Integrative Seed and Leaf Treatment with Ascorbic Acid Extends the Planting Period by Improving Tolerance to Late Sowing Influences in Parsley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Dates, Site, Soil Analysis, and Meteorological Data
2.2. Experimental Design, Treatments, and Experimental Setup
2.3. Sampling
2.4. Morphological Characters, and Seed and Oil Yield Attributes
2.5. Essential Oil Distillation (Extraction)
2.6. GC/MS Analysis of Essential Oil
2.7. Determinations of Chlorophyll and Nutrient Contents
2.8. Determinations of Total Soluble Sugars, Free Proline, and Ascorbic Acid
2.9. Extraction and Assaying Antioxidant Enzyme Activities
2.10. Statistical Analysis
3. Results
3.1. The Preliminary Study
3.2. The Main Study
3.2.1. Effect of Integrative Seed and Leaf Treatment with Ascorbic Acid (AsA) on Growth Traits of Parsley Plants Grown under Different Sowing Dates (SDs)
3.2.2. Effect of Integrative Seed and Leaf Treatment with Ascorbic Acid (AsA) on Seed and Oil Yield components of Parsley Plants Grown under Different Sowing Dates (SDs)
3.2.3. Effect of Integrative Seed and Leaf Treatment with Ascorbic Acid (AsA) on Macro- and Micronutrient Contents of Parsley Plants Grown under Different Sowing Dates (SDs)
3.2.4. Effect of Integrative Seed and Leaf Treatment with Ascorbic Acid (AsA) on Osmoprotectant and Antioxidant Contents of Parsley Plants Grown under Different Sowing Dates (SDs)
3.2.5. Effect of Integrative Seed and Leaf Treatment with Ascorbic Acid (AsA) on Enzymatic Antioxidant Activities of Parsley Plants Grown under Different Sowing Dates (SDs)
3.2.6. Essential Oil Fractions of the Obtained Seeds of Parsley Plants as Affected by Integrative Seed + leaf Treatment with Ascorbic Acid (AsA) under Different Sowing Dates (SDs)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azeez, S.; Parthasarathy, V.A. Parsley. In Chemistry of Spices; Parthasarathy, V.A., Chempakam, B., Zacharaiah, T.J., Eds.; CAB International: Wallingford, UK, 2008; pp. 376–400. [Google Scholar]
- Craft, J.D.; Setzer, W.N. The volatile components of parsley, Petroselinum crispum (Mill.) Fuss. Am. J. Essent. Oils Nat. Prod. 2017, 5, 27–32. [Google Scholar]
- López, M.G.; Sánchez-Mendoza, I.R.; Ochoa-Alejo, N. Comparative study of volatile components and fatty acids of plants and in vitro cultures of parsley (Petroselinum crispum (Mill) nym ex hill). J. Agric. Food Chem. 1999, 47, 3292–3296. [Google Scholar] [CrossRef] [PubMed]
- Linde, G.A.; Gazim, Z.C.; Cardoso, B.K.; Jorge, L.F.; Tešević, V.; Glamoćlija, J.; Soković, M.; Colauto, N.B. Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet. Mol. Res. 2016, 15, gmr.15038538. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.I.; Van-Buren, L.; Kroner, C.I.; Koning, M.M. Herbal medicines as diuretics: A review of the scientific evidence. J. Ethnopharmacol. 2007, 114, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Gruszecki, R. The effect of cultivar on the yield and quality of parsley root (Petroselinum crispum (Mill.) Nyman ex A.W. Hill var. tuberosum (Bernh) Mart. Crov.). Ann. UMCS Sect. EEE Hortic. 2007, 17, 35–40. [Google Scholar]
- Al-Hilfy, I.H.H.; Al-Salmani, S.A.A. The effect of planting dates and potassium spraying on seed yield of peanut (Arachis hypogaea L.). Iraqi J. Agric. Sci. 2015, 46, 704–713. [Google Scholar]
- Ebrahimi, A.; Moaveni, P.; Farahani, H.A. Effects of planting dates and compost on mucilage variations in borage (Borago officinalis L.) under different chemical fertilization systems. Int. J. Biotechnol. Mol. Biol. Res. 2010, 1, 58–61. [Google Scholar]
- Khichar, M.L.; Niwas, R. Microclimatic profiles under different sowing environments in wheat. J. Agrometeorol. 2006, 8, 201–209. [Google Scholar]
- Mollafilabi, A.A. Effect of sowing date and row spacing on yield of Cumin under Dry Land and Rainfed Farming. In Iranian Research Organization for Science and Technology; Khorasan Research Center: Khorasan, Iran, 2005. [Google Scholar]
- Pereira, A. Plant Abiotic Stress Challenges from the Changing Environment. Front. Plant Sci. 2016, 7, 1123. [Google Scholar] [CrossRef] [Green Version]
- Cottney, P.; Black, L.; Williams, P.; White, E. How Cover Crop Sowing Date Impacts upon Their Growth, Nutrient Assimilation and the Yield of the Subsequent Commercial Crop. Agronomy 2022, 12, 369. [Google Scholar] [CrossRef]
- Soliman, M.H.; Alayafi, A.A.M.; El Kelish, A.A.; Abu-Elsaoud, A.M. Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Bot. Stud. 2018, 59, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkelish, A.; Qari, S.H.; Mazrou, Y.S.A.; Abdelaal, K.A.A.; Hafez, Y.M.; Abu-Elsaoud, A.M.; Batiha, G.E.-S.; El-Esawi, M.A.; El Nahhas, N. Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock proteins. Plants 2020, 9, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semida, W.M.; Rady, M.M. Pre-soaking in 24-epibrassinolide or salicylic acid improves seed germination, seedling growth, and anti-oxidant capacity in Phaseolus vulgaris L. grown under NaCl stress. J. Hortic. Sci. Biotechnol. 2014, 89, 338–344. [Google Scholar] [CrossRef]
- Rady, M.M.; Hemida, K.A. Sequenced application of ascorbate-proline-glutathione improves salt tolerance in maize seedlings. Ecotoxicol. Environ. Saf. 2016, 133, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Rady, M.M.; Desoky, E.M.; Elrys, A.S.; Boghdady, M.S. Can licorice root extract be used as effective natural biostimulant for salt-stressed common bean plants? South Afr. J. Bot. 2019, 121, 294–305. [Google Scholar] [CrossRef]
- Desoky, E.M.; Elrys, A.S.; Rady, M.M. Integrative moringa and licorice extracts application improves performance and reduces fruit contamination content of pepper plants grown on heavy metals-contaminated saline soil. Ecotoxicol. Environ. Saf. 2019, 169, 50–60. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Rady, M.M.; Taha, R.S.; Abdelaziz, S.A.; Simpson, C.R.; Semida, W.M. Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Sci. Hortic. 2020, 261, 108930. [Google Scholar] [CrossRef]
- Müller-Moulé, P.; Havaux, M.; Niyogi, K.K. Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol. 2003, 133, 748–760. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hafeez, A.A.A.; Abd El-Mageed, T.A.; Rady, M.M. Impact of ascorbic acid foliar spray and seed treatment with cyanobacteria on growth and yield component of sunflower plants under saline soil conditions. Int. Lett. Nat. Sci. 2019, 76, 136–146. [Google Scholar] [CrossRef]
- Desoky, E.M.; Mansour, E.-S.; Yasin, M.A.T.; El-Sobky, E.E.A.; Rady, M.M. Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span. J. Agric. Res. 2020, 18, e0802. [Google Scholar] [CrossRef]
- Awad, A.A.M.; Sweed, A.A.A.; Rady, M.M.; Majrashi, A.; Ali, E.F. Rebalance to the nutritional status and the productivity of high CaCO3-stressed sweet potato plants by foliar nourishment with zinc oxide nanoparticles and ascorbic acid. Agronomy 2021, 11, 1443. [Google Scholar] [CrossRef]
- Hacisevkđ, A. An overview of ascorbic acid biochemistry ankara. Ecz. Fak. Derg. 2009, 38, 233–255. [Google Scholar]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis, 2nd ed.; Klute, A., Ed.; Part 1. Agron. Monogr. 9. ASA and SSSA, Book Series, Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA, 1986; pp. 687–734. [Google Scholar]
- Page, A.I.; Miller, R.H.; Keeny, T.R. Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1982.
- European Pharmacopoeia, 3rd ed.; Nachtrag, D. (Ed.) Council of Europe: Strasbourg, France, 2000; pp. 499–500. [Google Scholar]
- Cheronis, N.D.; Entrikin, J.B. Identification of Organic Compounds; Interscience (Wiley): New York, NY, USA, 1963; p. 311. [Google Scholar]
- Black, C.A.; Evans, D.O.; Ensminger, L.E.; White, J.L.; Clark, F.E.; Dinauer, R.C. Methods of Soil Analysis, 2nd ed.; Part 2. Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentic-Hall. Inc.: Englewood, NJ, USA, 1973. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soil, Plants and Water. In Division of Agricultural Science; University of California: Berkeley, CA, USA, 1961; pp. 56–63. [Google Scholar]
- Irigoyen, J.J.; Einerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Vanmontagu, M.; Inze, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.P.; Choudhuri, M.A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiol. 1983, 58, 166–170. [Google Scholar] [CrossRef]
- Kar, M.; Mishra, D. Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 1976, 57, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Analysis Procedures for Agricultural Research; John Wiley and Sons: New York, NY, USA, 1984; pp. 25–30. [Google Scholar]
- InfoStat. InfoStat Software Estadistico User’s Guide, version 26/01/2016; InfoStat Institute: Bratislava, Slovakia, 2016; Available online: www.infostat.com.ar/index.php (accessed on 20 September 2021).
- Waller, R.A.; Duncan, D.B. A bays rule for the symmetric multiple comparison problems. J. Am. Stat. Assoc. 1969, 12, 1485–1503. [Google Scholar]
- Nandre, D.R.; Ghadge, R.G.; Rajput, B.S. Effect of sowing dates and nutrient management on growth and seed yield of fenugreek. Adv. Res. J. Crop Improv. 2011, 2, 215–220. [Google Scholar]
- Sowmya, P.T.; Naruka, I.S.; Shaktawat, R.P.S.; Kushwah, S.S. Effect of sowing dates and stage of pinching on growth, yield and quality of fenugreek (Trigonella foenum-graecum L.). Int. J. Bio-resour. Stress Manag. 2017, 8, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Rady, M.M.; Abd El-Mageed, T.A.; Abdurrahman, H.A.; Mahdi, A.H. Humic acid application improves field performance of cotton (Gossypium barbadense L.) under saline conditions. J. Anim. Plant Sci. 2016, 26, 487–493. [Google Scholar]
- Sudeep, S.; Buttar, G.S.; Singh, S.P. Growth, yield and heat unit requirement of fennel (Foeniculum vulgare) as influenced by date of sowing and row spacings under semi-arid region of Punjab. J. Med. Aromat. Plant Sci. 2006, 28, 363–365. [Google Scholar]
- Ado, G.; Indabawa, I.I.; Sani, K.D. Effect of planting date and seed density on the growth and yield of Roselle Hibiscus sabdariffa (Linn). In Proceedings of the International Conference on Chemical, Environmental and Biological Sciences (CEBS-2015), Dubai, United Arab Emirates, 18–19 March 2015. [Google Scholar]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, K.; Bakht, J.; Shah, W.A.; Shafi, M.; Jabeen, N. Yield and yield components of various wheat cultivars as affected by different sowing dates. Asian J. Plant Sci. 2002, 1, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Meena, S.S.; Mehta, R.S.; Lal, G.; Sharma, Y.K.; Meena, R.D.; Kant, K. Effect of sowing dates and crop geometry on growth and seed yield of dill (Anethum sowa L.). Int. J. Seed Spices 2015, 5, 79–82. [Google Scholar]
- Hussain, S.; Khan, F.; Hussain, H.A.; Nie, L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front. Plant Sci. 2016, 7, 166. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Hussain, M.; Nawaz, A.; Lee, D.-J.; Alghamdi, S.S.; Siddique, K.H.M. Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiol. Biochem. 2017, 111, 274–283. [Google Scholar] [CrossRef]
- Aroca, R.; Vernieri, P.; Irigoyen, J.J.; Sánchez-Díaz, M.; Tognoni, F.; Pardossi, A. Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci. 2003, 165, 671–679. [Google Scholar] [CrossRef]
- Kader, D.Z.A.; Saleh, A.A.H.; Elmeleigy, S.A.; Dosoky, N.S. Chilling-induced oxidative stress and polyamines regulatory role in two wheat varieties. J. Taibah Univ. Sci. 2011, 5, 14–24. [Google Scholar] [CrossRef] [Green Version]
- DeRidder, B.P.; Crafts-Brandner, S.J. Chilling stress response of postemergent cotton seedlings. Physiol. Plant. 2008, 134, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Alayafi, A.A.M. Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: Transcriptional regulation mechanism. Environ. Sci. Pollut. Res. 2020, 27, 19186–19199. [Google Scholar] [CrossRef] [PubMed]
- Gallie, D.R. Ascorbic acid: A multifunctional molecule supporting plant growth and development. Hindawi Publ. Corp. Sci. 2013, 2013, 795964. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Borhannuddin Bhuyan, M.H.M.; Anee, T.I.; Parvin, K.; Nahar, K.; Al Mahmud, J.; Fujita, M. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress-A review. Antioxidants 2019, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Horemans, N.; Foyer, C.H.; Potters, G.; Asard, H. Ascorbate function and associated transport systems in plants. Plant Physiol. Biochem. 2000, 38, 531–540. [Google Scholar] [CrossRef]
- Arrigoni, O.; De Tullio, M.C. The role of ascorbic acid in cell metabolism: Between gene-directed functions and unpredictable chemical reactions. J. Plant Physiol. 2000, 157, 481–488. [Google Scholar] [CrossRef]
- Azoz, S.N.; El-Taher, A.M.; Boghdady, M.S.; Nassar, D.M.A. The impact of foliar spray with ascorbic acid on growth, productivity, anatomical structure and biochemical constituents of volatile and fixed oils of basil plant (Ocimum basilicum L.). Middle East J. Agric. Res. 2016, 5, 549–565. [Google Scholar]
- Rios, J.J.; Martínez-Ballesta, M.C.; Ruiz, J.M.; Blasco, B.; Carvajal, M. Silicon mediated improvement in plant salinity tolerance: The role of aquaporins. Front. Plant Sci. 2017, 8, 948. [Google Scholar] [CrossRef] [Green Version]
- Schutzendubel, A.; Polle, A. Plant responses to abiotic stresses: Heavy metal induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365. [Google Scholar] [CrossRef]
- Abdul Jaleel, C.; Manivannan, P.; Wahid, A.; Farooq, M.; Jasim Al-Juburi, H.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105. [Google Scholar]
- Osman, A.S.; Abdel Wahed, M.H.; Rady, M.M. Ascorbic acid improves productivity, physio–biochemical attributes, and antioxidant activity of deficit-irrigated broccoli plants. Biomed. J. Sci. Tech. Res. 2018, 11, 1–10. [Google Scholar]
- Lo’ay, A.A.; Ismail, H.; Kassem, H.S. Postharvest Treatment of ‘Florida Prince’ Peaches with a Calcium Nanoparticle–Ascorbic Acid Mixture during Cold Storage and Its Effect on Antioxidant Enzyme Activities. Horticulturae 2021, 7, 499. [Google Scholar]
- Said, C.O.; Boulahia, K.; Eid, M.A.M.; Rady, M.M.; Djebbar, R.; Abrous-Belbachir, O. Exogenously-used proline offers potent antioxidative and osmoprotective strategies to re-balance growth and physio-biochemical attributes in herbicide-stressed Trigonella foenum-graecum. J. Soil Sci. Plant Nutr. 2021, 21, 3254–3268. [Google Scholar] [CrossRef]
- Allahveran, A.; Farokhzad, A.; Asghari, M.; Sarkhosh, A. Foliar application of ascorbic and citric acids enhanced ‘Red Spur’ apple fruit quality, bioactive compounds and antioxidant activity. Physiol. Mol. Biol. Plants 2018, 24, 433–440. [Google Scholar] [CrossRef]
- Zhu, J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Farooq, M.; Irfan, M.; Aziz, T.; Ahmad, I.; Cheema, S.A. Seed priming with ascorbic acid improves drought resistance of wheat. J. Agron. Crop Sci. 2013, 199, 12–22. [Google Scholar] [CrossRef]
- Mazid, M.; Khan, T.A.; Khan, Z.H.; Quddusi, S.; Mohammad, F. Occurrence, biosynthesis and potentialities of ascorbic acid in plants. Int. J. Plant Anim. Environ. Sci. 2011, 1, 167–184. [Google Scholar]
- Merwad, A.M.A.; Desoky, E.M.; Rady, M.M. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci. Hortic. 2018, 228, 132–144. [Google Scholar] [CrossRef]
- Bowler, C.; Montagu, V.M.; Inze, D. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Biol. 1992, 43, 83–116. [Google Scholar] [CrossRef]
- Garg, N.; Manchanda, G. ROS generation in plants: Boon or bane. Plant Biosyst. 2009, 143, 81–96. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Ouzounidou, G.; Giannakoula, A.; Ilias, I.; Zamanidis, P. Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz. J. Bot. 2016, 39, 531–539. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.F.; Mujeeb, F.; Aha, F.; Farooqi, A. Effect of plant growth regulators on growth and essential oil content in palmarosa (Cymbopogon martini). Asian J. Pharm. Clin. Res. 2015, 8, 373–376. [Google Scholar]
- Semida, W.M.; Hemida, K.A.; Rady, M.M. Sequenced ascorbate-proline glutathione seed treatment elevates cadmium tolerance in cucumber transplants. Ecotoxicol. Environ. Saf. 2018, 154, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Ascorbic Acid in Plants: Biosynthesis, Regulation and Enhancement; Springer Briefs in Plant Science: New York, NY, USA, 2013. [Google Scholar]
- Reda, F.; Abdel-Rahim, E.A.; El-Baroty, G.S.A.; Ayad, H.A. Response of essential oils, phenolic components and polyphenol oxidase activity of thyme (Thymus vulgaris L.) to some bioregulators and vitamins. Int. J. Agric. Biol. 2005, 7, 735–739. [Google Scholar]
- Ranjbar, B.; Sharafzadeh, S.; Alizadeh, O. Growth and essential oil responses of German chamomile to thiamine and ascorbic acid. Bull. Environ. Pharm. Life Sci. 2014, 3, 51–53. [Google Scholar]
- El-Lethy, S.R.; Ayad, H.S.; Reda, F. Effect of riboflavin, ascorbic acid and dry yeast on vegetative growth, essential oil pattern and antioxidant activity of geranium (Pelargonium graveolens L.). Amer-Eurasian J. Agric. Environ. Sci. 2011, 10, 781–786. [Google Scholar]
- Abdou, M.; Mohamed, M.A.H. Effect of plant compost, salicylic and ascorbic acids on Mentha piperita L. plants. Biol. Agric. Hortic. 2014, 30, 131–143. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; El Gendy, A.G.; Omer, E.A. Effect of ascorbic acid, salicylic acid on coriander productivity and essential oil cultivated in two different locations. Adv. Environ. Biol. 2014, 8, 2236–2250. [Google Scholar]
- Nasiri, Y.; Zandi, H.; Morshedloo, M.R. Effect of salicylic acid and ascorbic acid on essential oil content and composition of dragonhead (Dracocephalum moldavica L.) under organic farming. J. Essent. Oil Bea. Plants 2018, 21, 362–373. [Google Scholar] [CrossRef]
Source of Variation | Plant Height (cm) | % of Cont. | Fresh Weight (g Plant−1) | % of Cont. | Dry Weight (g Plant−1) | % of Cont. |
---|---|---|---|---|---|---|
Sowing date (SD) | * | * | ** | |||
Oct. | 110.5 a ± 9.7 | ..... | 108.8 a ± 9.4 | ..... | 28.0 a ± 1.7 | ..... |
Nov. | 107.3 a ± 9.3 | −2.90 | 103.6 a ± 8.7 | −4.78 | 27.0 a ± 1.7 | −3.57 |
Dec. | 96.9 b ± 8.4 | −12.3 | 82.8 b ± 6.6 | −23.9 | 18.7 b ± 0.8 | −33.2 |
Jan. | 64.3 c ± 5.0 | −41.8 | 52.9 c ± 4.1 | −51.4 | 10.4 c ± 0.6 | −62.9 |
AsA levels | * | * | ** | |||
0 mM (AsA0) | 82.5 c ± 7.0 | ..... | 71.8 c ± 5.6 | ..... | 15.5 c ± 0.9 | ..... |
1.0 mM (AsA1) | 94.3 b ± 8.0 | +14.3 | 85.9 b ± 7.3 | +19.6 | 20.4 b ± 1.3 | +31.6 |
2.0 mM (AsA2) | 107.4 a ± 9.2 | +30.2 | 103.4 a ± 8.7 | +44.0 | 27.6 a ± 1.8 | +78.1 |
SD × AsA levels | * | * | ** | |||
Oct. × AsA0 | 97.9 c ± 8.4 | ..... | 97.0 b ± 7.9 | ..... | 24.8 c ± 1.2 | ..... |
Oct. × AsA1 | 111.1 b ± 9.8 | +13.5 | 110.2 a ± 9.9 | +13.6 | 28.5 b ± 1.8 | +14.9 |
Oct. × AsA2 | 122.4 a ± 10.9 | +25.0 | 119.1 a ± 10.3 | +22.8 | 32.3 a ± 2.2 | +30.2 |
Nov. × AsA0 | 90.4 cd ± 7.8 | −7.66 | 80.9 c ± 6.0 | −16.6 | 19.4 d ± 1.1 | −21.8 |
Nov. × AsA1 | 109.0 b ± 9.3 | +11.3 | 110.5 a ± 9.8 | +13.9 | 28.7 b ± 1.8 | +15.7 |
Nov. × AsA2 | 122.4 a ± 10.7 | +25.0 | 119.4 a ± 10.3 | +23.1 | 32.8 a ± 2.1 | +32.3 |
Dec. × AsA0 | 81.8 d ± 7.2 | −16.4 | 60.0 de ± 4.6 | −38.1 | 10.5 f ± 0.7 | −57.7 |
Dec. × AsA1 | 88.4 cd ± 7.5 | −9.70 | 70.8 d ± 5.5 | −27.0 | 14.1 e ± 0.8 | −43.1 |
Dec. × AsA2 | 120.5 a ± 10.4 | +23.1 | 117.6 a ± 9.8 | +21.2 | 31.6 a ± 2.0 | +27.4 |
Jan. × AsA0 | 59.9 e ± 4.7 | −38.8 | 49.4 ef ± 3.9 | −49.1 | 7.4 g ± 0.5 | −70.2 |
Jan. × AsA1 | 68.5 e ± 5.5 | −30.0 | 52.0 ef ± 3.8 | −46.4 | 10.1 f ± 0.6 | −59.3 |
Jan. × AsA2 | 64.4 e ± 4.7 | −34.2 | 57.4 ef ± 4.5 | −40.8 | 13.8 e ± 0.8 | −44.4 |
Source of Variation | Seed Weight (g Plant−1) | % of Cont. | Seed Yield (t h−1) | % of Cont. | Oil Content (%) | % of Cont. | Oil Yield (L ha−1) | % of Cont. |
---|---|---|---|---|---|---|---|---|
Sowing date (SD) | * | * | * | ** | ||||
Oct. | 12.05 a ± 0.84 | ..... | 1.35 a ± 0.10 | ..... | 1.21 a ± 0.09 | ..... | 15.48 a ± 1.4 | ..... |
Nov. | 11.77 a ± 0.82 | −2.32 | 1.32 a ± 0.10 | −2.22 | 1.17 a ± 0.08 | −3.31 | 15.34 a ± 1.4 | −0.90 |
Dec. | 10.30 b ± 0.67 | −14.5 | 1.15 b ± 0.08 | −14.8 | 0.97 b ± 0.07 | −19.8 | 10.97 b ± 0.93 | −29.1 |
Jan. | 7.05 c ± 0.47 | −41.5 | 0.78 c ± 0.05 | −42.2 | 0.73 c ± 0.05 | −39.7 | 5.54 c ± 0.40 | −64.2 |
AsA levels | * | * | * | ** | ||||
0 mM (AsA0) | 8.92 c ± 0.57 | ..... | 0.99 c ± 0.07 | ..... | 0.89 c ± 0.06 | ..... | 9.40 c ± 0.77 | ..... |
1.0 mM (AsA1) | 10.17 b ± 0.71 | +14.0 | 1.13 b ± 0.08 | +14.1 | 1.01 b ± 0.07 | +13.5 | 11.64 b ± 0.98 | +23.8 |
2.0 mM (AsA2) | 11.79 a ± 0.82 | +32.2 | 1.32 a ± 0.11 | +33.3 | 1.17 a ± 0.09 | +31.5 | 14.46 a ± 1.31 | +53.8 |
SD × AsA levels | * | * | * | ** | ||||
Oct. × AsA0 | 10.67 b ± 0.74 | ..... | 1.19 bc ± 0.09 | ..... | 1.09 bc ± 0.07 | ..... | 12.85 b ± 1.10 | ..... |
Oct. × AsA1 | 12.30 a ± 0.86 | +15.3 | 1.37 ab ± 0.09 | +15.1 | 1.23 ab ± 0.09 | +12.8 | 16.34 a ± 1.48 | +27.2 |
Oct. × AsA2 | 13.17 a ± 0.91 | +23.4 | 1.49 a ± 0.13 | +25.2 | 1.32 a ± 0.10 | +21.1 | 17.24 a ± 1.68 | +34.2 |
Nov. × AsA0 | 9.67 b ± 0.64 | −9.37 | 1.07 cd ± 0.07 | −10.1 | 0.97 cd ± 0.06 | −11.0 | 12.43 b ± 1.00 | −3.27 |
Nov. × AsA1 | 12.40 a ± 0.88 | +16.2 | 1.39 ab ± 0.11 | +16.8 | 1.23 ab ± 0.08 | +12.8 | 16.28 a ± 1.56 | +26.7 |
Nov. × AsA2 | 13.25 a ± 0.94 | +24.2 | 1.49 a ± 0.13 | +25.2 | 1.32 a ± 0.10 | +21.1 | 17.32 a ± 1.67 | +34.8 |
Dec. × AsA0 | 8.68 c ± 0.50 | −18.7 | 0.96 de ± 0.06 | −19.3 | 0.78 e ± 0.05 | −28.4 | 7.49 c ± 0.58 | −41.7 |
Dec. × AsA1 | 9.11 c ± 0.62 | −14.6 | 1.01 de ± 0.07 | −15.1 | 0.81 de ± 0.06 | −25.7 | 8.19 c ± 0.61 | −36.3 |
Dec. × AsA2 | 13.11 a ± 0.90 | +22.9 | 1.47 a ± 0.12 | +23.5 | 1.31 a ± 0.10 | +20.2 | 17.22 a ± 1.67 | +34.0 |
Jan. × AsA0 | 6.67 d ± 0.41 | −37.5 | 0.74 f ± 0.05 | −37.8 | 0.72 e ± 0.05 | −33.9 | 4.81 d ± 0.38 | −62.6 |
Jan. × AsA1 | 6.87 d ± 0.49 | −35.6 | 0.76 f ± 0.04 | −36.1 | 0.75 e ± 0.06 | −31.2 | 5.76 d ± 0.39 | −55.2 |
Jan. × AsA2 | 7.62 c ± 0.52 | −28.6 | 0.83 ef ± 0.06 | −30.3 | 0.73 e ± 0.05 | −33.0 | 6.05 cd ± 0.43 | −52.9 |
Source of Variation | N (%) | % of Cont. | P (%) | % of Cont. | K (%) | % of Cont. |
---|---|---|---|---|---|---|
Sowing date (SD) | * | * | * | |||
Oct. | 2.98 a ± 0.09 | ..... | 0.71 a ± 0.02 | ..... | 2.92 a ± 0.11 | ..... |
Nov. | 2.78 a ± 0.09 | −6.71 | 0.70 a ± 0.02 | −1.41 | 2.89 a ± 0.11 | −1.03 |
Dec. | 2.44 b ± 0.07 | −18.1 | 0.66 b ± 0.02 | −7.04 | 2.66 b ± 0.09 | −8.90 |
Jan. | 1.72 c ± 0.05 | −42.3 | 0.54c ± 0.01 | −23.9 | 2.37c ± 0.06 | −18.8 |
AsA levels | * | * | * | |||
0 mM (AsA0) | 2.10c ± 0.06 | ..... | 0.60c ± 0.02 | ..... | 2.53c ± 0.08 | ..... |
1.0 mM (AsA1) | 2.43b ± 0.07 | +15.7 | 0.64b ± 0.02 | +6.67 | 2.69b ± 0.09 | +6.32 |
2.0 mM (AsA2) | 2.91a ± 0.10 | +38.6 | 0.72a ± 0.03 | +20.0 | 2.91a ± 0.11 | +15.0 |
SD × AsA levels | * | * | * | |||
Oct. × AsA0 | 2.71 b ± 0.07 | ..... | 0.68 bc ± 0.02 | ..... | 2.80 abc ± 0.10 | ..... |
Oct. × AsA1 | 2.95 ab ± 0.09 | +8.86 | 0.71 ab ± 0.02 | +4.41 | 2.90 ab ± 0.11 | +3.57 |
Oct. × AsA2 | 3.29 a ± 0.11 | +21.4 | 0.74 ab ± 0.03 | +8.82 | 3.07 a ± 0.13 | +9.64 |
Nov. × AsA0 | 2.10 c ± 0.06 | −22.5 | 0.64 cd ± 0.02 | −5.88 | 2.67 bcd ± 0.08 | −4.64 |
Nov. × AsA1 | 2.92 ab ± 0.09 | +7.75 | 0.71 ab ± 0.02 | +4.41 | 2.93 ab ± 0.11 | +4.64 |
Nov. × AsA2 | 3.31 a ± 0.11 | +22.1 | 0.75 a ± 0.03 | +10.3 | 3.07 a ± 0.13 | +9.64 |
Dec. × AsA0 | 1.90 c ± 0.05 | −29.9 | 0.58 d ± 0.02 | −14.7 | 2.37 ef ± 0.07 | −15.4 |
Dec. × AsA1 | 2.15 c ± 0.06 | −20.7 | 0.64 cd ± 0.02 | −5.88 | 2.57 cde ± 0.08 | −8.21 |
Dec. × AsA2 | 3.28 a ± 0.11 | +21.0 | 0.75 a ± 0.03 | +10.3 | 3.03 a ± 0.12 | +8.21 |
Jan. × AsA0 | 1.69 c ± 0.04 | −37.6 | 0.50 e ± 0.01 | −26.5 | 2.27 f ± 0.06 | −18.9 |
Jan. × AsA1 | 1.71 c ± 0.05 | −36.9 | 0.51 e ± 0.01 | −25.0 | 2.37 ef ± 0.05 | −15.4 |
Jan. × AsA2 | 1.75 c ± 0.05 | −35.4 | 0.62 cd ± 0.02 | −8.82 | 2.47 def ± 0.07 | −11.8 |
Source of Variation | Fe (mg 100 g−1 DW) | % of Cont. | Mn (mg 100 g−1 DW) | % of Cont. | Zn (mg 100 g−1 DW) | % of Cont. |
---|---|---|---|---|---|---|
Sowing date (SD) | * | * | * | |||
Oct. | 30.6 a ± 1.3 | ..... | 18.4 a ± 0.9 | ..... | 9.10 a ± 0.31 | ..... |
Nov. | 30.6 a ± 1.3 | −0.00 | 18.2 a ± 0.9 | −1.09 | 9.01 a ± 0.31 | −0.99 |
Dec. | 27.7 b ± 1.2 | −9.45 | 16.7 b ± 0.9 | −9.24 | 8.20 b ± 0.25 | −9.89 |
Jan. | 24.2 c ± 1.0 | −20.9 | 14.0 c ± 0.7 | −23.9 | 7.28 c ± 0.19 | −20.0 |
AsA levels | * | * | * | |||
0 mM (AsA0) | 24.8 c ± 1.0 | ..... | 14.7 c ± 0.7 | ..... | 7.42 c ± 0.19 | ..... |
1.0 mM (AsA1) | 28.9 b ± 1.2 | +16.5 | 16.7 b ± 0.8 | +13.6 | 8.23 b ± 0.25 | +10.9 |
2.0 mM (AsA2) | 31.3 a ± 1.4 | +26.2 | 19.1 a ± 1.0 | +29.9 | 9.55 a ± 0.35 | +28.7 |
SD × AsA levels | * | * | * | |||
Oct. × AsA0 | 27.0 b ± 1.1 | ..... | 16.2 d ± 0.8 | ..... | 8.14 cd ± 0.25 | ..... |
Oct. × AsA1 | 31.6 a ± 1.3 | +17.0 | 18.5 c ± 0.9 | +14.2 | 9.25 ab ± 0.31 | +13.6 |
Oct. × AsA2 | 33.3 a ± 1.5 | +23.3 | 20.5 ab ± 1.0 | +26.5 | 9.92 a ± 0.36 | +21.9 |
Nov. × AsA0 | 26.6 b ± 1.1 | −1.48 | 15.0 def ± 0.8 | −7.41 | 7.76 cde ± 0.21 | −4.67 |
Nov. × AsA1 | 32.6 a ± 1.3 | +20.7 | 18.8 bc ± 0.9 | +16.0 | 9.29 ab ± 0.33 | +14.1 |
Nov. × AsA2 | 33.0 a ± 1.5 | +22.2 | 20.9 a ± 1.1 | +29.0 | 9.98 a ± 0.40 | +22.6 |
Dec. × AsA0 | 23.6 bc ± 0.9 | −12.6 | 14.4 def ± 0.7 | −11.1 | 7.19 def ± 0.18 | −11.7 |
Dec. × AsA1 | 26.3 b ± 1.1 | −2.59 | 15.2 de ± 0.8 | −6.17 | 7.48 cdef ± 0.20 | −8.11 |
Dec. × AsA2 | 33.3 a ± 1.6 | +23.3 | 20.4 abc ± 1.1 | +25.9 | 9.93 a ± 0.37 | +22.0 |
Jan. × AsA0 | 22.0 c ± 0.9 | −18.5 | 13.1 f ± 0.6 | −19.1 | 6.58 f ± 0.13 | −19.2 |
Jan. × AsA1 | 25.0 bc ± 1.0 | −7.41 | 14.2 ef ± 0.7 | −12.3 | 6.90 ef ± 0.15 | −15.2 |
Jan. × AsA2 | 25.6 bc ± 1.0 | −5.19 | 14.6 def ± 0.7 | −9.88 | 8.35 bc ± 0.28 | −2.58 |
Source of Variation | Chls (SPAD) | % of Cont. | S. Sugars (mg g−1 DW) | % of Cont. | Proline (mmol g−1 DW) | % of Cont. | AsA (mg 100 g−1 FW) | % of Cont. |
---|---|---|---|---|---|---|---|---|
Sowing date (SD) | * | ** | * | * | ||||
Oct. | 46.3 a ± 2.3 | ..... | 15.8 c ± 0.5 | ..... | 0.31 c ± 0.02 | ..... | 84.4 c ± 2.8 | ..... |
Nov. | 44.1 a ± 2.2 | −4.75 | 22.4 b ± 0.7 | +41.8 | 0.37 b ± 0.02 | +19.4 | 94.4 b ± 3.3 | +11.8 |
Dec. | 37.9 b ± 1.8 | −18.1 | 28.7 a ± 0.9 | +81.6 | 0.41 a ± 0.03 | +32.3 | 102.4 a ± 3.6 | +21.3 |
Jan. | 29.9 c ± 1.3 | −35.4 | 22.7 b ± 0.7 | +43.7 | 0.32 c ± 0.02 | +3.23 | 94.0 b ± 3.4 | +11.4 |
AsA levels | * | ** | ** | * | ||||
0 mM (AsA0) | 33.9 c ± 1.5 | ..... | 16.1 c ± 0.5 | ..... | 0.28 c ± 0.01 | ..... | 83.5 c ± 2.8 | ..... |
1.0 mM (AsA1) | 38.5 b ± 1.9 | +13.6 | 22.3 b ± 0.7 | +38.5 | 0.35 b ± 0.02 | +25.0 | 92.6 b ± 3.2 | +10.9 |
2.0 mM (AsA2) | 46.4 a ± 2.3 | +36.9 | 28.8 a ± 1.0 | +78.9 | 0.43 a ± 0.03 | +53.6 | 105.3 a ± 3.8 | +26.1 |
SD × AsA levels | * | ** | ** | * | ||||
Oct. × AsA0 | 43.2 c ± 2.1 | ..... | 11.2 h ± 0.3 | ..... | 0.24 g ± 0.01 | ..... | 74.5 e ± 2.3 | ..... |
Oct. × AsA1 | 45.9 bc ± 2.3 | +6.25 | 16.7 fg ± 0.5 | +49.1 | 0.31 f ± 0.02 | +29.2 | 84.9 d ± 2.9 | +14.0 |
Oct. × AsA2 | 49.9 a ± 2.5 | +15.5 | 19.6 def ± 0.6 | +75.0 | 0.39 cd ± 0.02 | +62.5 | 93.7 c ± 3.3 | +25.8 |
Nov. × AsA0 | 36.6 d ± 1.7 | −15.3 | 16.4 g ± 0.5 | +46.4 | 0.30 f ± 0.01 | +25.0 | 82.7 d ± 2.8 | +11.0 |
Nov. × AsA1 | 46.0 bc ± 2.4 | +6.48 | 23.5 c ± 0.7 | +110 | 0.37 d ± 0.02 | +54.2 | 93.8 c ± 3.2 | +25.9 |
Nov. × AsA2 | 49.7 ab ± 2.5 | +15.0 | 27.2 b ± 0.8 | +143 | 0.45 b ± 0.03 | +87.5 | 106.7 ab ± 3.9 | +43.2 |
Dec. × AsA0 | 31.5 e ± 1.3 | −27.1 | 19.8 de ± 0.6 | +76.8 | 0.34 e ± 0.02 | +41.7 | 93.9 c ± 3.1 | +26.0 |
Dec. × AsA1 | 32.7 de ± 1.5 | −24.3 | 28.1 b ± 0.8 | +151 | 0.40 c ± 0.03 | +66.7 | 99.6 bc ± 3.5 | +33.7 |
Dec. × AsA2 | 49.5 ab ± 2.5 | +14.6 | 38.1 a ± 1.4 | +240 | 0.48 a ± 0.03 | +100 | 113.8 a ± 4.1 | +52.8 |
Jan. × AsA0 | 24.1 f ± 1.0 | −44.2 | 17.1 efg ± 0.5 | +52.7 | 0.25 g ± 0.01 | +4.17 | 82.9 d ± 2.9 | +11.3 |
Jan. × AsA1 | 29.3 e ± 1.2 | −32.2 | 20.8 cd ± 0.6 | +85.7 | 0.32 ef ± 0.02 | +33.3 | 92.1 c ± 3.2 | +23.6 |
Jan. × AsA2 | 36.3 d ± 1.6 | −16.0 | 30.1 b ± 1.1 | +169 | 0.39 cd ± 0.02 | +62.5 | 107.1 ab ± 4.0 | +43.8 |
Source of Variation | Catalase (Unit g−1 FW min−1) | % of Cont. | Peroxidase (Unit g−1 FW min−1) | % of Cont. | Superoxide Dismutase (Unit g−1 FW min−1) | % of Cont. |
---|---|---|---|---|---|---|
Sowing date (SD) | * | ns | * | |||
Oct. | 24.7 c ± 0.5 | ..... | 2.02 a ± 0.04 | ..... | 1.68 c ± 0.03 | ..... |
Nov. | 28.5 b ± 0.6 | +15.4 | 2.02 a ± 0.05 | ..... | 1.97 b ± 0.04 | +17.3 |
Dec. | 33.2 a ± 0.7 | +34.4 | 2.04 a ± 0.05 | ..... | 2.26 a ± 0.05 | +34.5 |
Jan. | 28.8 b ± 0.6 | +16.6 | 2.05 a ± 0.05 | ..... | 1.93 b ± 0.04 | +14.9 |
AsA levels | * | ns | * | |||
0 mM (AsA0) | 26.0 c ± 0.5 | ..... | 2.03 a ± 0.05 | ..... | 1.64 c ± 0.03 | ..... |
1.0 mM (AsA1) | 29.4 b ± 0.6 | +13.1 | 2.03 a ± 0.05 | ..... | 1.99 b ± 0.04 | +21.3 |
2.0 mM (AsA2) | 31.0 a ± 0.6 | +19.2 | 2.05 a ± 0.05 | ..... | 2.26 a ± 0.05 | +37.8 |
SD × AsA levels | * | ns | * | |||
Oct. × AsA0 | 23.3 e ± 0.5 | ..... | 2.02 a ± 0.05 | ..... | 1.40 e ± 0.02 | ..... |
Oct. × AsA1 | 24.5 de ± 0.5 | +5.15 | 2.01 a ± 0.04 | ..... | 1.67 de ± 0.03 | +19.3 |
Oct. × AsA2 | 26.3 cd ± 0.5 | +12.9 | 2.03 a ± 0.04 | ..... | 1.98 bc ± 0.04 | +41.4 |
Nov. × AsA0 | 25.9 de ± 0.5 | +11.2 | 1.99 a ± 0.04 | ..... | 1.67 de ± 0.03 | +19.3 |
Nov. × AsA1 | 28.9 bc ± 0.6 | +24.0 | 2.03 a ± 0.05 | ..... | 1.98 bc ± 0.04 | +41.4 |
Nov. × AsA2 | 30.8 b ± 0.6 | +32.2 | 2.04 a ± 0.05 | ..... | 2.27 b ± 0.05 | +62.1 |
Dec. × AsA0 | 29.3 b ± 0.6 | +25.8 | 2.03 a ± 0.05 | ..... | 1.88 cd ± 0.04 | +34.3 |
Dec. × AsA1 | 34.3 a ± 0.7 | +47.2 | 1.99 a ± 0.04 | ..... | 2.23 b ± 0.05 | +59.3 |
Dec. × AsA2 | 36.0 a ± 0.7 | +54.5 | 2.10 a ± 0.06 | ..... | 2.67 a ± 0.06 | +90.7 |
Jan. × AsA0 | 25.3 e ± 0.5 | +8.58 | 2.07 a ± 0.05 | ..... | 1.60 de ± 0.03 | +14.3 |
Jan. × AsA1 | 30.0 b ± 0.6 | +28.8 | 2.07 a ± 0.05 | ..... | 2.07 bc ± 0.04 | +47.9 |
Jan. × AsA2 | 31.0 b ± 0.6 | +33.0 | 2.01 a ± 0.04 | ..... | 2.13 bc ± 0.04 | +52.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Taweel, S.K.; Belal, H.E.E.; El Sowfy, D.M.; Desoky, E.-S.M.; Rady, M.M.; Mazrou, K.E.; Maray, A.R.M.; El-Sharnouby, M.E.; Alamer, K.H.; Ali, E.F.; et al. Integrative Seed and Leaf Treatment with Ascorbic Acid Extends the Planting Period by Improving Tolerance to Late Sowing Influences in Parsley. Horticulturae 2022, 8, 334. https://doi.org/10.3390/horticulturae8040334
Al-Taweel SK, Belal HEE, El Sowfy DM, Desoky E-SM, Rady MM, Mazrou KE, Maray ARM, El-Sharnouby ME, Alamer KH, Ali EF, et al. Integrative Seed and Leaf Treatment with Ascorbic Acid Extends the Planting Period by Improving Tolerance to Late Sowing Influences in Parsley. Horticulturae. 2022; 8(4):334. https://doi.org/10.3390/horticulturae8040334
Chicago/Turabian StyleAl-Taweel, Sudad K., Hussein E. E. Belal, Dalia M. El Sowfy, El-Sayed M. Desoky, Mostafa M. Rady, Khaled E. Mazrou, Ahmed R. M. Maray, Mohamed E. El-Sharnouby, Khalid H. Alamer, Esmat F. Ali, and et al. 2022. "Integrative Seed and Leaf Treatment with Ascorbic Acid Extends the Planting Period by Improving Tolerance to Late Sowing Influences in Parsley" Horticulturae 8, no. 4: 334. https://doi.org/10.3390/horticulturae8040334
APA StyleAl-Taweel, S. K., Belal, H. E. E., El Sowfy, D. M., Desoky, E. -S. M., Rady, M. M., Mazrou, K. E., Maray, A. R. M., El-Sharnouby, M. E., Alamer, K. H., Ali, E. F., & Abou-Sreea, A. I. B. (2022). Integrative Seed and Leaf Treatment with Ascorbic Acid Extends the Planting Period by Improving Tolerance to Late Sowing Influences in Parsley. Horticulturae, 8(4), 334. https://doi.org/10.3390/horticulturae8040334