Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Experimental Materials
2.2. Experimental Protocols for Shiitake Mushroom Cultivation
2.2.1. Substrate Preparation
2.2.2. Spawning, Spawn Running, and Incubation
2.2.3. Induction and Fructification
2.3. Analytical Methods
2.4. Nutrient Removal and Kinetics Studies
2.5. Data Analysis and Software
3. Results and Discussion
3.1. Properties of Water Supply and Wastewaters Used in This Study
3.2. Effect of Water Supply/Wastewaters on Mushroom Substrate
3.3. Changes in Mushroom Substrate Properties after Shiitake (L. edodes) Mushroom Cultivation
3.4. Effect of Water Supply/Wastewater Addition on Shiitake (L. edodes) Mushroom Productivity
3.5. Effect of Water Supply/Wastewater Addition on Biochemical Parameters of Shiitake (L. edodes) Mushroom
3.6. Kinetics of Delignification and Heavy Metals Uptake by Shiitake (L. edodes) Mushroom
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, P.; Kumar, V.; Goala, M.; Singh, J.; Kumar, P. Integrated use of treated dairy wastewater and agro-residue for Agaricus bisporus mushroom cultivation: Experimental and kinetics studies. Biocatal. Agric. Biotechnol. 2021, 32, 101940. [Google Scholar] [CrossRef]
- Kaur, V.; Sharma, G. Impact of Dairy Industrial Effluent of Punjab (India) on Seed Germination and Early Growth of Triticum aestivum. Indian J. Sci. Technol. 2017, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- National Dairy Development Board. Milk Production in India. Available online: https://www.nddb.coop/information/stats/milkprodindia (accessed on 24 February 2022).
- Shi, W.; Healy, M.G.; Ashekuzzaman, S.M.; Daly, K.; Leahy, J.J.; Fenton, O. Dairy processing sludge and co-products: A review of present and future re-use pathways in agriculture. J. Clean. Prod. 2021, 314, 128035. [Google Scholar] [CrossRef]
- Hena, S.; Fatimah, S.; Tabassum, S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour. Ind. 2015, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.K.; Sharma, S.; Patel, A.; Dixit, G.; Shah, E. Comprehensive evaluation of microalgal based dairy effluent treatment process for clean water generation and other value added products. Int. J. Phytoremediat. 2019, 21, 519–530. [Google Scholar] [CrossRef]
- Kushwaha, J.P.; Srivastava, V.C.; Mall, I.D. An overview of various technologies for the treatment of dairy wastewaters. Crit. Rev. Food Sci. Nutr. 2011, 51, 442–452. [Google Scholar] [CrossRef]
- Farizoglu, B.; Uzuner, S. The investigation of dairy industry wastewater treatment in a biological high performance membrane system. Biochem. Eng. J. 2011, 57, 46–54. [Google Scholar] [CrossRef]
- Goala, M.; Yadav, K.K.; Alam, J.; Adelodun, B.; Choi, K.S.; Cabral-Pinto, M.M.S.; Hamid, A.A.; Alhoshan, M.; Ali, F.A.A.; Shukla, A.K. Phytoremediation of dairy wastewater using Azolla pinnata: Application of image processing technique for leaflet growth simulation. J. Water Process Eng. 2021, 42, 102152. [Google Scholar] [CrossRef]
- Boczkaj, G.; Fernandes, A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Perle, M.; Kimchie, S.; Shelef, G. Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Res. 1995, 29, 1549–1554. [Google Scholar] [CrossRef]
- Raghunath, B.V.; Punnagaiarasi, A.; Rajarajan, G.; Irshad, A.; Elango, A.; Mahesh Kumar, G. Impact of Dairy Effluent on Environment—A Review. In Integrated Waste Management in India; Prashanthi, M., Sundaram, R., Eds.; Environmental Science and Engineering; Springer: Cham, Switzerland, 2016; pp. 239–249. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Batra, V.S. Valorization of solid waste in sugar factories with possible applications in India: A review. J. Environ. Manag. 2011, 92, 2886–2891. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Kesari, K.K.; Shurpali, N. Multidisciplinary Approaches to Handling Wastes in Sugar Industries. Water Air Soil Pollut. 2016, 227, 11. [Google Scholar] [CrossRef]
- Dwivedi, S.; Mishra, S.; Tripathi, R.D. Ganga water pollution: A potential health threat to inhabitants of Ganga basin. Environ. Int. 2018, 117, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Jha, P. Increase in Area Coverage under Sugarcane. Available online: https://www.chinimandi.com/area-coverage-under-sugarcane-increases/ (accessed on 24 February 2022).
- Gutiérrez-Hernández, R.F.; Nájera-Aguilar, H.A.; Araiza-Aguilar, J.A.; Martínez-Salinas, R.I.; García-Lara, C.M.; González-Vázquez, U.; Cruz-Salomón, A. Novel Treatment of Sugar Mill Wastewater in a Coupled System of Aged Refuse Filled Bioreactors (ARFB): Full-Scale. Processes 2021, 9, 516. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, J.; Nadeem, M.; Kumar, P.; Pathak, V.V. Experimental and Kinetics Studies for Biogas Production Using Water Hyacinth (Eichhornia crassipes [Mart.] Solms) and Sugar Mill Effluent. Waste Biomass Valoriz. 2020, 11, 109–119. [Google Scholar] [CrossRef]
- Vaithiyanathan, T.; Sundaramoorthy, P. Analysis of sugar mill effluent and its influence on germination and growth of African marigold (Tagetes erecta L.). Appl. Water Sci. 2017, 7, 4715–4723. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Chopra, A.K. Ferti-irrigational impact of sugar mill effluent on agronomical characteristics of Phaseolus vulgaris (L.) in two seasons. Environ. Monit. Assess. 2014, 186, 7877–7892. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K. Effects of sugarcane pressmud on agronomical characteristics of hybrid cultivar of eggplant (Solanum melongena L.) under field conditions. Int. J. Recycl. Org. Waste Agric. 2016, 5, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Chopra, A.K.; Srivastava, S.; Singh, J.; Thakur, R.K. Irrigating okra with secondary treated municipal wastewater: Observations regarding plant growth and soil characteristics. Int. J. Phytoremediat. 2017, 19, 490–499. [Google Scholar] [CrossRef]
- Güven, G.; Perendeci, A.; Tanyolaç, A. Electrochemical treatment of simulated beet sugar factory wastewater. Chem. Eng. J. 2009, 151, 149–159. [Google Scholar] [CrossRef]
- Sahu, O. Assessment of sugarcane industry: Suitability for production, consumption, and utilization. Ann. Agrar. Sci. 2018, 16, 389–395. [Google Scholar] [CrossRef]
- Ayyasamy, P.M.; Yasodha, R.; Rajakumar, S.; Lakshmanaperumalsamy, P.; Rahman, P.K.S.M.; Lee, S. Impact of sugar factory effluent on the growth and biochemical characteristics of terrestrial and aquatic plants. Bull. Environ. Contam. Toxicol. 2008, 81, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, I.M.; Kim, S.Y.; Han, J.G.; Kong, W.S.; Jung, M.Y.; Kim, S.H. Fatty acids and stable isotope ratios in shiitake mushrooms (Lentinula edodes) indicate the origin of the cultivation substrate used: A preliminary case study in Korea. Foods 2020, 9, 1210. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, M.C.N.; Sales-Campos, C.; de Carvalho, C.S.M.; de Aguiar, L.B.; de Almeida Minhoni, M.T. Uso de resíduos madeireiros da Amazônia brasileira no cultivo in vitro de Lentinus strigosus/Use of wood waste from the Brazilian Amazon in the in vitro cultivation of Lentinus strigosus. Rev. Ambiência 2013, 9, 189–196. [Google Scholar] [CrossRef]
- Sassine, Y.N.; Naim, L.; El Sebaaly, Z.; Abou Fayssal, S.; Alsanad, M.A.; Yordanova, M.H. Nano urea effects on Pleurotus ostreatus nutritional value depending on the dose and timing of application. Sci. Rep. 2021, 11, 5588. [Google Scholar] [CrossRef]
- Abou Fayssal, S.; Alsanad, M.A.; Yordanova, M.H.; El Sebaaly, Z.; Najjar, R.; Sassine, Y.N. Effect of olive pruning residues on substrate temperature and production of oyster mushroom (Pleurotus ostreatus). In Proceedings of the IV International Symposium on Horticulture in Europe-SHE2021, Stuttgart, Germany, 8–12 March 2021; pp. 245–252. [Google Scholar] [CrossRef]
- Hoa, H.T.; Wang, C.L.; Wang, C.H. The effects of different substrates on the growth, yield andnutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Parola, S.; Chiodaroli, L.; Orlandi, V.; Vannin, C.; Panno, L. Lentinula edodes and Pleurotus ostreatus: Functional food with antioxidant—Antimicrobial activity and an important source of Vitamin D and medicinal compounds. Funct. Foods Health Dis. 2017, 7, 773. [Google Scholar] [CrossRef] [Green Version]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms: Technology and Applications; Zied, D.C., Pardo-Giménez, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 5–13. [Google Scholar] [CrossRef]
- Upadhyay, R.C.; Verma, R.N.; Singh, S.K.; Yadav, M.C. Effect of organic nitrogen supplementation in Pleurotus species. Mushroom Biol. Mushroom Prod. 2002, 105, 225–232. [Google Scholar]
- Kumar, P.; Kumar, V.; Adelodun, B.; Bedeković, D.; Kos, I.; Širić, I.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Abou Fayssal, S.; et al. Sustainable Use of Sewage Sludge as a Casing Material for Button Mushroom (Agaricus bisporus) Cultivation: Experimental and Prediction Modeling Studies for Uptake of Metal Elements. J. Fungi 2022, 8, 112. [Google Scholar] [CrossRef]
- Abou Fayssal, S.; El Sebaaly, Z.; Alsanad, M.A.; Najjar, R.; Bohme, M.; Yordanova, M.H.; Sassine, Y.N. Combined effect of olive pruning residues and spent coffee grounds on Pleurotus ostreatus production, composition, and nutritional value. PLoS ONE 2021, 16, e0255794. [Google Scholar] [CrossRef]
- Xu, S.; Wang, F.; Fu, Y.; Li, D.; Sun, X.; Li, C.; Song, B.; Li, Y. Effects of mixed agro-residues (corn crop waste) on lignin-degrading enzyme activities, growth, and quality of: Lentinula edodes. RSC Adv. 2020, 10, 9798–9807. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, K. Cultivation of Mushrooms in Plastic Bottles and Small Bags. In Edible and Medicinal Mushrooms: Technology and Applications; Zied, D.C., Pardo-Giménez, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 309–338. [Google Scholar] [CrossRef]
- Murthy, P.S.; Manonmani, H.K. Bioconversion of Coffee Industry Wastes with White Rot Fungus Pleurotus florida. Res. J. Environ. Sci. 2008, 2, 145–150. [Google Scholar] [CrossRef]
- Royse, D.J.; Sanchez, J.E. Ground wheat straw as a substitute for portions of oak wood chips used in shiitake (Lentinula edodes) substrate formulae. Bioresour. Technol. 2007, 98, 2137–2141. [Google Scholar] [CrossRef] [PubMed]
- Narvaez, L.C.; Bolaños Rojas, A.C.; Chaurra Arboleda, A.M.; Zuñiga Escobar, O. Changes in macronutrients and physical prpoerties during the growth of Lentinula edodes and Pleurotus ostreatus in a composed based on sugarcane bagasse agricultural waste. Chil. J. Agric. Anim. Sci. 2021, 37, 301–312. [Google Scholar] [CrossRef]
- Philippoussis, A.; Diamantopoulou, P.; Zervakis, G. Correlation of the properties of several lignocellulosic substrates to the crop performance of the shiitake mushroom Lentinula edodes. World J. Microbiol. Biotechnol. 2003, 19, 551–557. [Google Scholar] [CrossRef]
- Kumar, V.; Goala, M.; Kumar, P.; Singh, J.; Kumar, P. Integration of treated agro-based wastewaters (TAWs) management with mushroom cultivation. Environ. Degrad. Causes Remediat. Strateg. 2020, 6, 63–75. [Google Scholar] [CrossRef]
- Naim, L.; El Sebaaly, Z.; Abou Fayssal, S.; Alsanad, M.A.; Najjar, R.; Yordanova, M.H.; Sassine, Y.N. The use of nitrogen-rich nano-supplements affects substrate temperature, delays the production cycle, and increases yield of Pleurotus ostreatus. In Proceedings of the IV International Symposium on Horticulture in Europe-SHE2021, Stuttgart, Germany, 8–12 March 2021; pp. 831–840. [Google Scholar] [CrossRef]
- Kumar, V.; Valadez-Blanco, R.; Kumar, P.; Singh, J.; Kumar, P. Effects of treated sugar mill effluent and rice straw on substrate properties under milky mushroom (Calocybe indica P&C) production: Nutrient utilization and growth kinetics studies. Environ. Technol. Innov. 2020, 19, 101041. [Google Scholar] [CrossRef]
- Gothwal, R.; Gupta, A.; Kumar, A.; Sharma, S.; Alappat, B.J. Feasibility of dairy waste water (Dww) and distillery spent wash (dsw) effluents in increasing the yield potential of pleurotus flabellatus (pf 1832) and pleurotus sajor-caju (ps 1610) on bagasse. 3 Biotech. 2012, 2, 249–257. [Google Scholar] [CrossRef] [Green Version]
- AOAC Official Methods of Analysis, 21st Edition (2019)—AOAC International. Available online: https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/ (accessed on 15 November 2021).
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Gessner, M.O. Proximate Lignin and Cellulose. In Methods to Study Litter Decomposition; Manuel, A.S., Graça, F.B., Mark, O.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 115–120. [Google Scholar]
- Dhiman, N.; Chaudhary, S.; Singh, A.; Chauhan, A.; Kumar, R. Sustainable degradation of pharmaceutical waste using different fungal strains: Enzyme induction, kinetics and isotherm studies. Environ. Technol. Innov. 2022, 25, 102156. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Singh, J.; Kumar, P. Kinetics of nutrients remediation from sugar industry effluent—Treated substrate using Agaricus bisporus: Mushroom yield and biochemical potentials. 3 Biotech. 2021, 11, 164. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Charalambous, P.; Vyrides, I. Dairy wastewater management in EU: Produced amounts, existing legislation, applied treatment processes and future challenges. J. Environ. Manag. 2022, 303, 114152. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, M.; Natarajan, N. Towards achieving sustainable bioplastics production and nutrient recovery from wastewater—A comprehensive overview on polyhydroxybutyrate. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Afanasevna, I.L.; Andreevich, F.; Alekseevna, C.L.; Pavlovna, K.T. Overview of Mycelial Fungi—Lignin Destructors. KnE Life Sci. 2022, 2022, 175–180. [Google Scholar] [CrossRef]
- Mäkelä, M.R.; Donofrio, N.; De Vries, R.P. Plant biomass degradation by fungi. Fungal Genet. Biol. 2014, 72, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Marzluf, G.A. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev. 1997, 61, 17–32. [Google Scholar] [CrossRef]
- Carrasco-Cabrera, C. The role of nitrogen sources and caffeine for growth of Pleurotus ostreatus (oyster mushroom). Ph.D. Thesis, Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia, 2018. [Google Scholar]
- Vane, C.H.; Martin, S.C.; Snape, C.E.; Abbott, G.D. Degradation of lignin in wheat straw during growth of the oyster mushroom (Pleurotus ostreatus) using off-line thermochemolysis with tetramethylammonium hydroxide and solid-state 13C NMR. J. Agric. Food Chem. 2001, 49, 2709–2716. [Google Scholar] [CrossRef]
- Rizki, M.; Tamai, Y. Effects of different nitrogen rich substrates and their combination to the yield performance of oyster mushroom (Pleurotus ostreatus). World J. Microbiol. Biotechnol. 2011, 27, 1695–1702. [Google Scholar] [CrossRef]
- Pardo, A.; de Juan, A.; Alvarez-Ortí, M.; Pardo, J.E. Screening of Agaricus bisporus (Lange, Imbach) strains and the casing variables for quality mushroom production in Spain. HortScience 2010, 45, 231–235. [Google Scholar] [CrossRef]
- El Sebaaly, Z.; Assadi, F.; Sassine, Y.N.; Shaban, N. Substrate types effect on nutritional composition of button mushroom (Agaricus bisporus). Agric. For. 2019, 65, 73–80. [Google Scholar] [CrossRef]
- Sharma, V.P.; Kumar, S.; Sharma, S. Technologies Developed by ICAR-DMR for Commercial Use; ICAR-Directorate of Mushroom Research: Solan, India, 2020. [Google Scholar]
- Kalmis, E.; Azbar, N.; Yildiz, H.; Kalyoncu, F. Feasibility of using olive mill effluent (OME) as a wetting agent during the cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw. Bioresour. Technol. 2008, 99, 164–169. [Google Scholar] [CrossRef]
- Keleş, A.; Koca, I.; Gençcelep, H. Antioxidant Properties of Wild Edible Mushrooms. J. Food Process. Technol. 2011, 2, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Gąsecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P. Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur. Food Res. Technol. 2016, 242, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Ferreira, M.J.; Queirós, B.; Ferreira, I.C.F.R.; Baptista, P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007, 103, 413–419. [Google Scholar] [CrossRef]
- FAO/WHO. Report of the Thirty Eight Session of the Codex Committee on Food Hygiene. In Proceedings of the FAO/WHO Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session, Houston, TX, USA, 2007; ALINORM 07/30/13. Available online: http://files.eacce.org.ma/pj/1417757518.pdf (accessed on 11 January 2022).
- Awashthi, S.K. Prevention of Food Adulteration Act No. 37 of 1954; Central and State Rules as Amended for 1999; Ashoka Law House: New Delhi, India, 2000. [Google Scholar]
- Damodaran, D.; Balakrishnan, R.M.; Shetty, V.K. The Uptake Mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by Mycelia and Fruiting Bodies of Galerina vittiformis. BioMed Res. Int. 2013, 2013, 149120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.T.; Miles, P.G. Edible mushrooms and their cultivation. In Edible Mushrooms and Their Cultivation; Change, S.T., Miles, P.G., Eds.; CRC Press: Boca Raton, FL, USA, 1989; pp. 189–223. [Google Scholar]
- As 4454-2003; Australian Standard: Composts, Soil Conditioners and Mulches. Standards Australia: Sydney, Australia, 2012.
- Ertugay, N.; Bayhan, Y.K. The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination 2010, 255, 137–142. [Google Scholar] [CrossRef]
Parameter | Water Supply | Dairy Plant Wastewater | Sugar Mill Wastewater | BIS Standard for Surface Discharge | CPCB Standard for Inland Irrigation |
---|---|---|---|---|---|
pH ^ | 7.26 ± 0.01 a | 6.33 ± 0.02 b | 6.57 ± 0.03 c | 5.50–9.00 | 5.50–9.00 |
Electrical conductivity (dS/m) ^ | 0.39 ± 0.12 a | 6.77 ± 0.11 b | 3.07 ± 0.11 c | NA | NA |
Total dissolved solids | 120.23 ± 6.32 a | 1762.70 ± 27.40 b | 1202.40 ± 50.10 c | 1900 | - |
Biological oxygen demand | 2.73 ± 0.25 a | 1477.62 ± 19.56 b | 997.48 ± 12.09 c | 100 | 30 |
Chemical oxygen demand | 6.88 ± 0.63 a | 2526.02 ± 39.54 b | 1784.63 ± 58.05 c | 250 | 250 |
Total Kjeldahl’s nitrogen | 4.25 ± 0.05 a | 164.40 ± 7.12 b | 182.97 ± 4.05 b | 100 | 100 |
Total phosphorus | 2.75 ± 0.10 a | 152.21 ± 5.24 b | 140.84 ± 8.21 b | NA | 5 |
Cd | BDL | 0.37 ± 0.06 a | 0.49 ± 0.04 a | 2 | 2 |
Cu | 0.01 ± 0.01 a | 2.79 ± 0.03 b | 0.62 ± 0.01 c | 3 | 3 |
Cr | BDL | 0.98 ± 0.03 a | 0.84 ± 0.09 a | 2 | NA |
Fe | 0.69 ± 0.01 a | 8.44 ± 0.02 b | 2.12 ± 0.02 c | 1 | 3 |
Mn | 0.08 ± 0.01 a | 3.29 ± 0.01 b | 2.03 ± 0.01 c | 1 | 2 |
Zn | 0.01 ± 0.01 a | 3.64 ± 0.04 b | 1.87 ± 0.02 c | 15 | 5 |
Substrate Parameters | Control | Dairy Plant Wastewater | Sugar Mill Wastewater | |||
---|---|---|---|---|---|---|
50% | 100% | 50% | 100% | |||
pH | Before | 5.55 ± 0.03 a | 5.86 ± 0.01 a | 6.13 ± 0.01 a | 5.90 ± 0.03 a | 6.25 ± 0.07 a |
After | 4.57 ± 0.05 b | 4.68 ± 0.05 b | 4.99 ± 0.03 b | 4.62 ± 0.03 b | 4.85 ± 0.07 b | |
Electrical conductivity (dS/m) | Before | 4.76 ± 0.01 a | 4.96 ± 0.01 a | 5.20 ± 0.06 a | 4.91 ± 0.09 a | 5.14 ± 0.02 a |
After | 4.16 ± 0.18 b | 4.05 ± 0.10 b | 4.18 ± 0.05 b | 4.10 ± 0.27 b | 4.25 ± 0.17 b | |
Organic carbon (g/kg) | Before | 275.09 ± 1.80 a | 303.48 ± 1.05 a | 327.55 ± 2.09 a | 299.70 ± 2.56 a | 322.86 ± 2.75 a |
After | 210.87 ± 1.01 b | 214.92 ± 2.57 b | 225.34 ± 3.84 | 216.51 ± 2.82 | 229.50 ± 3.05 | |
Total Kjeldahl’s nitrogen (g/kg) | Before | 14.24 ± 0.16 a | 17.06 ± 0.11 a | 20.73 ± 0.18 a | 17.99 ± 0.16 a | 21.62 ± 0.10 a |
After | 10.56 ± 0.28 b | 10.69 ± 0.30 b | 13.42 ± 0.55 b | 12.40 ± 0.09 b | 13.70 ± 0.19 b | |
Total phosphorus (g/kg) | Before | 7.57 ± 0.05 a | 8.18 ± 0.04 a | 9.07 ± 0.15 a | 8.07 ± 0.06 a | 8.75 ± 0.10 a |
After | 5.63 ± 0.13 b | 5.54 ± 0.31 b | 6.15 ± 0.21 b | 5.80 ± 0.26 b | 5.98 ± 0.20 b | |
Lignin (%) | Before | 23.91 ± 0.40 a | 23.15 ± 0.30 a | 23.65 ± 0.23 a | 23.17 ± 0.14 a | 23.75 ± 0.40 a |
After | 11.56 ± 0.12 b | 9.50 ± 0.05 b | 10.45 ± 0.20 b | 10.12 ± 0.08 b | 11.20 ± 0.15 b | |
Cellulose (%) | Before | 34.16 ± 0.30 a | 34.50 ± 0.28 a | 34.72 ± 0.35 a | 34.33 ± 0.18 a | 34.29 ± 0.23 a |
After | 28.27 ± 1.10 b | 22.39 ± 0.90 b | 24.38 ± 0.52 b | 22.55 ± 0.46 b | 25.46 ± 1.28 b | |
Hemicellulose (%) | Before | 20.46 ± 0.78 a | 21.56 ± 0.52 a | 21.20 ± 0.61 a | 21.02 ± 0.32 a | 20.80 ± 0.71 a |
After | 12.44 ± 0.13 b | 10.45 ± 0.20 b | 11.40 ± 0.11 b | 10.89 ± 0.06 b | 11.94 ± 0.19 b | |
Cd (mg/kg) | Before | 0.20 ± 0.01 a | 0.23 ± 0.01 a | 0.37 ± 0.01 a | 0.29 ± 0.01 a | 0.35 ± 0.01 a |
After | 0.13 ± 0.01 b | 0.18 ± 0.01 b | 0.28 ± 0.01 b | 0.16 ± 0.01 b | 0.21 ± 0.07 b | |
Cr (mg/kg) | Before | 14.08 ± 0.02 a | 15.07 ± 0.05 a | 16.08 ± 0.09 a | 14.87 ± 0.01 a | 15.69 ± 0.04 a |
After | 12.96 ± 0.07 b | 13.49 ± 0.14 b | 14.57 ± 0.01 b | 13.44 ± 0.12 b | 14.27 ± 0.40 b | |
Cu (mg/kg) | Before | 37.08 ± 0.17 a | 48.06 ± 2.07 a | 57.10 ± 4.70 a | 44.70 ± 0.03 a | 52.81 ± 0.23 a |
After | 18.70 ± 2.09 b | 20.06 ± 1.95 b | 24.43 ± 2.03 b | 20.41 ± 1.99 b | 24.81 ± 1.76 b | |
Fe (mg/kg) | Before | 4589.34 ± 0.03 a | 4608.84 ± 1.50 a | 4621.42 ± 1.05 a | 4596.27 ± 0.04 a | 4609.43 ± 0.05 a |
After | 4547.28 ± 0.19 b | 4541.83 ± 0.93 b | 4540.82 ± 0.87 b | 4546.54 ± 0.89 b | 4558.09 ± 1.32 b | |
Mn (mg/kg) | Before | 127.01 ± 0.37 a | 137.04 ± 0.49 a | 144.22 ± 0.53 a | 131.01 ± 0.10 a | 136.42 ± 0.27 a |
After | 123.96 ± 0.88 b | 131.76 ± 1.00 b | 138.25 ± 1.06 b | 126.08 ± 0.81 b | 132.46 ± 0.92 b | |
Zn (mg/kg) | Before | 184.54 ± 0.47 a | 192.63 ± 0.74 a | 198.11 ± 0.98 a | 187.02 ± 0.30 a | 192.08 ± 0.18 a |
After | 155.77 ± 1.05 b | 151.41 ± 0.91 b | 152.23 ± 0.91 b | 149.01 ± 1.05 b | 148.81 ± 1.26 b |
Parameters | Control | Dairy Plant Wastewater | Sugar Mill Wastewater | ||
---|---|---|---|---|---|
50% | 100% | 50% | 100% | ||
Mushroom yield (g/kg FS) | 154.00 ± 3.76 a | 186.00 ± 3.10 b | 180.00 ± 4.95 b | 176.09 ± 4.12 b | 172.30 ± 2.45 b |
Biological efficiency (%) | 62.67 ± 1.50 a | 80.00 ± 0.58 b | 74.00 ± 0.15 c | 75.73 ± 0.93 c | 71.53 ± 2.05 c |
Mycelium coverage (%) | 75.50 ± 2.38 a | 90.70 ± 1.47 b | 86.10 ± 2.10 c | 88.65 ± 1.82 b | 81.09 ± 2.75 c |
Mycelium running time (days) | 64 ± 1 a | 60 ± 1 b | 59 ± 2 b | 60 ± 1 b | 60 ± 1 b |
Total phenols (mg/g) | 2.54 ± 0.06 a | 2.84 ± 0.03 b | 2.74 ± 0.02 c | 2.69 ± 0.03 d | 2.65 ± 0.03 d |
Ascorbic acid (mg/g) | 0.25 ± 0.02 a | 0.34 ± 0.03 b | 0.33 ± 0.02 b | 0.32 ± 0.02 b | 0.31 ± 0.02 b |
β-carotene (μg/g) | 2.20 ± 0.04 a | 2.48 ± 0.06 b | 2.36 ± 0.05 b | 2.29 ± 0.02 a | 2.25 ± 0.04 a |
Heavy Metals (mg/kg dwt.) | Control | Dairy Plant Wastewater | Sugar Mill Wastewater | Safe Limits | ||
---|---|---|---|---|---|---|
50% | 100% | 50% | 100% | |||
Cd | 0.13 ± 0.01 a | 0.15 ± 0.01 a | 0.15 ± 0.01 a | 0.16 ± 0.01 b | 0.15 ± 0.01 a | 0.20 ^ |
Cu | 22.87 ± 0.07 a | 27.56 ± 0.20 b | 29.32 ± 0.65 b | 24.12 ± 0.21 b | 25.43 ± 0.17 b | 30.00 ^^ |
Cr | 1.12 ± 0.01 a | 1.50 ± 0.01 b | 1.64 ± 0.05 b | 1.30 ± 0.01 b | 1.32 ± 0.01 b | 20.00 ^^ |
Fe | 42.06 ± 0.15 a | 67.01 ± 0.51 c | 60.51 ± 1.00 c | 47.72 ± 0.26 b | 44.75 ± 0.41 b | 425.50 ^ |
Mn | 3.05 ± 0.02 a | 5.28 ± 0.01 b | 6.34 ± 0.05 c | 4.91 ± 0.03 b | 5.04 ± 0.01 b | 30.00 ^ |
Zn | 28.77 ± 0.60 a | 41.21 ± 0.62 b | 46.09 ± 0.96 c | 38.01 ± 0.20 b | 41.10 ± 0.42 b | 50.00 ^^ |
Substrate Parameters | Model Parameters | Control | Dairy Plant Wastewater | Sugar Mill Wastewater | ||
---|---|---|---|---|---|---|
50% | 100% | 50% | 100% | |||
Lignin | Equation | y = −0.0034x + 1.4289 | y = −0.0041x + 1.4249 | y = −0.0037x + 1.4292 | y = −0.0039x + 1.4208 | y = −0.0035x + 1.4319 |
R2 | 0.90 | 0.90 | 0.88 | 0.91 | 0.85 | |
Cellulose | Equation | y = −0.0009x + 1.5391 | y = −0.0021x + 1.5578 | y = −0.0017x + 1.5535 | y = −0.0020x + 1.5549 | y = −0.0014x + 1.552 |
R2 | 0.96 | 0.95 | 0.94 | 0.96 | 0.92 | |
Hemicellulose | Equation | y = −0.0026x + 1.3347 | y = −0.0034x + 1.3466 | y = −0.0029x + 1.3394 | y = −0.0031x + 1.3487 | y = −0.0028x + 1.3561 |
R2 | 0.92 | 0.97 | 0.98 | 0.95 | 0.89 | |
Cd | Equation | y = −0.0019x − 0.667 | y = −0.0012x − 0.6244 | y = −0.0013x − 0.4136 | y = −0.0026x − 0.4873 | y = −0.0022x − 0.413 |
R2 | 0.87 | 0.95 | 0.91 | 0.79 | 0.78 | |
Cu | Equation | y = −0.0004x + 1.1559 | y = −0.0005x + 1.1873 | y = −0.0004x + 1.2123 | y = −0.0004x + 1.1797 | y = −0.0004x + 1.2028 |
R2 | 0.75 | 0.80 | 0.79 | 0.86 | 0.84 | |
Cr | Equation | y = −0.0029x + 1.6329 | y = −0.0033x + 1.7575 | y = −0.0031x + 1.8298 | y = −0.0029x + 1.7165 | y = −0.0030x + 1.7868 |
R2 | 0.72 | 0.66 | 0.70 | 0.65 | 0.72 | |
Fe | Equation | y = −4E−05x + 3.6625 | y = −6E−05x + 3.6647 | y = −8E−05x + 3.6663 | y = −5E−05x + 3.6633 | y = −5E−05x + 3.6643 |
R2 | 0.78 | 0.75 | 0.77 | 0.79 | 0.85 | |
Mn | Equation | y = −0.0001x + 2.1052 | y = −0.0002x + 2.1401 | y = −0.0002x + 2.1628 | y = −0.0002x + 2.118 | y = −0.0001x + 2.1369 |
R2 | 0.88 | 0.79 | 0.73 | 0.94 | 0.79 | |
Zn | Equation | y = −0.0008x + 2.2819 | y = −0.0009x + 2.3049 | y = −0.0010x + 2.3203 | y = −0.0008x + 2.2907 | y = −0.0010x + 2.3055 |
R2 | 0.74 | 0.67 | 0.66 | 0.65 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Eid, E.M.; Al-Huqail, A.A.; Širić, I.; Adelodun, B.; Abou Fayssal, S.; Valadez-Blanco, R.; Goala, M.; Ajibade, F.O.; Choi, K.S.; et al. Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes. Horticulturae 2022, 8, 316. https://doi.org/10.3390/horticulturae8040316
Kumar P, Eid EM, Al-Huqail AA, Širić I, Adelodun B, Abou Fayssal S, Valadez-Blanco R, Goala M, Ajibade FO, Choi KS, et al. Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes. Horticulturae. 2022; 8(4):316. https://doi.org/10.3390/horticulturae8040316
Chicago/Turabian StyleKumar, Pankaj, Ebrahem M. Eid, Arwa A. Al-Huqail, Ivan Širić, Bashir Adelodun, Sami Abou Fayssal, Rogelio Valadez-Blanco, Madhumita Goala, Fidelis O. Ajibade, Kyung Sook Choi, and et al. 2022. "Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes" Horticulturae 8, no. 4: 316. https://doi.org/10.3390/horticulturae8040316
APA StyleKumar, P., Eid, E. M., Al-Huqail, A. A., Širić, I., Adelodun, B., Abou Fayssal, S., Valadez-Blanco, R., Goala, M., Ajibade, F. O., Choi, K. S., & Kumar, V. (2022). Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes. Horticulturae, 8(4), 316. https://doi.org/10.3390/horticulturae8040316