Effect of Covering Crops between Rows on the Vineyard Microclimate, Berry Composition and Wine Sensory Attributes of ‘Cabernet Sauvignon’ (Vitis vinifera L. cv.) Grapes in a Semi-Arid Climate of Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Climate and Microclimate Data Observation
2.3. Measurement of Vine Growth and Yield Parameters
2.4. Analysis of Berry and Wine Physiochemical Composition
2.5. Extraction of Flavonoid Compounds in Berry Skins and Seeds
2.6. HPLC-MS Analysis of Phenolic Compounds in Berries and Wines
2.7. Extraction of Berry Aroma Compounds
2.8. GC-MS Analysis of Aroma Compounds in Grapes and Wines
2.9. Small-Scale Fermentation
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results
3.1. Meteorological and Microclimate Data
3.2. Effect of Covering Purslane on the Grape Vegetative Parameters
3.3. Effect of Covering Purslane on the Grape Physiochemical Indexes
3.4. Effect of Covering Purslane on the Quality of the Grape Berries
3.5. Effect of Covering Purslane on the Must and Wine Physicochemical Parameters
3.6. Effect of Vintage and Treatments on Wine Flavonoids and Colorimetric Parameters
3.7. Effect of Covering Purslane on the Wine Volatile Compounds
3.8. Effect of Covering Purslane on the Sensory Evaluation of Wines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Van, L.C.; Seguin, G. The Concept of Terroir in Viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar]
- Le Menn, N.; Van Leeuwen, C.; Picard, M.; Riquier, L.; de Revel, G.; Marchand, S. Effect of Vine Water and Nitrogen Status, as Well as Temperature, on Some Aroma Compounds of Aged Red Bordeaux Wines. J. Agric. Food Chem. 2019, 67, 7098–7109. [Google Scholar] [CrossRef]
- Brescia, M.A.; Caldarola, V.; Giglio, A.D.; Benedetti, D.; Fanizzi, F.P.; Sacco, A. Characterization of the Geographical Origin of Italian Red Wines Based on Traditional and Nuclear Magnetic Resonance Spectrometric Determinations. Anal. Chim. Acta 2002, 458, 177–186. [Google Scholar] [CrossRef]
- Douglas, D.; Cliff, M.A.; Reynolds, A.G. Canadian Terroir: Characterization of Riesling Wines from the Niagara Peninsula. Food Res. Int. 2001, 34, 559–563. [Google Scholar] [CrossRef]
- Van, L.C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of Climate, Soil and Cultivar on Terroir. Am. J. Enol. Vitic. 2004, 55, 207–214. [Google Scholar]
- Smart, R.E.; Robinson, J.B.; Due, G.R.; Brien, C.J. Canopy Microclimatemodification for the Cultivar Shiraz. I. Definition of Canopy Microclimate. Vitis 1985, 24, 17–31. [Google Scholar]
- Smart, R.E.; Robinson, J.B.; Due, G.R.; Brien, C.J. Canopy Microclimatemodifirạtion for the Cultivar Shiraz. II. Effects on Must and Wine Composition. Vitis 1985, 24, 119–128. [Google Scholar]
- Smart, R.E.; Dick, J.K.; Gravett, I.M.; Fisher, B.M. Canopy Managementto Improve Grape Yield and Wine Quality—Principles and Practices. S. Afr. J. Enol. Vitic. 1990, 11, 3–17. [Google Scholar]
- Lopes, C.M.; Egipto, R.; Zarrouk, O.; Chaves, M.M. Carry-over Effects on Bud Fertility Makes Early Defoliation a Risky Crop-Regulating Practice in Mediterranean Vineyards. Aust. J. Grape Wine Res. 2020, 26, 290–299. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Mattii, G.B. Effects of Defoliation at Fruit Set on Vine Physiology and Berry Composition in ‘Cabernet Sauvignon’ Grapevines. Plants 2021, 10, 1183. [Google Scholar] [CrossRef]
- Zhu, X.H.; Ma, J.Y.; Yang, A.P. Occurrence Regularity of Grape Powdery Mildew and Its Control Techniques in Xinjiang. Xinjiang Agric. Sci. 2011, 42, 282–286. [Google Scholar]
- Geoffrion, R. Organic Cultivation of Cereals. Field Study on a Cultivation Method Currently under Development. Phytoma 2000, 529, 11–12. [Google Scholar]
- Celette, F.; Gaudin, R.; Gary, C. Spatial and Temporal Changes to the Water Regime of a Mediterranean Vineyard due to the Adoption of Cover Cropping. Eur. J. Agron. 2008, 29, 153–162. [Google Scholar] [CrossRef]
- Bugg, R.L.; McGourty, G.; Sarrantonio, M.; Lanini, W.T.; Bartolucci, R. Comparison of 32 Cover Crops in an Organic Vineyard on the North Coast of California. Biol. Agric. Hortic. 1996, 13, 63–81. [Google Scholar] [CrossRef]
- Hui, Z.M.; Li, H.; Zhang, Z.W.; Liu, Y.L.; Wei, G.L. Effect of Green Covering on Vineyard Microclimate and Wine Quality. J. Northwest A F Univ. 2004, 32, 33–37. [Google Scholar]
- Cook, H.F.; Valdes, G.S.B.; Lee, H.C. Mulch Effects on Rainfall Interception, Soil Physical Characteristics and Temperature under Zea mays L. Soil Tillage Res. 2006, 91, 227–235. [Google Scholar] [CrossRef]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic Resource Management: Impacts on Soil Aggregate Stability and Other Soil Physico-Chemical Properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Afonso, J.M.; Monteiro, A.M.; Lopes, C.M.; Lourenco, J. Cover Crops in Vineyards of the Vinhos Verdes Region. A Three-Year Study of Variety Alvarinho. Ciencia Tecnica Vitivinicola 2003, 18, 47–63. [Google Scholar]
- Wang, Y.; He, Y.N.; Chen, W.K.; He, F.; Chen, W.; Cai, X.D.; Duan, C.Q.; Wang, J. Effects of Cluster Thinning on Vine Photosynthesis, Berry Ripeness and Flavonoid Composition of Cabernet Sauvignon. Food Chem. 2018, 248, 101–110. [Google Scholar] [CrossRef]
- Cheng, G.; He, Y.N.; Yue, T.X.; Wang, J.; Zhang, Z.W. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles. Molecules 2014, 19, 13683–13703. [Google Scholar] [CrossRef]
- Coniberti, A.; Ferrari, V.; Disegna, E.; Dellacassa, E.; Lakso, A.N. Under-trellis Cover Crop and Deficit Irrigation to Regulate Water Availability and Enhance Tannat Wine Sensory Attributes in a Humid Climate. Sci. Hortic. 2018, 235, 244–252. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A Review: Soil Management, Sustainable Strategies and Approaches to Improve the Quality of Modern Viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- GB/T15038-2006; Analytical Methods of Wine and Fruit Wine. China National Standardization Administration Committee: Beijing, China, 2006.
- OIV—International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2014. [Google Scholar]
- Ayala, F.; Echávarri, J.F.; Negueruela, A.I. A New Simplified Method for Measuring the Color of Wines. I. Red and Rose Wines. Am. J. Enol. Vitic. 1997, 48, 357–363. [Google Scholar]
- Downey, M.O.; Mazza, M.; Krstic, M.P. Development of a Stable Extract for Anthocyanins and Flavonols from Grape Skin. Am. J. Enol. Vitic. 2007, 58, 358–364. [Google Scholar]
- He, J.J.; Liu, Y.X.; Pan, Q.H.; Cui, X.Y.; Duan, C.Q. Different Anthocyanin Profiles of the Skin and the Pulp of Yan73 (Muscat Hamburg × Alicante Bouschet) Grape Berries. Molecules 2010, 15, 1141–1153. [Google Scholar] [CrossRef]
- Liang, N.N.; He, F.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Optimization of Sample Preparation and Phloroglucinol Analysis of ‘Marselan’ Grape Skin Proanthocyanidins using HPLC-DAD-ESI-MS/MS. S. Afr. J. Enol. Vitic. 2012, 22, 122. [Google Scholar]
- Downey, M.O.; Rochfort, S. Simultaneous Separation by Reversed-Phase High-Performance Liquid Chromatography and Mass Spectral Identification of Anthocyanins and Flavonols in ‘Shiraz’ Grape Skin. J. Chromatogr. A 2008, 1201, 43–47. [Google Scholar] [CrossRef]
- Li, S.Y.; He, F.; Zhu, B.Q.; Wang, J.; Duan, C.Q. Comparison of Phenolic and Chromatic Characteristics of Dry Red Wines made from native Chinese grape species and Vitis Vinifera. Int. J. Food Prop. 2016, 20, 2134–2146. [Google Scholar] [CrossRef]
- Sun, R.Z.; Cheng, G.; Li, Q.; He, Y.N.; Wang, Y.; Lan, Y.B.; Wang, J. Light- induced variation in Phenolic Compounds in ‘Cabernet Sauvignon’ Grapes (Vitis vinifera L.) Involves EExtensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators. Front. Plant Sci. 2017, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.B.; Qian, X.; Yang, Z.J.; Xiang, X.F.; Yang, W.X.; Liu, T.; Zhu, B.Q.; Pan, Q.H.; Duan, C.Q. Striking Changes in Volatile Profiles at Sub-Zero Temperatures During Over-Ripening of ‘Beibinghong’ Grapes in Northeastern China. Food Chem. 2016, 212, 172–182. [Google Scholar] [CrossRef]
- Wen, Y.Q.; He, F.; Zhu, B.Q.; Lan, Y.B.; Pan, Q.H.; Li, C.Y.; Reeves, M.J.; Wang, J. Free and Glycosidically Bound Aroma Compounds in Cherry (Prunus avium L.). Food Chem. 2014, 152, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, W.K.; Gao, X.T.; He, L.; Yang, X.H.; He, F.; Duan, C.Q.; Wang, J. Rootstock-Mediated Effects on Cabernet-Sauvignon Performance: Vine Growth, Berry Ripening, Flavonoids, and Aromatic profiles. Int. J. Mol. Sci. 2019, 20, 401. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Pan, Q.; Qu, W.; Duan, C. Comparison of volatile profiles of nine litchi (Litchi chinensis Sonn.) cultivars from Southern China. J. Agric. Food Chem. 2009, 57, 9676–9681. [Google Scholar] [CrossRef]
- Li, H. Wine Tasting; China Science Press: Beijing, China, 2006; pp. 149–152. [Google Scholar]
- McIntyre, G.N.; Kliewer, W.M.; Lider, L.A. Some Limitations of the Degree-day System as Used in Viticulture in California. Am. J. Enol. Vitic. 1987, 38, 128–132. [Google Scholar]
- Jones, G.V.; Moriondo, M.; Bois, B.; Hall, A.; Duff, A. Analysis of the Spatial Climate Structure in Viticulture Regions Worldwide. OAV 2009, 82, 507–518. [Google Scholar]
- Huglin, P. Nouveau Mode D’évaluation des Possibilités Héliothermiques d’un Milieu Viticole. C. R. Acad. Agric. Fr. 1978, 64, 1117–1126. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A Multicriteria Climatic Classification System for Grape-Growing Regions Worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Rolin, D. Microclimate Influence on Mineral and Metabolic Profiles of Grape Berries. J. Agric. Food Chem. 2006, 54, 6765–6775. [Google Scholar] [CrossRef]
- Pieri, P.; Gaudillere, J.P. Sensitivity to Training System Parameters and Soil Surface Albedo of Solar Radiation Intercepted by Vine Rows. Vitis 2003, 42, 77–82. [Google Scholar]
- Price, S.F.; Breen, P.J.; Valladao, M.; Watson, B.T. Cluster Sun Exposure and Quercetinin Pinot Noir Grapes and Wine. Am. J. Enol. Vitic. 1995, 46, 187–194. [Google Scholar]
- Cao, Y.L.; Xing, M.Y.; Xu, C.J.; Li, X. Biosynthesis of Flavonol and Its Regulation in Plants. Acta Hortic. Sin. 2018, 45, 177–192. [Google Scholar]
- Yamane, T.; Jeong, S.T.; Goto-Yamamoto, N.; Koshita, Y.; Kobayashi, S. Effects of Temperature on Anthocyanin Biosynthesis in Grape Berry Skins. Am. J. Enol. Vitic. 2006, 57, 54–59. [Google Scholar]
- Cai, J.; Zhu, B.Q.; Wang, Y.H.; Lu, L.; Lan, Y.B.; Reeves, M.J.; Duan, C.Q. Influence of Pre-Fermentation Cold Maceration Treatment on Aroma Compounds of Cabernet-Sauvignon Wines Fermented in Different Industrial Scale Fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and Bacterial Modulation of Wine Aroma and Flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Matsui, K. Green Leaf Volatiles: Hydroperoxide Lyase Pathway of Oxylipin Metabolism. Curr. Opin. Plant Biol. 2006, 9, 274–280. [Google Scholar] [CrossRef]
- Parr, W.V.; Green, J.A.; White, K.G.; Sherlock, R.R. The Distinctive Flavour of New Zealand Sauvignon Blanc: Sensory Characterisation by Wine Professionals. Food Qual. Prefer. 2007, 18, 849–861. [Google Scholar] [CrossRef]
- Linares, T.R.; De La Fuente, L.M.; Junquera, G.P.; Lissarrague García-Gutierrez, J.R.; Baeza, T.P. Effect of soil management strategies on the characteristics of the grapevine root system in irrigated vineyards under semi-arid conditions. Aust. J. Grape Wine Res. 2018, 24, 439–449. [Google Scholar] [CrossRef]
- Lopes, C.M.; Santos, T.P.; Monteiro, A.; Rodrigues, M.L.; Costa, J.M.; Chaves, M.M. Combining Cover Cropping with Deficit Irrigation in a Mediterranean Low Vigor Vineyard. Sci. Hortic. 2011, 129, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.H.; Wang, J.; Sun, Q.; Xu, X.; Wang, R. Effects of Grass Covering on Soil Nutrients and Berry Quality in Winegrowers. Southwest China J. Agric. Sci. 2019, 32, 1833–1838. [Google Scholar]
- Hubert, A.; Peggy, R.; Rémi, S.; Hernán, O.; Laurent, T. Impact of Agronomic Practices on Grape aroma Composition: A review. J. Sci. Food Agric. 2018, 99, 975–998. [Google Scholar] [CrossRef]
- Gontier, L.; Caboulet, D.; Lhoutellier, C. Assessment of the Agronomic Value of Sewage Sludge Compost Applied on Wine-Growing Soils. In Proceedings of the 1st International Symposium on Organic Matter Management and Compost Use in Horticulture, Adelaide, Australia, 7 April 2011. [Google Scholar]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of Vineyard Floor Cover Crop on Grapevine Vigor, Yield, and Fruit Quality, and the Development of the Vine Mealybug Under a Mediterranean Climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Beslic, Z.; Pantelic, M.; Dabic, D.; Todic, S.; Natic, M.; Tesic, Z. Effect of Vineyard Floor Management on Water Regime, Growth Response, Yield and Fruit Quality in ‘Cabernet Sauvignon’. Sci. Hortic. 2015, 197, 650–656. [Google Scholar] [CrossRef]
- Gattullo, C.E.; Mezzapesa, G.N.; Stellacci, A.M.; Ferrara, G.; Occhiogrosso, G.; Petrelli, G.; Castellini, M.; Spagnuolo, M. Cover Crop for a Sustainable Viticulture: Effects on Soil Properties and Table Grape Production. Agronomy 2020, 10, 1334. [Google Scholar] [CrossRef]
- Hashizume, K. Effects of Abscisic Acid Treatment and Night Temperatures on Anthocyanin Composition in ‘Pinot Noir’ Grapes. Prog. Neuro-Psychoph. 2005, 29, 351–353. [Google Scholar]
- Buttrose, M.S.; Hale, C.R.; Kliewer, W.M. Effect of Temperature on the Composition of ‘Cabernet Sauvignon’ Berries. Am. J. Enol. Vitic. 1971, 2, 71–75. [Google Scholar]
- Joscelyne, V.L.; Downey, M.O.; Mazza, M.; Bastian, S.E.P. Partial Shading of Cabernet-Sauvignon and Shiraz Vines Altered Wine Color and Mouthfeel Attributes, but Increased Exposure Had Little Impact. J. Agric. Food Chem. 2007, 55, 10889–10896. [Google Scholar] [CrossRef]
- Liang, N.N.; Pan, Q.; He, F.; Wang, J.; Reeves, M.J.; Duan, C.Q. Phenolic Profiles of Vitis Davidii and Vitis Quinquangularis Species Native to China. J. Agric. Food Chem. 2013, 61, 6016–6027. [Google Scholar] [CrossRef]
- Bidel, L.P.R.; Chomicki, G.; Bonini, F.; Mondolot, L.; Soulé, J.; Coumans, M.; La Fisca, P.; Baissac, Y.; Petit, V.; Loiseau, A.; et al. Dynamics of Flavonol Accumulation in Leaf Tissues Under Different UV-B Regimes in Centella asiatica (Apiaceae). Planta 2015, 242, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Flint, S.D.; Jordan, P.W.; Caldwell, M.M. Plant Protective Response to Enhanced UV-B Radiation Under Field Conditions: Leaf Optical Properties and Photosynthesis. Photochem. Photobiol. 1985, 41, 95–99. [Google Scholar] [CrossRef]
- Xi, Z.M.; Tao, Y.S.; Zhang, L.; Li, H. Impact of Cover Crops in Vineyard on the Aroma Compounds of Vitis Vinifera L. cv ‘Cabernet Sauvignon’ Wine. Food Chem. 2011, 127, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Salinas, M.R.; Garijo, J.; Pardo, F.; Zalacain, A.; Alonso, G.L. Color, Polyphenol, and Aroma Compounds in Rosé Wines after Prefermentative Maceration and Enzymatic Treatments. Am. J. Enol. Vitic. 2003, 54, 195–202. [Google Scholar]
Bioclimatic Indices | 2018 | 2019 |
---|---|---|
Growing season temperature (GST, °C) | 19.57 | 20.39 |
Heliothermal index (HI, °C) | 2741.0 | 2966.4 |
Growing degree-days (GDD, °C) | 2011.3 | 2126.7 |
Cumulative rainfall (mm, (from 1 April to 30 September)) | 109.6 | 102.0 |
Daily average sunshine duration (h, (from 1 April to 30 September)) | 9.92 | 9.21 |
Daily average mean temperature of July (°C) | 27.33 | 27.65 |
Daily average maximum temperature of July (°C) | 33.69 | 33.67 |
Parameters | Treatments | Sig. | |
---|---|---|---|
CK | CP | ||
Total shoot leaf area/meter (m2/m) | 12.64 ± 0.79 | 9.53 ± 1.01 | * |
Main shoot leaf area/meter (m2/m) | 5.27 ± 0.17 | 3.84 ± 0.75 | * |
Lateral shoot leaf area/meter (m2/m) | 7.37 ± 0.80 | 5.69 ± 0.67 | * |
Yield/meter (kg/m) | 3.44 ± 0.18 | 3.42 ± 0.29 | ns |
Leaf area/yield (m2/kg) | 3.67 ± 0.45 | 2.75 ± 0.42 | * |
Average shoot length (cm) | 126.00 ± 9.70 | 117.80 ± 7.94 | ns |
Third internode diameter (mm) | 0.82 ± 0.11 | 0.84 ± 0.03 | ns |
Pruning weight/meter (kg/m) | 1.97 ± 0.13 | 1.53 ± 0.18 | * |
Yield/pruning weight | 1.84 ± 0.15 | 2.75 ± 0.19 | * |
Years | Treatments | Concentration (mg/Kg FW) | ||
---|---|---|---|---|
Anthocyanins | Flavonols | Flavanols | ||
2018 | CK | 665.79 ± 4.68 | 30.45 ± 0.74 | 7149.12 ± 116.33 |
CP | 681.78 ± 22.47 | 34.12 ± 0.20 | 6595.01 ± 259.35 | |
Sig. | ns | * | ns | |
2019 | CK | 1033.00 ± 18.66 | 63.08 ± 8.87 | 6599.76 ± 60.33 |
CP | 1061.54 ± 76.22 | 75.24 ± 1.16 | 6452.28 ± 102.71 | |
Sig. | ns | * | ns |
Compounds | 2018 | 2019 | ||||
---|---|---|---|---|---|---|
CK | CP | Sig. | CK | CP | Sig. | |
C6/C9 | 3514.16 ± 314.81 | 4457.56 ± 176.56 | * | 5525.61 ± 930.72 | 4643.98 ± 198.10 | ns |
norisoprenoids | 23.69 ± 2.29 | 30.98 ± 2.47 | * | 13.88 ± 0.87 | 14.12 ± 1.72 | ns |
terpenes | 1.53 ± 0.18 | 1.57 ± 0.32 | ns | 8.13 ± 0.16 | 8.35 ± 0.21 | ns |
benzenes | 17.62 ± 1.40 | 17.87 ± 0.33 | ns | 17.23 ± 0.73 | 17.44 ± 0.45 | ns |
aldehydes/ketones | 11.70 ± 0.56 | 12.93 ± 0.50 | * | 9.29 ± 0.87 | 9.04 ± 1.22 | ns |
alcohols | 33.15 ± 1.59 | 35.99 ± 1.41 | ns | 488.07 ± 45.83 | 494.48 ± 4.97 | ns |
fatty acids | 217.16 ± 55.12 | 128.32 ± 8.68 | ns | 753.80 ± 122.05 | 685.15 ± 89.96 | ns |
esters | 11.70 ± 1.21 | 14.69 ± 1.24 | * | 7.69 ± 0.48 | 7.90 ± 0.56 | ns |
Fermentation Stage | Years | Parameters | Treatments | Sig. | |
---|---|---|---|---|---|
CK | CP | ||||
Must | 2018 | TSS (°Brix) | 23.47 ± 0.18 | 23.00 ± 0.26 | ns |
TA (g/L) | 8.90 ± 0.13 | 8.70 ± 2.85 | ns | ||
pH | 3.48 ± 0.01 | 3.29 ± 0.01 | ns | ||
2019 | TSS (°Brix) | 24.03 ± 0.22 | 23.30 ± 0.12 | * | |
TA (g/L) | 7.34 ± 0.23 | 7.40 ± 0.11 | ns | ||
pH | 3.42 ± 0.01 | 3.45 ± 0.13 | ns | ||
Wine | 2018 | Residual sugar (g/L) | 1.98 ± 0.33 | 1.88 ± 0.17 | ns |
pH | 4.09 ± 0.01 | 3.93 ± 0.00 | * | ||
TA (g/L) | 4.95 ± 0.19 | 5.33 ± 0.17 | * | ||
Alcohol degree (%, v/v) | 12.90 ± 0.58 | 12.40 ± 0.10 | * | ||
Volatile acid (g/L) | 0.51 ± 0.03 | 0.53 ± 0.01 | ns | ||
2019 | Residual sugar (g/L) | 1.73 ± 0.11 | 1.17 ± 0.06 | * | |
pH | 4.07 ± 0.12 | 4.14 ± 0.01 | ns | ||
TA (g/L) | 4.90 ± 0.01 | 5.53 ± 0.06 | * | ||
Alcohol degree (%, v/v) | 12.57 ±0.07 | 12.22 ± 0.12 | ns | ||
Volatile acid (g/L) | 0.55 ± 0.02 | 0.63 ± 0.08 | ns |
Parameter | Treatment | Years | L | a | b | C | H | |
---|---|---|---|---|---|---|---|---|
Polyanthocyanins | Correlation | 0.196 | 0.862 * | 0.632 * | −0.331 | −0.879 * | −0.415 | −0.676 * |
p value | 0.541 | 0.000 | 0.027 | 0.294 | 0.000 | 0.179 | 0.016 | |
Monoanthocyanins | Correlation | 0.423 | −0.752 * | −0.731 ** | 0.529 | 0.666 * | 0.584 * | 0.354 |
p value | 0.170 | 0.005 | 0.007 | 0.077 | 0.018 | 0.046 | 0.259 | |
Flavonols | Correlation | 0.350 | 0.917 * | 0.738 ** | −0.556 | −0.833 * | −0.630 * | −0.521 |
p value | 0.265 | 0.000 | 0.006 | 0.060 | 0.001 | 0.028 | 0.082 | |
Flavanols | Correlation | −0.286 | −0.255 | −0.247 | 0.215 | 0.504 | 0.268 | 0.427 |
p value | 0.368 | 0.424 | 0.440 | 0.501 | 0.095 | 0.399 | 0.166 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Wei, W.; Lu, H.-C.; Chen, W.; Li, S.-D.; Wang, J.; Duan, C.-Q.; He, F. Effect of Covering Crops between Rows on the Vineyard Microclimate, Berry Composition and Wine Sensory Attributes of ‘Cabernet Sauvignon’ (Vitis vinifera L. cv.) Grapes in a Semi-Arid Climate of Northwest China. Horticulturae 2022, 8, 518. https://doi.org/10.3390/horticulturae8060518
Peng J, Wei W, Lu H-C, Chen W, Li S-D, Wang J, Duan C-Q, He F. Effect of Covering Crops between Rows on the Vineyard Microclimate, Berry Composition and Wine Sensory Attributes of ‘Cabernet Sauvignon’ (Vitis vinifera L. cv.) Grapes in a Semi-Arid Climate of Northwest China. Horticulturae. 2022; 8(6):518. https://doi.org/10.3390/horticulturae8060518
Chicago/Turabian StylePeng, Jing, Wei Wei, Hao-Cheng Lu, Wu Chen, Shu-De Li, Jun Wang, Chang-Qing Duan, and Fei He. 2022. "Effect of Covering Crops between Rows on the Vineyard Microclimate, Berry Composition and Wine Sensory Attributes of ‘Cabernet Sauvignon’ (Vitis vinifera L. cv.) Grapes in a Semi-Arid Climate of Northwest China" Horticulturae 8, no. 6: 518. https://doi.org/10.3390/horticulturae8060518
APA StylePeng, J., Wei, W., Lu, H. -C., Chen, W., Li, S. -D., Wang, J., Duan, C. -Q., & He, F. (2022). Effect of Covering Crops between Rows on the Vineyard Microclimate, Berry Composition and Wine Sensory Attributes of ‘Cabernet Sauvignon’ (Vitis vinifera L. cv.) Grapes in a Semi-Arid Climate of Northwest China. Horticulturae, 8(6), 518. https://doi.org/10.3390/horticulturae8060518