Bioconversion of Agricultural Wastes into a Value-Added Product: Straw of Norwegian Grains Composted with Dairy Manure Food Waste Digestate in Mushroom Cultivation
Abstract
:1. Introduction
- Investigate the effectiveness of using original (not separated into liquid and solid fraction) combined food waste—diary manure digestate, hereafter called ‘original digestate’ (OD), and straw of Norwegian grains in Phase I and II composting.
- Examine a range of different straw ratios to determine suitable mushroom compost composition for A. subrufescens mushroom cultivation.
- Determine the influence of straw type and OD on A. subrufescens productivity parameters: yield, biological efficiency (BE), and dry matter (DM) of mushroom fruiting bodies and on mushroom cultivation parameters: earliness, precociousness, and number of mushrooms.
2. Materials and Methods
2.1. Fungal Strains
2.2. Mushroom Compost and Casing Material
2.3. Experiment Set-Up and Measurements
2.3.1. Experiment 1—Use of Original Digestate (OD) in A. subrufescens Cultivation
2.3.2. Experiment 2a and b: Use of Optimal Corn Straw Combination in A. subrufescens Cultivation
2.4. Mixing and Composting Procedures
2.5. Compost Preparation
2.5.1. Phase I—The Composting Process
2.5.2. Phase II—Pasteurization
2.6. Mushroom Cultivation and Cropping Procedures
2.6.1. Bag Cultivation
2.6.2. Incubation, Casing, Pinning, and Fructification
2.6.3. Harvest
2.7. Analysis of Raw Materials and Experimental Mushroom Composts
2.7.1. Sampling and Homogenization
2.7.2. Other Analysis
2.7.3. Statistical Analysis
- Productivity parameters:
- ◦
- Yield = (fresh weight of mushrooms from the whole cropping period)/(fresh weight of substrate at inoculation)
- ◦
- Biological efficiency (BE) of substrates = (fresh weight of mushrooms from the whole cropping period)/(dry weight of substrate at inoculation)
- ◦
- Dry matter of mushrooms (DM) = (fresh weight of harvested mushrooms)/(dry weight of harvested mushrooms)
- Mushroom cultivation parameters
- ◦
- ◦
- Precociousness (P) (yield in first half of harvest time)/(yield in total harvest time) [36]. This is a specific parameter used to monitor the yield at mid-cycle of the crop development (the higher the value of p the better).
- ◦
- Number of mushrooms = number of mushrooms harvested during the whole cropping period
3. Results and Discussion
3.1. Mixing and Composting of Wheat Straw with Original Digestate—Experiment 1
Effect of the C/N Ratio of the Original Digestate Based Experimental Mushroom Composts on the Mushroom Yield and Biological Efficiency (BE) of the Mushroom Composts
3.2. The Effect Straw Type on Mushroom Productivity and Cultivation Parameters
3.2.1. Mixing and Composting Optimization
3.2.2. Agaricus subrufescens Productivity and Cultivation Parameters
4. Conclusions
- Using original digestate:
- a.
- Mixes well with investigated native corn straws of barley, oat, and wheat;
- b.
- Has appropriate moisture of experimental mushroom compost, 64.1% to 78.1% at the point of inoculation, for A. subrufescens was achieved without additional watering during composting process;
- c.
- Presents good composting process supported substrate colonization and mushroom formation;
- d.
- Has appropriate final C/N ratios of experimental mushroom composts, ranging from 21.9 up to 29.7.
- Experimental mushroom compost mixes with barley straw were the best performing substrates. Barley enriched substrates showed the best productivity (123.2 up to 157.9 g kg−1), BE (48 up to 64%).
- Mushroom cultivation parameters such as earliness (time to harvest from casing) was shortest for mixes with barley straw, while precociousness (time of the highest mushroom production after casing) was the lowest for oat mixes.
- The optimal digestate mushroom compost for A. subrufescens cultivation is a mixture of all three types of native Norwegian straws: barley, oat, and wheat in a 3:1.5:3 ratio.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food Waste Is Responsible for 6% of Global Greenhouse Gas Emissions—Our World in Data. Available online: http://ourworldindata.org/food-waste-emissions (accessed on 20 January 2022).
- Appels, L.; Lauwersa, J.; Degrèvea, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011, 15, 4295–4301. [Google Scholar] [CrossRef]
- Tuck, O.T.; Pérez, E.; Horváth, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 6095. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, M.; Attard, T.M.; Lukasik, R.M.; Brncic, M.; da Costa Lopes, A.M.; Finell, M.; Yuste-Córdoba, F.J. Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem. 2016, 18, 6160–6204. [Google Scholar] [CrossRef] [Green Version]
- Francavilla, M.; Beneduce, L.; Gatta, G.; Montoneri, E.; Monteleone, M.; Mainero, D. Biochemical and chemical technology for a virtuous bio-waste cycle to produce biogas without ammonia and specialty bio-based chemicals with reduced entrepreneurial risk. J. Chem. Technol. Biotechnol. 2016, 91, 2679–2687. [Google Scholar] [CrossRef]
- Sharma, V.P.; Kumar, S.; Sharma, S. Technologies Developed by ICAR-Directorate of Mushroom Research for Commercial Use; ICAR-DMR: Solan, India, 2020.
- Zhang, Y.; Banks, C.J.; Heaven, S. Co-digestion of source segregated domestic food waste to improve process stability. Bioresour. Technol. 2012, 114, 168–178. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, B.J.; Milligan, E.; Carver, J.; Roy, E.D. Integrating anaerobic co-digestion of dairy manure and food waste with cultivation of edible mushrooms for nutrient recovery. Bioresour. Technol. 2019, 285, 121–312. [Google Scholar] [CrossRef]
- Stoknes, K.; Høiland, K.; Norgaard, E.; Hammer, J.P. From food to waste to food: A high yield of mushrooms from food waste compost. Science and Cultivation of Edible and Medicinal Fungi: Mushroom Science XVII. In Proceedings of the 17th Congress of the International Society for Mushroom Science, Cape Town, South Africa, 20–24 May 2008. [Google Scholar]
- Savoie, J.M.; Vedier, R.; Blanc, F.; Minvielle, N.; Rousseaut, T.; Delgenès, J.P. Biomethane Digestate from Horse Manure, a New Waste Usable in Compost for Growing the Button Mushroom, Agaricus bisporus? In Mushroom Biology and Mushroom Products. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, Arcachon, France, 4–7 October 2011; Institut National de la Recherche Agronomique (INRA): Paris, France, 2011. [Google Scholar]
- Stoknes, K.; Beyer, D.M.; Norgaard, E. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity. J. Sci. Food Agric. 2013, 93, 2188–2200. [Google Scholar] [CrossRef]
- Stoknes, K.; Scholwin, F.; Krzesiński, W.; Wojciechowska, E.; Jasińska, A. Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag. 2016, 56, 466–476. [Google Scholar] [CrossRef]
- Chanakya, H.N.; Malayil, S.; Vijayalakshmi, C. Cultivation of Pleurotus spp. on a combination of anaerobically digested plant material and various agroresidues. Energy Sustain. Dev. 2015, 27, 84–92. [Google Scholar] [CrossRef]
- Jasińska, A.J.; Wojciechowska, E.; Krzesiński, W.; Spiżewski, T.; Stoknes, K.; Krajewska, K. Mushroom cultivation on substrates with addition of anaerobically digested food waste. Acta Hortic. 2016, 1123, 199–206. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Adelodun, B.; Bedeković, D.; Kos, I.; Širić, I.; Silva, L.F. Sustainable Use of Sewage Sludge as a Casing Material for Button Mushroom (Agaricus bisporus) Cultivation: Experimental and Prediction Modeling Studies for Uptake of Metal Elements. J. Fungi 2022, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Lau, O.W.; Cho, K.Y. The cultivation and nutritional value of Pleurotus sajor-caju. Eur. J. Appl. Microbiol. Biotechnol. 1981, 12, 58–62. [Google Scholar] [CrossRef]
- Udayasimha, L.; Vijayalakshmi, Y.C. Sustainable waste management by growing mushroom (Pleurotus florida) on anaerobically digested waste and agro residues. Int. J. Eng. Res. Technol. 2012, 1, 1–8. [Google Scholar]
- Noble, R.; Gaze, R.H. Preparation of mushroom (Agaricus bisporus) composts in controlled environments: Factors influencing compost bulk density and productivity. Hortic Res. Internat. 1995, 1, 93–100. [Google Scholar] [CrossRef]
- Poppe, J.A.; Höfte, M. Twenty Wastes for Twenty Cultivated Mushrooms. Mush. Sci. 1995, 44, 171–180. Available online: http://hdl.handle.net/1854/LU-256119 (accessed on 13 November 2021).
- Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef]
- Brod og Korn 2020, Kornproduksjon i Norge-Opplysningskontoret for Brød og Korn. Available online: http://brodogkorn.no/fakta/kornproduksjon-i-norge/ (accessed on 25 September 2020).
- Chang, S.T. Overview of Mushroom Cultivation and Utilization as Functional Foods. In Mushrooms as Functional Foods; Cheung, P.C.K., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Stijve, T.; Amazonas, M.A.L.; Giller, V. Characterisation of flavor and taste compounds in Agaricus blazei Murril sensu Heinem., the cultivated almond mushroom. Austral. Mycol. 2004, 22, 116–122. [Google Scholar]
- Escuto, L.F.S.; Colauto, N.B.; Linde, G.A.; Aizono, P.M.; Carvalho, L.R.M.; Eira, A.F. Acceptability of sensory characteristics of the Brazilian mushroom A. brasiliensis (Aceitabilidade do cogumelo brasileiro Agaricus brasiliensis). Braz. J. Food Technol. 2005, 8, 321–325. [Google Scholar]
- Ishii, P.L.; Prado, C.K.; Mauro, M.D.; de Carreira, C.M.; Mantovani, M.S.; Ribeiro, L.R.; Dichi, J.B.; Oliviera, R.J. Evaluation of Agaricus blazei in vivo for antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities. Regul. Toxicol. Pharm. 2011, 59, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Oliveira Lima, C.U.J.; de Almeida Cordova, C.O.; de Toledo, N.O.; Funghetto, S.S.; de Oliveira, G.; Karnikowski, M. Does the Agaricus blazei Murill mushroom have properties that affect the immune system? An integrative review. J. Med. Food 2011, 14, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhiming, F.; Chunchao, H. The medicinal values of culinary–medicinal Royal Sun Mushroom (Agaricus blazei Murril). Evid.-Based Complement. Alt. 2013, 2013, 842619. [Google Scholar] [CrossRef] [Green Version]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Fassio, F.; Tecco, N. Circular economy for food: A systemic interpretation of 40 case histories in the food system in their relationships with SDGs. Systems 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Toth, G. Circular economy and its comparison with 14 other business sustainability movements. Resources 2019, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- NS-EN13342:2000; Karakterisering av Slam—Bestemmelse av Kjeldahl-Nitrogen; Characterisation of Sludges—Determination of Kjeldahl Nitrogen; CEN/ SN/K 142. European Committee for Standardization: Brussels, Belgium, 2000.
- EN13654-1; Soil Improvers and Growing Media—Determination of Nitrogen—Part 1: Modified Kjeldahl Method. CEN/TC, 223; European Committee for Standardization, Technical Committee: Brussels, Belgium, 2001.
- Mamiro, D.P.; Royse, D.J. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Bioresour. Technol. 2008, 99, 3205–3212. [Google Scholar] [CrossRef] [PubMed]
- Pardo, A.; De Juan, J.A.; Pardo, J.E. Performance of composted vine shoots as a peat alternative in casing materials for mushroom cultivation. J. Food Agric. Environ. 2003, 1, 209–214. [Google Scholar] [CrossRef]
- Zied, D.C.; Minhoni, M.T.A.; Kopytowski Filho, J.; Andrade, M.C.N. Production of Agaricus blazei ss. Heinemann (A. brasiliensis) on different casing layers and environments. World J. Microb. Biot. 2010, 26, 1857–1863. [Google Scholar] [CrossRef]
- Horm, V.; Ohga, S. Potential of compost with some added supplementary materials on the development of Agaricus blazei Murill. J. Fac. Agric. Kyushu Univ. 2008, 53, 417–422. [Google Scholar] [CrossRef]
- Chatterjee, N.; Flury, M.; Hinman, C.; Cogger, C.G. Chemical and Physical Characteristics of Compost Leachates. Wash. State Univ. J. 2013, 79–85. Available online: http://www.wsdot.wa.gov/research/reports/fullreports/819.1.pdf (accessed on 21 February 2022).
- Rózsa, S.; MăniuŃiu, D.N.; Gocan, T.M.; Sima, R.; Lazăr, V.; Rózsa, M. Influence of temperature and relative humidity on the studded Agaricus blazei murrill mushroom compost. Curr. Trend Natur. Sci. 2017, 6, 111–118. [Google Scholar]
- Dias, E.S. Mushroom cultivation in Brazil: Challenges and potential for growth. Cienc. Agrotec. 2010, 34, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Jasińska, A.; Dawidowicz, L.; Siwulski, M.; Kilinowski, P. Growth of mycelium of different edible and medicinal mushrooms on medium supplemented with digestate from AD biogas plant. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Miles, P.G. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact; CRC Press: Boca Raton, FL, USA, 2004; p. 480. [Google Scholar] [CrossRef]
- Sánchez, C. Modern aspects of mushroom culture technology. Appl. Microbiol. Biot. 2004, 64, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.C.; Harris, P.J. An investigation into the selective nature of mushroom compost. Sci. Hortic. 1983, 19, 55–64. [Google Scholar] [CrossRef]
- Stölzer, S.; Grabble, K. Mechanisms of Substrate Selectivity in the Cultivation of Edible Fungi; Balkema: Rotterdam, The Netherlands, 1991; pp. 141–146. [Google Scholar]
- Noble, R.; Hobbs, P.J.; Mead, A.; Dobrovin-Pennington, A. Influence of straw types and nitrogen sources on mushroom composting emissions and compost productivity. J. Ind. Microbiol. Biotechnol. 2002, 29, 99–110. [Google Scholar] [CrossRef]
- de Siqueira, F.G.; Martos, E.T.; Silva, E.G.D.; Silva, R.D.; Dias, E.S. Biological efficiency of Agaricus brasiliensis cultivated in compost with nitrogen concentrations. Hortic. Bras. 2011, 29, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.C.N.; Kopytowski-Filho, J.; Minhoni, M.T.A.; Coutinho, L.N.; Figueiredo, M.B. Productivity, biological efficiency, and number of Agaricus blazei mushrooms grown in compost in the presence of Trichoderma sp. and Chaetomium olivacearum contaminants. Braz. J. Microbiol. 2007, 38, 243–247. [Google Scholar] [CrossRef]
- Zied, D.C.; Pardo-Giménez, A. Edible and Medicinal Mushrooms: Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Mantovani, T.R.D.; Linde, G.A.; Colauto, N.B. Effect of the addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth. Can. J. Microbiol. 2007, 53, 139–143. [Google Scholar] [CrossRef]
- Noble, R.; Gaze, R.H. Controlled environment composting for mushroom cultivation: Substrates based on wheat and barley straw and deep litter poultry manure. J. Agric. Sci. 1994, 123, 71–79. [Google Scholar] [CrossRef]
- Gerrits, J.P.G. Nutrition and Compost. In The Cultivation of Mushrooms; Van Griensven, L.J.L.D., Ed.; Darlington Mushroom Laboratories: Sussex, UK, 1988; pp. 29–72. [Google Scholar]
- Quality Grains for Food—the Potential of Non-Commercialized Norwegian Varietal Material-Projects-Norsøk (norsok.no), (7 August 2020). Available online: http://www.norsok.no/en/projects/2016/quality-grains-for-food-the-potential-of-non-commercialised-norwegian-varietal-material (accessed on 28 July 2021).
- Kopytowski Filho, J.; Minhoni, M.T.A.; Rodriguez Estrada, A. Agaricus blazei—‘‘The Almond Portobello’’: Cultivation and commercialization. Am. Mushroom Inst. 2006, 54, 22–28. [Google Scholar]
- Zied, D.C.; Pardo-Giménez, A.; de Almeida Minhoni, M.T.; Boas, R.V.; Alvarez-Orti, M.; Pardo-González, J.E. Characterization, feasibility and optimization of Agaricus subrufescens growth based on chemical elements on casing layer. Saudi. J. Biol. Sci. 2012, 19, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopytowski Filho, J.; Minhoni, M.T.A. Nitrogen Sources and C/N Ratio on Yield of Agaricus blazei. In Science and Cultivation of Edible and Medicinal Fungi—Mushroom Science XVI; Romaine, C.P., Keil, C.B., Rinker, D.L., Royse, D.J., Eds.; Penn State University: University Park, TX, USA, 2004; pp. 213–220. [Google Scholar]
- Stoller, B.B. Studies on the function of the casing for mushroom beds. Part II. Some chemical and physical characteristics of the casing soil and their effect on fructification. MGA Bull. 1952, 35, 321–326. [Google Scholar]
- Dias, E.S.; Zied, D.C.; Rinker, D.L. Physiologic response of Agaricus subrufescens using different casing materials and practices applied in the cultivation of Agaricus bisporus. Fungal. Biol. 2013, 117, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Giménez, A.; Pardo, J.E.; Dias, E.S.; Rinker, D.L.; Caitano, C.E.C.; Zied, D.C. Optimization of cultivation techniques improves the agronomic behavior of Agaricus subrufescens. Sci. Rep. 2020, 10, 8154. [Google Scholar] [CrossRef] [PubMed]
Material | pH | DM (%) | EC (mS cm−1) | Ash (%) | N (% DM) |
---|---|---|---|---|---|
Wheat straw used in Experiment 1 | - | 95.9 | - | 5.4 | 0.60 (0.01) |
Wheat straw used in Experiment 2 | - | 96.0 | - | 7.9 | 0.30 (0.02) |
Barley straw | - | 95.8 | - | 8.5 | 0.25 (0.02) |
Oat straw | - | 95.8 | - | 7.6 | 0.13 (0.003) |
Digestate Experiment 1 | 8.1–8.3 | 4.9–5.4 | 20.0 | 28.1–30.05 | 0.60 (0.01) |
Digestate Experiment 2a | 8.0 | 5.0 | 22.0 | 26.3 | 0.98 (0.04) |
Digestate Experiment 2b | 8.4 | 4.6 | 20.0 | 27.1 | 0.96 (0.04) |
Chicken manure | 5.6 | 45.0 | 13.4 | 10.0 | 0.14 (0.01) |
Hot compost | 7.0 | 34.0 | 0.4 | 18.7 | 0.12 (0.005) |
Norwegian dark peat for casing | 7.9 | 24.0 | 1.3 | 39.6 |
EMC | Wheat Straw (% DM) | Oat Straw (% DM) | Barley Straw (% DM) | Digestate (% DM) | Chicken Manure (% DM) | Hot Compost (% DM) | Gypsum (% DM) | Digestate Water (g kg−1) | Max. Temperature (°C) in Phase I | DM (%) in Phase I |
---|---|---|---|---|---|---|---|---|---|---|
Experiment 1 | ||||||||||
WD1 | 82.0 | - | - | 10.0 | 3.1 | - | 4.6 | 644 | 80 | 33.4 |
WD2 | 84.0 | - | - | 7.0 | 4.0 | - | 5.0 | 556 | 74 | 39.4 |
WD3 | 79.8 | - | - | 13.8 | 2.1 | - | 4.4 | 700 | 72 | 28.8 |
WD4 | 80.7 | - | - | 13.0 | 2.4 | - | 4.1 | 705 | 72 | 27.9 |
Experiment 2a | ||||||||||
WD | 80.0 | - | - | 12.5 | 3.8 | - | 3.9 | 695 | 64 | 28.9 |
O4WD | 39.7 | 39.7 | - | 12.4 | 3.7 | - | 4.6 | 675 | 81 | 29.0 |
B4WD | 39.7 | - | 39.7 | 12.4 | 3.7 | - | 4.6 | 675 | 81 | 29.0 |
Experiment 2b | ||||||||||
O25WD | 60.7 | 24.2 | - | 10.2 | - | 2.7 | 2.1 | 572 | 70 | 28.4 |
B25WD | 58.5 | - | 25.0 | 11.2 | - | 3.0 | 2.3 | 590 | 73 | 26.5 |
BOWD | 33.6 | 16.8 | 33.4 | 10.9 | - | 3.0 | 2.4 | 595 | 71 | 27.7 |
B6WD | 25.2 | - | 58.6 | 10.9 | - | 3.0 | 2.4 | 593 | 77 | 27.7 |
EMC | DM % | N (%) | C/N Ratio | Bags (Repetitions) |
---|---|---|---|---|
Experiment 1 | ||||
WD1 | 35.9 | 1.62 | 25.7 | 7 |
WD2 | 29.5 | 1.41 | 29.7 | 7 |
WD3 | 21.9 | 1.80 | 22.7 | 14 |
WD4 | 24.6 | 1.87 | 22.1 | 10 |
Experiment 2a | ||||
WD | 25.3 | 1.88 | 21.9 | 9 |
O4WD | 23.1 | 1.89 | 21.9 | 6 |
B4WD | 25.8 | 1.89 | 21.9 | 5 |
Experiment 2b | ||||
O25WD | 26.8 | 1.69 | 25.2 | 5 |
B25WD | 24.8 | 1.80 | 23.5 | 5 |
BOWD | 25.7 | 1.79 | 24.0 | 9 |
B6WD | 24.1 | 1.80 | 24.1 | 9 |
EMC | Bags (Repetitions) | Fresh Weight of Mushrooms from Whole Cropping Period | Yield (g kg−1) | BE (%) | % DM of Mushrooms | Number of Mushrooms (Bag of Substrate) | E (Days) | P (%) |
---|---|---|---|---|---|---|---|---|
Experiment 1 | ||||||||
WD1 | 7 | 944.1 | 44.9 c | 15 c | 13.5 a | 3.6 b | 31.4 a | 68.9 a |
WD2 | 7 | 2218.7 | 105.7 b | 36 b | 12.7 a | 8.0 a | 29.5 ab | 50.6 ab |
WD3 | 14 | 4831.5 | 115.0 b | 53 ab | 12.5 a | 9.1 a | 32.5 a | 53.6 ab |
WD4 | 10 | 4704.9 | 156.8 a | 64 a | 11.8 a | 10.2 a | 25.5 b | 49.5 b |
Experiment 2a | ||||||||
WD | 9 | 3227.9 | 119.6 abc | 47 abc | 11.9 a | 9.2 ab | 27.2 a | 51.7 ab |
O4WD | 5 | 1595.5 | 88.6 c | 38 bc | 9.5 a | 5.8 b | 36.0 a | 57.8 b |
B4WD | 6 | 1884.6 | 123.2 abc | 48 abc | 11.7 a | 9.0 ab | 26.4 a | 47.7 ab |
Experiment 2b | ||||||||
O25WD | 5 | 1433.9 | 95.6 bc | 36 c | 10.0 a | 6.6 ab | 34.4 a | 68.9 a |
B25WD | 5 | 2369.0 | 157.9 a | 64 a | 8.9 a | 10.1 a | 32.2 a | 52.8 ab |
BOWD | 9 | 3914.9 | 145.0 a | 56 a | 10.5 a | 10.3 a | 29.8 a | 43.3 ab |
B6WD | 9 | 3605.4 | 133.5 ab | 55 ab | 10.3 a | 10.5 a | 26.1 a | 52.1 ab |
EMC | Yield | DM | E | P | Number of Mushrooms | |
---|---|---|---|---|---|---|
WD | DM * | 0.389 | ||||
Earliness | −0.228 | −0.244 | ||||
Precociousness | −0.045 | −0.067 | −0.216 | |||
Number of mushrooms | 0.267 | 0.267 | −0.527 | −0.414 | ||
BE ** | 0.500 | 0.389 | −0.228 | −0.045 | 0.267 | |
O4WD | DM * | 0.028 | ||||
Earliness | −0.142 | −0.565 | ||||
Precociousness | 0.276 | −0.533 | 0.617 | |||
Number of mushrooms | 0.877 | 0.116 | −0.455 | 0.067 | ||
BE ** | 1.000 | 0.028 | −0.142 | 0.276 | 0.877 | |
B4WD | DM * | −0.578 | ||||
Earliness | −0.712 | 0.965 | ||||
Precociousness | −0.049 | 0.218 | 0.019 | |||
Number of mushrooms | 0.594 | −0.005 | −0.246 | 0.577 | ||
BE ** | 1.000 | −0.578 | −0.712 | −0.049 | 0.594 | |
O25WD | DM * | 0.653 | ||||
Earliness | −0.913 | −0.341 | ||||
Precociousness | −0.234 | 0.370 | 0.599 | |||
Number of mushrooms | 0.556 | 0.159 | −0.687 | −0.478 | ||
BE ** | 1.000 | 0.653 | −0.913 | −0.234 | 0.556 | |
B25WD | DM * | 0.077 | ||||
Earliness | −0.628 | 0.580 | ||||
Precociousness | −0.070 | −0.449 | 0.050 | |||
Number of mushrooms | 0.243 | −0.029 | 0.137 | 0.019 | ||
BE ** | 1.000 | 0.077 | −0.628 | −0.070 | 0.243 | |
BOWD | DM * | −0.379 | ||||
Earliness | −0.063 | −0.222 | ||||
Precociousness | 0.413 | −0.445 | 0.432 | |||
Number of mushrooms | 0.713 | 0.179 | 0.004 | 0.541 | ||
BE ** | 1.000 | −0.379 | −0.063 | 0.413 | 0.713 | |
BOWD | DM * | 0.203 | ||||
Earliness | −0.507 | −0.028 | ||||
Precociousness | 0.076 | −0.342 | 0.490 | |||
Number of mushrooms | 0.679 | 0.639 | −0.255 | −0.308 | ||
BE ** | 1.000 | 0.203 | −0.507 | 0.076 | 0.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasinska, A.; Wojciechowska, E.; Stoknes, K.; Roszak, M. Bioconversion of Agricultural Wastes into a Value-Added Product: Straw of Norwegian Grains Composted with Dairy Manure Food Waste Digestate in Mushroom Cultivation. Horticulturae 2022, 8, 331. https://doi.org/10.3390/horticulturae8040331
Jasinska A, Wojciechowska E, Stoknes K, Roszak M. Bioconversion of Agricultural Wastes into a Value-Added Product: Straw of Norwegian Grains Composted with Dairy Manure Food Waste Digestate in Mushroom Cultivation. Horticulturae. 2022; 8(4):331. https://doi.org/10.3390/horticulturae8040331
Chicago/Turabian StyleJasinska, Agnieszka, Ewelina Wojciechowska, Ketil Stoknes, and Michał Roszak. 2022. "Bioconversion of Agricultural Wastes into a Value-Added Product: Straw of Norwegian Grains Composted with Dairy Manure Food Waste Digestate in Mushroom Cultivation" Horticulturae 8, no. 4: 331. https://doi.org/10.3390/horticulturae8040331
APA StyleJasinska, A., Wojciechowska, E., Stoknes, K., & Roszak, M. (2022). Bioconversion of Agricultural Wastes into a Value-Added Product: Straw of Norwegian Grains Composted with Dairy Manure Food Waste Digestate in Mushroom Cultivation. Horticulturae, 8(4), 331. https://doi.org/10.3390/horticulturae8040331