootstocks in Egypt. Sci. Hortic. 2009, 119, 132–137. [Google Scholar] [CrossRef]
- Bastos, D.C.; Sombra, K.E.S.; de Andrade, H.M. Biometric evaluation of orange cultivars using different rootstocks in the semiarid region of Ceará, Brazil. Citrus Res. Technol. 2017, 38, 71–76. [Google Scholar] [CrossRef]
- Alves, M.N.; Lopes, S.A.; Raiol-Junior, L.L.; Wulff, N.A.; Girardi, E.A.; Ollitrault, P.; Peña, L. Resistance to ‘Candidatus Liberibacter asiaticus’, the Huanglongbing associated bacterium, in sexually and/or graft-compatible citrus relatives. Front. Plant Sci. 2021, 11, 2166. [Google Scholar] [CrossRef]
- Donadio, L.C. Compatibility study of citrus rootstock varieties on Rangpur lime. In Proceedings of the 8th International Organization of Citrus Virologists Conference, Sidney, Australia, 13–31 May 1979. [Google Scholar] [CrossRef]
- Spreen, T.H.; Brown, M.G.; Muraro, R.P. The projected impact of citrus greening in Sao Paulo and Florida on processed orange production and price. Proc. Fla. State Hortic. Soc. 2007, 120, 132–135. [Google Scholar]
- Bové, J.M.; Ayres, A.J. Etiology of three recent diseases of citrus in Sao Paulo State: Sudden death, variegated chlorosis and huanglongbing. IUBMB Life 2007, 59, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Castle, W.S.; Baldwin, J.C. Young-tree performance of juvenile sweet orange scions on Swingle citrumelo rootstock. HortScience 2011, 46, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Ladaniya, M.S. Citrus Fruit: Biology, Technology and Evaluation, 1st ed.; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Chitarra, M.I.F.; Chitarra, A.B. Pós-Colheita de Frutas e Hortaliças: Fisiologia e Manuseio (Post-Harvest of Fruits and Vegetables: Physiology and Handling), 2nd ed.; UFLA: Lavras, Brazil, 2005. [Google Scholar]
- Khalid, S.; Malik, A.U.; Saleem, B.A.; Khan, A.S.; Khalid, M.S.; Amin, M. Tree age and canopy position affect rind quality, fruit quality and rind nutrient content of ‘Kinnow’ mandarin (Citrus nobilis Lour × Citrus deliciosa Tenore). Sci. Hortic. 2012, 135, 137–144. [Google Scholar] [CrossRef]
- Frometa, E.; Echazabal, J. Influence of age and cultivar on juice characteristics of early oranges. Agrotec. Cuba 1988, 20, 71–75. [Google Scholar]
- Serciloto, C.M.; Castro, P.R.C.; Tavares, S. Effects of mbta [n,n-diethyl-2-(4-metylbenzyloxy) ethylamine hydrochloride] on yield and fruit quality of ‘Pêra’ sweet orange (Citrus sinensis L. Osbeck). Rev. Bras. Fruticult. 2008, 30, 596–630. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, A.; Gregoriou, C. Growth, yield, and fruit quality of ‘Shamouti’ orange on fourteen rootstocks in Cyprus. Sci. Hortic. 1999, 80, 113–121. [Google Scholar] [CrossRef]
- Pozzan, M.; Triboni, H.R. Colheita e qualidade do fruto (Harvest and fruit quality). In Citros, 1st ed.; Mattos, D., Jr., De Negri, J.D., Pio, R.M., Pompeu, J., Jr., Eds.; IAC/Fundag: Campinas, Brazil, 2005; pp. 801–822. [Google Scholar]
- Domingues, A.R.; Neves, C.S.V.J.; Yada, I.F.U.; Leite, R.P., Jr.; Tazima, Z.H. Performance of ‘Cadenera’ orange trees grafted on five rootstocks. Rev. Bras. Frutic. 2018, 40, e764. [Google Scholar] [CrossRef]
- Kimball, D.A.; Norman, S.I. Processing effects during commercial debittering of California navel orange juice. J. Agric. Food Chem. 1990, 38, 1396–1400. [Google Scholar] [CrossRef]
- Bacar, E.L.C.; Neves, C.S.V.J.; Leite, R.P., Jr.; Yada, I.F.U.; Tazima, Z.H. ‘Jaffa’ sweet orange plants grafted onto five rootstocks. Rev. Bras. Frutic. 2017, 39, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, S.A.; Nunes, W.M.C.; Belasque, J., Jr.; Croce Filho, J.; Machado, M.A.; Bock, C.; Abdo, Z. Comparison of resistance to Asiatic citrus canker among different genotypes of Citrus spp. in a long-term canker-resistance screening experiment in Brazil. Plant Dis. 2015, 99, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.M.; Carvalho, S.A.; Silva, L.F.C.; Machado, M.A. Reaction of genotypes of Citrus species and varieties to Xanthomonas citri subsp. citri under greenhouse conditions. J. Plant Pathol. 2010, 92, 519–524. [Google Scholar]
- MacLeod, A.; Korycinska, A. Detailing Köppen—Geiger climate zones at sub-national to continental scale: A resource for pest risk analysis. EPPO Bull. 2019, 49, 73–82. [Google Scholar] [CrossRef]
Genotypes | Sweet Oranges | Origin of Selection | Material Source | Name in the Source Institution |
---|---|---|---|---|
Early-season | ||||
Bahia Cabula | Navel | Brazil | CCSM 1 | Bahia Cabula IAC 25 |
Diva | Common | Brazil | CCSM | Diva IAC 58 |
Cadenera | Common | Spain | IDR 2 | IPR Cadenera |
Marrs | Navel | USA | CCSM | Marrs IAC 1735 |
Midsweet | Common | USA | CCSM | Midsweet IAC 1437 |
Paulista | Common | Brazil | CCSM | Paulista IAC 567 |
Rubi | Common | Brazil | CCSM | Rubi IAC 52 |
Westin | Common | Brazil | CCSM | Westin IAC 115 |
Mid-season | ||||
Berna Peret | Common | Spain | CCSM | Berna Peret IAC 2011 |
Jaffa | Common | USA | IDR | IPR Jaffa |
Khalily White | Common | Egypt | CCSM | Khalily White IAC 1345 |
Fukuhara | Common | Japan | CCSM | Fukuhara IAC 2010 |
Seleta do Rio | Common | Portugal | CCSM | Seleta do Rio IAC 420 |
Seleta Tardia | Common | Portugal | CCSM | Seleta Tardia IAC 1329 |
Shamouti | Common | Israel | CCSM | Shamouti IAC 1532 |
Cultivar | Tree Height (m) | Canopy Diameter (m) | Canopy Volume (m3) | Rootstock Trunk Diameter 1 (cm) | Scion Trunk Diameter 1 (cm) | Trunk Diameter Index 2 |
---|---|---|---|---|---|---|
Early-season | ||||||
Bahia Cabula | 3.83 b 3 | 3.98 | 32.0 ab | 14.9 cd | 13.8 bc | 0.93 |
Diva | 4.51 a | 3.92 | 36.6 a | 18.0 a | 16.7 a | 0.93 |
Cadenera | 4.21 ab | 3.79 | 31.9 ab | 15.2 b–d | 14.3 b | 0.94 |
Marrs | 3.69 b | 3.69 | 26.7 b | 14.1 d | 11.8 c | 0.83 |
Midsweet | 4.23 ab | 4.14 | 38.2 a | 17.5 ab | 14.6 ab | 0.83 |
Paulista | 4.08 ab | 3.81 | 31.1 ab | 16.4 a–d | 13.5 bc | 0.82 |
Rubi | 4.17 ab | 3.84 | 32.4 ab | 14.6 cd | 13.1 bc | 0.90 |
Westin | 4.24 ab | 3.97 | 35.2 ab | 16.9 a–c | 14.9 ab | 0.89 |
CV (%) | 4.90 | 3.72 | 9.90 | 5.68 | 5.97 | 5.39 |
F value | 4.86 ** | 2.65 ns | 3.64 * | 7.72 *** | 8.95 *** | 3.20 ns |
Mid-season | ||||||
Berna Peret | 4.41 a–c | 4.17 bc | 40.3 ab | 17.4 b | 16.2 bc | 0.93 ab |
Jaffa | 4.28 b–d | 3.64 d | 29.8 c | 16.4 b | 13.2 d | 0.81 b |
Khalily White | 4.53 ab | 4.58 a | 49.7 a | 21.7 a | 18.3 a | 0.85 b |
Fukuhara | 3.91 d | 3.90 cd | 31.2 bc | 16.3 b | 16.8 ab | 1.04 a |
Seleta do Rio | 4.13 b–d | 4.04 bc | 35.3 bc | 15.7 b | 14.7 cd | 0.94 ab |
Seleta Tardia | 4.09 cd | 4.03 bc | 35.2 bc | 16.6 b | 14.1 d | 0.85 b |
Shamouti | 4.81 a | 4.36 ab | 47.9 a | 20.9 a | 17.9 a | 0.86 b |
CV (%) | 3.38 | 3.14 | 8.87 | 5.87 | 3.42 | 6.76 |
F value | 12.78 *** | 16.95 *** | 15.75 *** | 15.98 *** | 38.40 *** | 5.13 ** |
Cultivar | Yield (kg Tree–1) | Cumulative Yield (kg) | Yield Efficiency (kg m–3) 1 | Alternate Bearing Index | |||
---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | ||||
Early-season | |||||||
Bahia Cabula | 8.1 c 2 | 25.7 b | 7.5 c | 48.8 c | 90.1 c | 1.52 b | 0.55 a |
Diva | 29.6 bc | 73.1 a | 32.0 bc | 97.8 ab | 232.5 ab | 2.70 a | 0.44 a |
Cadenera | 18.3 bc | 50.7 ab | 51.6 ab | 78.3 a–c | 198.9 bc | 2.49 ab | 0.25 ab |
Marrs | 2.1 c | 35.0 b | 14.2 bc | 45.3 c | 96.7 c | 1.74 ab | 0.61 a |
Midsweet | 74.4 a | 78.0 a | 72.5 a | 103.1 a | 327.9 a | 2.69 a | 0.10 b |
Paulista | 45.9 ab | 52.8 ab | 15.7 bc | 86.4 a–c | 200.8 a–c | 2.75 a | 0.48 a |
Rubi | 14.3 bc | 55.1 ab | 23.8 bc | 64.4 a–c | 157.6 bc | 1.99 ab | 0.51 a |
Westin | 21.8 bc | 50.1 ab | 30.5 bc | 51.9 bc | 154.3 bc | 1.54 b | 0.37 ab |
CV (%) | 44.54 | 22.93 | 43.13 | 23.46 | 24.31 | 13.17 | 17.18 |
F value | 11.57 *** | 6.23 ** | 7.83 *** | 5.39 ** | 9.06 *** | 2.90 * | 5.93 ** |
Mid-season | |||||||
Berna Peret | 28.2 b | 105.0 a | 79.7 ab | 106.6 a | 319.5 a | 2.68 a | 0.30 b |
Jaffa | 55.7 a | 86.9 ab | 94.2 a | 24.6 c | 261.4 a | 0.83 c | 0.30 b |
Khalily White | --- 3 | 18.8 c | 30.7 c | 49.5 b | 99.1 b | 1.00 bc | 0.44 ab |
Fukuhara | --- | 14.5 c | 3.9 c | 54.2 b | 72.6 b | 1.72 ab | 0.76 a |
Seleta do Rio | 9.31 b | 50.3 bc | 33.3 bc | 52.0 b | 144.9 b | 1.48 bc | 0.33 b |
Seleta Tardia | --- | 14.6 c | 21.2 c | 90.0 a | 125.8 b | 2.63 a | 0.63 ab |
Shamouti | --- | 13.5 c | 26.0 c | 51.9 b | 91.4 b | 1.09 bc | 0.56 a |
CV (%) | 26.46 | 42.96 | 41.46 | 13.90 | 23.73 | 9.71 | 29.91 |
F value | 24.16 ** | 12.79 *** | 11.06 *** | 31.64 *** | 18.61 *** | 17.35 *** | 2.39 * |
Cultivar | Fruit Height FH (mm) | Fruit Diameter FD (mm) | Fruit Shape FS (FH FD−1) | Fruit Weight FW (g) | Number of Seeds NS |
---|---|---|---|---|---|
Early-season | |||||
Bahia Cabula | 82.8 a 1 | 88.5 a | 1.01 ab | 297.3 a | 0 d |
Diva | 69.4 d | 70.3 c | 0.98 a–c | 161.3 bc | 1 cd |
Cadenera | 70.4 cd | 71.7 bc | 0.98 a–c | 135.8 c | 0 d |
Marrs | 82.8 ab | 79.7 b | 1.03 a | 215.1 b | 0 d |
Midsweet | 75.1 b–d | 75.4 bc | 0.99 a–c | 191.8 bc | 14 a |
Paulista | 80.9 a–c | 78.0 bc | 1.03 a | 187.3 bc | 4 c |
Rubi | 67.6 d | 72.8 bc | 0.92 c | 141.8 c | 7 b |
Westin | 73.7 b–d | 77.8 bc | 0.94 bc | 148.8 c | 1 cd |
CV (%) | 5.13 | 3.93 | 2.86 | 10.98 | 27.38 |
F value | 11.68 *** | 11.02 *** | 5.83 ** | 20.52 *** | 79.53 *** |
Mid-season | |||||
Berna Peret | 77.1 c | 73.2 d | 1.05 ab | 159.5 b | 1 b |
Jaffa | 77.2 c | 79.5 bc | 0.97 c | 201.3 ab | 4 b |
Khalily White | 83.0 b | 75.1 cd | 1.10 a | 227.8 a | 2 b |
Fukuhara | 88.4 a | 81.6 ab | 1.08 a | 218.8 a | 0 b |
Seleta do Rio | 78.3 bc | 86.7 a | 0.90 d | 236.5 a | 14 a |
Seleta Tardia | 82.1 bc | 82.5 ab | 0.99 bc | 220.0 a | 3 b |
Shamouti | 78.3 bc | 73.1 d | 1.07 a | 194.5 ab | 0 b |
CV (%) | 2.37 | 2.75 | 2.04 | 8.28 | 41.66 |
F value | 14.17 *** | 17.30 *** | 35.81 *** | 6.79 ** | 32.48 *** |
Cultivar | Juice Content JC (%) | Total Soluble Solids TSS (°Brix) | Titratable Acidity TA (g 100 mL−1) | Ratio (TSS TA−1) | Technological Index TI (kg TSS box−1) |
---|---|---|---|---|---|
Early-season | |||||
Bahia Cabula | 32.8 c 1 | 9.2 bc | 0.53 de | 17.4 ab | 1.22 b |
Diva | 48.4 a | 11.0 ab | 0.92 b | 11.9 cd | 2.18 a |
Cadenera | 47.6 a | 10.3 ab | 1.17 a | 8.8 d | 2.00 a |
Marrs | 38.8 bc | 10.4 ab | 0.63 cd | 16.8 ab | 1.65 ab |
Midsweet | 45.1 ab | 11.2 a | 0.79 bc | 14.2 bc | 2.06 a |
Paulista | 34.6 c | 7.8 c | 0.40 e | 19.7 a | 1.10 b |
Rubi | 44.4 ab | 10.7 ab | 0.92 b | 11.6 cd | 1.94 a |
Westin | 48.3 a | 9.5 a–c | 0.87 b | 11.0 cd | 1.88 a |
CV (%) | 5.66 | 6.52 | 9.02 | 8.56 | 11.46 |
F value | 20.46 *** | 9.08 *** | 37.61 *** | 29.60 *** | 11.75 *** |
Mid-season | |||||
Berna Peret | 53.9 a | 10.3 ab | 0.88 ab | 11.6 bc | 2.25 a |
Jaffa | 51.6 a | 10.3 ab | 0.98 a | 10.5 c | 2.17 a |
Khalily White | 36.3 c | 10.9 a | 0.81 b | 13.3 ab | 1.61 bc |
Fukuhara | 37.8 bc | 8.4 c | 0.61 c | 13.9 a | 1.29 c |
Seleta do Rio | 43.8 b | 10.4 ab | 0.93 ab | 11.2 c | 1.87 ab |
Seleta Tardia | 43.1 b | 9.1 bc | 0.81 b | 11.2 c | 1.60 bc |
Shamouti | 38.7 bc | 11.2 a | 0.84 ab | 13.3 ab | 1.78 a–c |
CV (%) | 5.29 | 5.69 | 5.99 | 5.23 | 10.42 |
F value | 26.41 *** | 8.98 *** | 16.84 *** | 13.13 *** | 9.60 *** |
Cultivar | Row Spacing (m) | Tree Spacing (m) | Tree Density (Trees ha−1) | Fruit Yield (t ha−1) | Technological Index (t TSS ha−1) |
---|---|---|---|---|---|
Early-season | |||||
Bahia Cabula | 2.98 | 6.48 | 518 | 14.1 c 2 | 0.42 c |
Diva | 2.94 | 6.42 | 532 | 35.9 ab | 1.92 a |
Cadenera | 2.84 | 6.29 | 560 | 33.9 ab | 1.70 ab |
Marrs | 2.77 | 6.20 | 582 | 18.4 bc | 0.75 bc |
Midsweet | 3.10 | 6.64 | 486 | 40.8 a | 2.07 a |
Paulista | 2.86 | 6.31 | 554 | 28.5 a–c | 0.77 bc |
Rubi | 2.89 | 6.35 | 546 | 26.1 a–c | 1.22 a–c |
Westin | 2.98 | 6.47 | 523 | 23.6 a–c | 1.08 a–c |
CV (%) | 3.71 | 2.27 | 5.89 | 24.30 | 31.13 |
F value | 2.65 ns | 2.65 ns | 2.62 ns | 5.38 ** | 7.25 *** |
Mid-season | |||||
Berna Peret | 3.13 bc | 6.67 bc | 480 b–d | 46.9 a | 2.59 a |
Jaffa | 2.73 d | 6.14 d | 598 a | 40.9 a | 2.17 a |
Khalily White | 3.43 a | 7.08 a | 412 d | 13.6 b | 0.54 b |
Fukuhara | 2.92 cd | 6.40 cd | 535 ab | 12.8 b | 0.41 b |
Seleta do Rio | 3.03 bc | 6.54 bc | 506 bc | 23.0 b | 1.07 b |
Seleta Tardia | 3.02 bc | 6.53 bc | 511 bc | 21.4 b | 0.84 b |
Shamouti | 3.27 ab | 6.86 ab | 448 cd | 13.7 b | 0.58 b |
CV (%) | 3.14 | 1.95 | 5.41 | 25.19 | 25.77 |
F value | 16.95 *** | 19.95 *** | 15.04 *** | 15.02 *** | 24.46 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva-de Paula, M.C.M.; de Carvalho, D.U.; da Cruz, M.A.; Longhi, T.V.; Tazima, Z.H.; Behlau, F.; de Carvalho, S.A.; Leite, R.P., Jr. Agronomic Performance of Sweet Orange Genotypes under the Brazilian Humid Subtropical Climate. Horticulturae 2022, 8, 254. https://doi.org/10.3390/horticulturae8030254
da Silva-de Paula MCM, de Carvalho DU, da Cruz MA, Longhi TV, Tazima ZH, Behlau F, de Carvalho SA, Leite RP Jr. Agronomic Performance of Sweet Orange Genotypes under the Brazilian Humid Subtropical Climate. Horticulturae. 2022; 8(3):254. https://doi.org/10.3390/horticulturae8030254
Chicago/Turabian Styleda Silva-de Paula, Michele Corpolato Maia, Deived Uilian de Carvalho, Maria Aparecida da Cruz, Talita Vigo Longhi, Zuleide Hissano Tazima, Franklin Behlau, Sérgio Alves de Carvalho, and Rui Pereira Leite, Jr. 2022. "Agronomic Performance of Sweet Orange Genotypes under the Brazilian Humid Subtropical Climate" Horticulturae 8, no. 3: 254. https://doi.org/10.3390/horticulturae8030254
APA Styleda Silva-de Paula, M. C. M., de Carvalho, D. U., da Cruz, M. A., Longhi, T. V., Tazima, Z. H., Behlau, F., de Carvalho, S. A., & Leite, R. P., Jr. (2022). Agronomic Performance of Sweet Orange Genotypes under the Brazilian Humid Subtropical Climate. Horticulturae, 8(3), 254. https://doi.org/10.3390/horticulturae8030254