Resistance Monitoring for Six Insecticides in Vegetable Field-Collected Populations of Spodoptera litura from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Insecticides and Chemicals
2.3. Bioassays
2.4. Statistical Analysis
3. Results
3.1. Baseline Susceptibility of S. litura-Susceptible Lab-S Strain to Six Insecticides
3.2. Monitoring Sensitivity to Six Insecticides in Central China
3.3. Monitoring Sensitivity to Six Insecticides in Eastern China
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Guo, Y.S.; Huang, S.M.; Zhan, H.R.; Zhang, M.F.; Wang, J.W.; Shu, Y.H. Integration of transcriptome and proteome reveals molecular mechanisms underlying stress responses of the cutworm, Spodoptera litura, exposed to different levels of lead (Pb). Chemosphere 2021, 283, 131205. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Mei, Y.; Liu, R.Q.; Chen, X.L.; Li, D.Z.; Wang, C.J. Transcriptome analysis of Spodoptera litura reveals the molecular mechanism to pyrethroids resistance. Pestic. Biochem. Physiol. 2020, 169, 104649. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, B.K.; Joshi, H.C. Occurrence of resistance to BHC in Prodenia litura fab. (Lepidoptera: Noctuidae). Indian J. Entomol. 1965, 27, 102–104. [Google Scholar]
- Huang, S.J.; Xu, J.F.; Han, Z.J. Baseline toxicity data of insecticides against the common cutworm Spodoptera litura (Fabricius) and a comparison of resistance monitoring methods. Int. J. Pest Manag. 2006, 52, 209–213. [Google Scholar] [CrossRef]
- Ahmad, M.; Sayyed, A.H.; Saleem, M.A.; Ahmad, M. Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot. 2008, 27, 1367–1372. [Google Scholar] [CrossRef]
- Shad, S.A.; Sayyed, A.H.; Fazal, S.; Saleem, M.A.; Zaka, S.M.; Ali, M. Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura fab. (Lepidoptera: Noctuidae). J. Pest. Sci. 2012, 85, 153–162. [Google Scholar] [CrossRef]
- Su, J.Y.; Lai, T.C.; Li, J. Susceptibility of field populations of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Prot. 2012, 42, 217–222. [Google Scholar] [CrossRef]
- Tong, H.; Su, Q.; Zhou, X.M.; Bai, L.Y. Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. J. Pest. Sci. 2013, 86, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Sang, S.; Shu, B.S.; Yi, X.; Liu, J.; Hu, M.Y.; Zhong, G.H. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Manag. Sci. 2016, 72, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.A.; Hussain, D.; Ghouse, G.; Abbas, M.; Fisher, S.W. Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides. Crop Prot. 2016, 79, 177–184. [Google Scholar] [CrossRef]
- Shi, L.; Shi, Y.; Zhang, Y.; Liao, X.L. A systemic study of indoxacarb resistance in Spodoptera litura revealed complex expression profiles and regulatory mechanism. Sci. Rep. 2019, 9, 14997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Lou, L.L.; Su, J.Y. Prevalence and stability of insecticide resistances in field population of Spodoptera litura (Lepidoptera: Noctuidae) from Huizhou, Guangdong Province, China. J. Asia Pac. Entomol. 2019, 22, 728–732. [Google Scholar] [CrossRef]
- Suganthi, A.; Krishnamoorthy, S.V.; Sathiah, N.; Rabindra, R.J.; Muthukrishnan, N.; Jeyarani, S.; Vasantha Kumar, S.; Karthik, P.; Selvi, C.; Arul Kumar, G.; et al. Bioefficacy, persistent toxicity, and persistence of translocated residues of seed treatment insecticides in maize against fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797). Crop Prot. 2022, 154, 105892. [Google Scholar] [CrossRef]
- Mosallanejad, H.; Soin, T.; Swevers, L.; Iatrou, K.; Nakagawa, Y.; Smagghe, G. Non-steroidal ecdysteroid agonist chromafenozide: Gene induction activity, cell proliferation inhibition and larvicidal activity. Pestic. Biochem. Physiol. 2008, 92, 70–76. [Google Scholar] [CrossRef]
- Sakamoto, N.; Saito, S.; Hirose, T.; Suzuki, M.; Matsuo, S.; Izumi, K.; Nagatomi, T.; Ikegami, H.; Umeda, K.; Tsushima, K.; et al. The discovery of pyridalyl: A novel insecticidal agent for controlling lepidopterous pests. Pest Manag. Sci. 2004, 60, 25–34. [Google Scholar] [CrossRef]
- Che, W.N.; Shi, T.; Wu, Y.D.; Yang, Y.H. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J. Econ. Entomol. 2013, 106, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Wang, J.; Cao, X.W.; Wang, F.L.; Wu, S.W.; Wu, Y.D. Long-term monitoring and characterization of resistance to chlorfenapyr in Plutella xylostella (Lepidoptera: Plutellidae) from China. Pest Manag. Sci. 2019, 75, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Wu, Y.D. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella. J. Econ. Entomol. 2012, 105, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.Y.; Wang, R.; Luo, C.; Zhao, K.; Wu, Q.Y.; Wang, Z.Y.; Yang, G.F. Monitoring, cross-resistance, inheritance, and synergism of Plutella xylostella (Lepidoptera: Plutellidae) resistance to pyridalyl in China. J. Econ. Entomol. 2019, 112, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Kulye, M.; Mehlhorn, S.; Boaventura, D.; Godley, N.; Venkatesh, S.K.; Rudrappa, T.; Charan, T.; Rathi, D.; Nauen, R. Baseline susceptibility of Spodoptera frugiperda populations collected in India towards different chemical classes of insecticides. Insects 2021, 12, 758. [Google Scholar] [CrossRef]
- Roberson, J.L.; Preisler, H.K.; Russell, R.M. POLO-Plus—A User’s Guide to Probit and Logit Analysis; LeOra Software: Berkeley, CA, USA, 2002. [Google Scholar]
- SPSS. Release 13.0 Version for Windows; SPSS: Chicago, IL, USA, 2011. [Google Scholar]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification—A tool for resistance management. Pestic. Biochem. Physiol. 2020, 167, 104587. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.M.; Zhao, Y.X.; Sun, H.; Ni, H.; Liu, C.; Wang, X.; Gao, C.F.; Wu, S.F. Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides. Pestic. Biochem. Physiol. 2021, 174, 104831. [Google Scholar] [CrossRef] [PubMed]
- IRAC. Insecticide Resistance Action Committee. 2021. Available online: https://www.irac-online.org/modes-of-action/ (accessed on 25 October 2019).
- Roush, R.T. Designing resistance management programs: How can you choose? Pestic. Sci. 1989, 26, 423–441. [Google Scholar] [CrossRef]
- Su, J.Y.; Sun, X.X. High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province, China. Crop Prot. 2014, 61, 58–63. [Google Scholar] [CrossRef]
- Cory, J.S.; Hirst, M.L.; Williams, T.; Hails, R.S.; Goulson, D.; Green, B.M.; Carty, T.M.; Possee, R.D.; Cayley, P.J.; Bishop, D.H.L. Field trial of a genetically improved baculovirus insecticide. Nature 1994, 370, 138–140. [Google Scholar] [CrossRef]
- Shim, H.J.; Choi, J.Y.; Wang, Y.; Tao, X.Y.; Liu, Q.; Roh, J.Y.; Kim, J.S.; Kim, W.J.; Woo, S.D.; Jin, B.R.; et al. NeuroBactrus, a novel, highly effective, and environmentally friendly recombinant baculovirus insecticide. Appl. Environ. Microbiol. 2013, 79, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Pantha, P.; Chalivendra, S.; Oh, D.H.; Elderd, B.D.; Dassanayake, M. A tale of two transcriptomic responses in agricultural pests via host defenses and viral replication. Int. J. Mol. Sci. 2021, 22, 3568. [Google Scholar] [CrossRef]
Population | Map Ref. No. | Location of Collection | Site | Date and Host Plant |
---|---|---|---|---|
WH | 1 | Wuhan, Hubei, central China | 41.19 N, 123.11 E | July 2021, lotus root |
HF | 2 | Hefei, Anhui, eastern China | 41.59 N, 120.50 E | July 2021, lotus root |
NC | 3 | Nanchang, Jiangxi, central China | 39.97 N, 116.31 E | August 2021, lotus root |
YC | 4 | Yancheng, Jiangsu, eastern China | 39.73 N, 116.69 E | September 2021, lotus root |
LS | 5 | Lishui, Zhejiang, eastern China | 39.35 N, 117.10 E | September 2021, lotus root |
CS | 6 | Changsha, Hunan, central China | 38.90 N, 116.94 E | September 2021, lotus root |
ND | 7 | Ningde, Fujian, eastern China | 40.58 N, 115.00 E | July 2021, taro |
GZ | 8 | Guangzhou, Guangdong, southern China | 38.82 N, 115.39 E | July 2021, lotus root |
SY | 9 | Sanya, Hainan, southern China | 34.91 N, 113.56 E | July 2021, pepper |
GL | 10 | Guilin, Guangxi, southern China | 34.33 N, 113.75 E | July 2021, taro |
YX | 11 | Yuxi, Yunnan, southern China | 36.78 N, 117.23 E | August 2021, lotus root |
Insecticide | IRAC Mode of Action Class |
---|---|
Metaflumizone | 22B: Voltage-dependent sodium channel blockers |
Chlorantraniliprole | 28: Ryanodine receptor modulators |
Cyantraniliprole | 28: Ryanodine receptor modulators |
Tetraniliprole | 28: Ryanodine receptor modulators |
Chromafenozide | 18: Ecdysone receptor agonists |
Pyridalyl | Unknown |
Insecticide | N a | LC50 (95% CI; mg/L) b | Slope ± SE | X2 (df) | p Value |
---|---|---|---|---|---|
Metaflumizone | 200 | 4.264 (3.379–5.259) | 2.250 ± 0.287 | 1.003 (3) | 0.79 |
Chlorantraniliprole | 200 | 2.906 (2.200–3.930) | 1.579 ± 0.240 | 1.408 (3) | 0.71 |
Cyantraniliprole | 200 | 1.704 (1.309–2.149) | 1.967 ± 0.265 | 1.181 (3) | 0.77 |
Tetraniliprole | 200 | 0.124 (0.100–0.154) | 2.224 ± 0.276 | 1.557 (3) | 0.70 |
Chromafenozide | 200 | 1.080 (0.890–1.304) | 2.642 ± 0.310 | 0.550 (3) | 0.91 |
Pyridalyl | 200 | 1.394 (1.139–1.672) | 2.844 ± 0.360 | 0.752 (3) | 0.87 |
Population | Insecticide | N a | LC50 (95% CI; mg/L) b | Slope ± SE | X2 (df) | RR c | p Value |
---|---|---|---|---|---|---|---|
WH | Metaflumizone | 200 | 62.330 (49.193–80.598) | 1.911 ± 0.260 | 2.283 (3) | 14.6 | 0.51 |
Chlorantraniliprole | 200 | 3.431 (2.769–4.350) | 2.176 ± 0.276 | 2.203(3) | 1.2 | 0.52 | |
Cyantraniliprole | 200 | 0.991(0.730–1.307) | 1.585 ± 0.240 | 2.420 (3) | 0.6 | 0.49 | |
Tetraniliprole | 200 | 0.191 (0.147–0.242) | 1.921 ± 0.260 | 1.175 (3) | 1.5 | 0.77 | |
Chromafenozide | 200 | 1.159 (0.937–1.428) | 2.284 ± 0.282 | 1.785 (3) | 1.1 | 0.68 | |
Pyridalyl | 200 | 1.103 (0.907–1.333) | 2.602 ± 0.309 | 2.237 (3) | 0.8 | 0.51 | |
CS | Metaflumizone | 200 | 93.041 (69.574–137.290) | 1.545 ± 0.246 | 1.980 (3) | 21.8 | 0.65 |
Chlorantraniliprole | 200 | 5.827 (4.582–7.534) | 1.881 ± 0.255 | 2.650 (3) | 2.0 | 0.42 | |
Cyantraniliprole | 200 | 3.636 (2.766–5.184) | 1.652 ± 0.252 | 1.627 (3) | 2.1 | 0.69 | |
Tetraniliprole | 200 | 0.552 (0.393–0.793) | 1.289 ± 0.229 | 1.462 (3) | 4.5 | 0.71 | |
Chromafenozide | 200 | 8.643 (6.676–11.041) | 1.847 ± 0.254 | 0.777 (3) | 8.0 | 0.87 | |
Pyridalyl | 200 | 8.637 (6.953–10.673) | 2.244 ± 0.279 | 2.851 (3) | 6.2 | 0.41 | |
NC | Metaflumizone | 200 | 40.901 (32.577–53.488) | 2.042 ± 0.274 | 1.140 (3) | 9.6 | 0.77 |
Chlorantraniliprole | 200 | 1.482 (1.177–1.887) | 1.994 ± 0.262 | 2.437 (3) | 0.5 | 0.49 | |
Cyantraniliprole | 200 | 0.819 (0.625–1.034) | 1.960 ± 0.267 | 1.331 (3) | 0.5 | 0.73 | |
Tetraniliprole | 200 | 0.893 (0.625–1.106) | 1.338 ± 0.263 | 2.238 (3) | 7.2 | 0.52 | |
Chromafenozide | 200 | 1.554 (1.157–2.155) | 1.477 ± 0.237 | 1.952 (3) | 1.4 | 0.65 | |
Pyridalyl | 200 | 2.098 (1.614–2.689) | 1.818 ± 0.253 | 1.789 (3) | 1.5 | 0.67 |
Population | Insecticide | N a | LC50 (95%CI; mg/L) b | Slope ± SE | X2 (df) | RR c | p Value |
---|---|---|---|---|---|---|---|
HF | Metaflumizone | 200 | 19.373 (14.992–24.558) | 1.912 ± 0.259 | 2.185 (3) | 4.5 | 0.54 |
Chlorantraniliprole | 200 | 1.215 (0.953–1.549) | 1.908 ± 0.257 | 1.628 (3) | 0.4 | 0.69 | |
Cyantraniliprole | 200 | 1.119 (0.917–1.358) | 2.529 ± 0.301 | 1.684 (3) | 0.7 | 0.68 | |
Tetraniliprole | 200 | 0.582 (0.475–0.711) | 2.425 ± 0.293 | 2.052 (3) | 4.7 | 0.59 | |
Chromafenozide | 200 | 3.239 (2.618–4.063) | 2.203 ± 0.278 | 1.697 (3) | 3.0 | 0.68 | |
Pyridalyl | 200 | 2.919 (2.351–3.660) | 2.159 ± 0.273 | 1.549 (3) | 2.1 | 0.70 | |
YC | Metaflumizone | 200 | 124.814 (90.922–179.187) | 1.357 ± 0.232 | 1.785 (3) | 29.3 | 0.67 |
Chlorantraniliprole | 200 | 7.697 (6.028–9.648) | 2.032 ± 0.266 | 0.578 (3) | 2.6 | 0.90 | |
Cyantraniliprole | 200 | 3.681 (2.714–5.367) | 1.409 ± 0.236 | 1.424 (3) | 2.2 | 0.71 | |
Tetraniliprole | 200 | 0.244 (0.189–0.302) | 2.352 ± 0.320 | 1.241 (3) | 2.0 | 0.74 | |
Chromafenozide | 200 | 1.689 (1.296–2.133) | 1.950 ± 0.297 | 1.980 (3) | 1.6 | 0.65 | |
Pyridalyl | 200 | 5.262 (4.135–6.746) | 1.897 ± 0.255 | 1.938 (3) | 3.8 | 0.66 | |
LS | Metaflumizone | 200 | 145.567 (108.926–194.263) | 1.566 ± 0.238 | 2.166 (3) | 34.1 | 0.54 |
Chlorantraniliprole | 200 | 9.474 (6.795–13.104) | 1.372 ± 0.254 | 2.728 (3) | 3.3 | 0.43 | |
Cyantraniliprole | 200 | 4.663 (3.602–6.007) | 1.799 ± 0.250 | 1.293 (3) | 2.7 | 0.76 | |
Tetraniliprole | 200 | 0.329 (0.176–0.472) | 1.615 ± 0.294 | 1.972 (3) | 2.7 | 0.65 | |
Chromafenozide | 200 | 2.423 (1.813–3.329) | 1.506 ± 0.239 | 2.600 (3) | 2.2 | 0.43 | |
Pyridalyl | 200 | 10.112 (6.389–13.964) | 1.377 ± 0.241 | 1.610 (3) | 7.3 | 0.69 | |
ND | Metaflumizone | 200 | 216.677 (171.899–274.787) | 1.997 ± 0.263 | 2.385 (3) | 50.8 | 0.50 |
Chlorantraniliprole | 200 | 186.983 (150.143–232.434) | 2.181 ± 0.273 | 1.832 (3) | 64.3 | 0.66 | |
Cyantraniliprole | 200 | 14.312 (11.354–18.617) | 1.966 ± 0.266 | 2.569 (3) | 8.4 | 0.45 | |
Tetraniliprole | 200 | 0.604 (0.417–0.829) | 1.394 ± 0.204 | 1.004 (3) | 4.9 | 0.79 | |
Chromafenozide | 200 | 7.252 (1.813–3.329) | 2.023 ± 0.266 | 2.207 (3) | 6.7 | 0.52 | |
Pyridalyl | 200 | 33.708 (26.335–45.504) | 1.845 ± 0.261 | 2.880 (3) | 24.2 | 0.40 |
Population | Insecticide | N a | LC50 (95% CI; mg/L) b | Slope ± SE | X2 (df) | RR c | p Value |
---|---|---|---|---|---|---|---|
GZ | Metaflumizone | 200 | 341.918 (271.818–425.806) | 2.122 ± 0.271 | 1.317 (3) | 80.2 | 0.73 |
Chlorantraniliprole | 200 | 324.233 (248.476–449.835) | 1.671 ± 0.250 | 1.525 (3) | 111.6 | 0.70 | |
Cyantraniliprole | 200 | 25.887 (19.194–36.562) | 1.442 ± 0.235 | 0.905 (3) | 15.2 | 0.80 | |
Tetraniliprole | 200 | 0.457 (0.326–0.737) | 1.287 ± 0.235 | 2.306 (3) | 3.7 | 0.51 | |
Chromafenozide | 200 | 9.940 (7.645–12.940) | 1.740 ± 0.248 | 2.064 (3) | 9.2 | 0.59 | |
Pyridalyl | 200 | 51.219 (40.040–65.596) | 1.874 ± 0.255 | 1.507 (3) | 36.7 | 0.70 | |
SY | Metaflumizone | 200 | 176.440 (142.645–220.878) | 2.204 ± 0.288 | 2.291 (3) | 41.4 | 0.51 |
Chlorantraniliprole | 200 | 221.704 (167.731–288.184) | 1.699 ± 0.245 | 1.942 (3) | 76.3 | 0.65 | |
Cyantraniliprole | 200 | 18.026 (14.414–22.436) | 2.150 ± 0.272 | 1.561 (3) | 10.6 | 0.70 | |
Tetraniliprole | 200 | 0.254 (0.187–0.324) | 1.960 ± 0.279 | 1.024 (3) | 2.0 | 0.79 | |
Chromafenozide | 200 | 3.015 (2.379–3.713) | 2.295 ± 0.298 | 2.439 (3) | 2.8 | 0.49 | |
Pyridalyl | 200 | 26.464 (19.966–36.465) | 1.546 ± 0.241 | 0.938 (3) | 19.0 | 0.80 | |
GL | Metaflumizone | 200 | 27.666 (22.166–34.732) | 2.110 ± 0.270 | 1.713 (3) | 6.5 | 0.67 |
Chlorantraniliprole | 200 | 1.065 (0.707–1.420) | 1.678 ± 0.264 | 0.436 (3) | 0.4 | 0.93 | |
Cyantraniliprole | 200 | 1.275 (0.903–1.661) | 1.751 ± 0.261 | 0.488 (3) | 0.7 | 0.92 | |
Tetraniliprole | 200 | 0.237 (0.192–0.291) | 2.321 ± 0.284 | 2.193 (3) | 1.9 | 0.54 | |
Chromafenozide | 200 | 3.263 (2.701–3.971) | 2.627 ± 0.314 | 2.387 (3) | 3.0 | 0.50 | |
Pyridalyl | 200 | 0.790 (0.582–0.978) | 2.766 ± 0.444 | 1.287 (3) | 0.6 | 0.73 | |
YX | Metaflumizone | 200 | 275.731 (214.701–358.255) | 1.805 ± 0.251 | 2.407 (3) | 64.7 | 0.48 |
Chlorantraniliprole | 200 | 171.250 (126.156–227.052) | 1.558 ± 0.240 | 2.260 (3) | 58.9 | 0.51 | |
Cyantraniliprole | 200 | 24.834 (18.380–36.707) | 1.446 ± 0.240 | 1.817 (3) | 14.6 | 0.66 | |
Tetraniliprole | 200 | 0.396 (0.317–0.489) | 2.249 ± 0.282 | 1.933 (3) | 3.2 | 0.65 | |
Chromafenozide | 200 | 15.393 (11.683–21.537) | 1.589 ± 0.246 | 1.210 (3) | 14.3 | 0.76 | |
Pyridalyl | 200 | 85.007 (68.595–104.692) | 2.289 ± 0.282 | 2.070 (3) | 61.0 | 0.59 |
Metaflumizone | Chlorantraniliprole | Cyantraniliprole | Tetraniliprole | Chromafenozide | |
---|---|---|---|---|---|
Chlorantraniliprole | 0.918 ** | ||||
Cyantraniliprole | 0.916 ** | 0.969 ** | |||
Tetraniliprole | −0.067 | −0.002 | −0.005 | ||
Chromafenozide | 0.545 | 0.624 * | 0.722 * | 0.344 | |
Pyridalyl | 0.883 ** | 0.926 ** | 0.958 ** | 0.219 | 0.758 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Gao, B.; Qu, C.; Gong, J.; Li, W.; Luo, C.; Wang, R. Resistance Monitoring for Six Insecticides in Vegetable Field-Collected Populations of Spodoptera litura from China. Horticulturae 2022, 8, 255. https://doi.org/10.3390/horticulturae8030255
Zhang Z, Gao B, Qu C, Gong J, Li W, Luo C, Wang R. Resistance Monitoring for Six Insecticides in Vegetable Field-Collected Populations of Spodoptera litura from China. Horticulturae. 2022; 8(3):255. https://doi.org/10.3390/horticulturae8030255
Chicago/Turabian StyleZhang, Ziyi, Bingli Gao, Cheng Qu, Jingyu Gong, Wenxiang Li, Chen Luo, and Ran Wang. 2022. "Resistance Monitoring for Six Insecticides in Vegetable Field-Collected Populations of Spodoptera litura from China" Horticulturae 8, no. 3: 255. https://doi.org/10.3390/horticulturae8030255
APA StyleZhang, Z., Gao, B., Qu, C., Gong, J., Li, W., Luo, C., & Wang, R. (2022). Resistance Monitoring for Six Insecticides in Vegetable Field-Collected Populations of Spodoptera litura from China. Horticulturae, 8(3), 255. https://doi.org/10.3390/horticulturae8030255