Evaluation of Suitable Water–Zeolite Coupling Regulation Strategy of Tomatoes with Alternate Drip Irrigation under Mulch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurement Parameters and Methods
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Effects of W-Z on the Soil Moisture Dynamics
3.2. Effects of W-Z on the Growth and Physiological Characteristics of Tomato
3.2.1. Effects of W-Z on Tomato Growth
3.2.2. Effects of W-Z on Tomato Physiological Characteristics
3.3. Effects of W-Z on Tomato Quality
3.4. Effects of W-Z on Tomato Yield and WUE
3.5. Comprehensive Evaluation and Analysis of Tomato
4. Discussion
4.1. Effects of Water Level on Tomato Growth
4.2. Effects of Zeolite Amount on Tomato Growth
4.3. Comprehensive Evaluation Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chand, J.B.; Hewa, G.; Hassanli, A.; Myers, B. Deficit Irrigation on Tomato Production in a Greenhouse Environment: A Review. J. Irrig. Drain. Eng. 2021, 147, 04020041. [Google Scholar] [CrossRef]
- Fariasa, D.B.D.; da Silva, P.S.O.; Lucas, A.A.T.; de Freitae, M.I.; Santos, T.D.; Fontes, P.T.N.; de Oliveira, L.F.G. Physiological and productive parameters of the okra under irrigation levels. Sci. Hortic. 2019, 252, 1–6. [Google Scholar] [CrossRef]
- Sepaskhah, A.R.; Barzegar, M. Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment. Agric. Water Manag. 2010, 98, 38–44. [Google Scholar] [CrossRef]
- Cui, X.; Song, J.; Qu, M. Effect of soil water potential on hydraulic parameters of Fraxinus mandshurica seedlings. J. Appl. Ecol. 2004, 15, 2237–2244. [Google Scholar]
- Wang, Y.S.; Liu, J.; Tang, S.; An, Z.X.; Guo, Z.L.; Ding, X.B.; Liu, F.J.; Cao, Z.L.; Zhang, T.; Zhang, Y. Modifications of chemically induced-enucleated nuclear transfer technique by reverse-order nuclear transfer in mouse. Zygote 2009, 17, 261–268. [Google Scholar] [CrossRef]
- Wang, J.W.; Niu, W.Q.; Li, Y. Nitrogen and Phosphorus Absorption and Yield of Tomato Increased by Regulating the Bacterial Community under Greenhouse Conditions via the Alternate Drip Irrigation Method. Agronomy 2020, 10, 315. [Google Scholar] [CrossRef] [Green Version]
- Sonmez, I.; Kaplan, M.; Demir, H.; Yilmaz, E. Effects of zeolite on seedling quality and nutrient contents of tomato plant (Solanum lycopersicon cv. Malike F1) grown in different mixtures of growing media. Food Agric. Environ. 2010, 8, 1162–1165. [Google Scholar]
- Podkovyrov, I.; Kostin, M.; Dolgova, A.; Filipchuk, O.G.; Nesvat, A. Impact of zeolites on intensity of the vital processes of hybrid plants. Vestn. Kazan State Agrar. Univ. 2019, 14, 31–36. [Google Scholar] [CrossRef]
- Urbina-Sanchez, E.; Baca-Castillo, G.A.; Nunez-Escobar, R.; Colinas-Leon, M.T.; Tijerina-Chavez, L.; Tirado-Torres, J.L. Tomato seedlings soilless culture on K+, Ca2+ or Mg2+ loaded zeolite and different granule size. Agrociencia 2006, 40, 419–429. [Google Scholar]
- Bernardi, A.C.D.; Monte, M.B.D.; Paiva, P.R.P.; Werneck, C.G.; Haim, P.G.; Barros, F.D. Dry matter production and nutrient accumulation after successive crops of lettuce, tomato, rice, and andropogongrass in a substrate with zeolite. Rev. Bras. Cienc. Solo 2010, 34, 435–442. [Google Scholar] [CrossRef]
- Abdel-Razzak, H.; Wahb-Allah, M.; Ibrahim, A.; Alenazi, M.; Alsadon, A. Response of Cherry Tomato to Irrigation Levels and Fruit Pruning under Greenhouse Conditions. J. Agric. Sci. Technol. 2016, 18, 1091–1103. [Google Scholar]
- Ajirloo, A.R.; Amiri, E. Responses of Tomato Cultivars to Water-Deficit Conditions (Case Study: Moghan Plain, Iran). Commun. Soil Sci. Plant Anal. 2018, 49, 2267–2283. [Google Scholar] [CrossRef]
- Aydiner, E.; Tuzel, Y.; Tuzel, I.H.; Tunali, U.; Oztekin, G.B. Effects of Irrigation Based on Different Moisture Levels of growing Medium on Soilless Grown Greenhouse Tomatoes. Int. Soc. Hort. Cult. Sci. 2014, 1142, 93–98. [Google Scholar] [CrossRef]
- Ullah, I.; Mao, H.P.; Rasool, G.; Gao, H.Y.; Javed, Q.; Sarwar, A.; Khan, M.I. Effect of Deficit Irrigation and Reduced N Fertilization on Plant Growth, Root Morphology and Water Use Efficiency of Tomato Grown in Soilless Culture. Agronomy 2021, 11, 228. [Google Scholar] [CrossRef]
- Yang, H.; Cao, H.X.; Hao, X.M.; Guo, L.J.; Li, H.Z.; Wu, X.Y. Evaluation of tomato fruit quality response to water and nitrogen management under alternate partial root-zone irrigation. Int. J. Agric. Biol. Eng. 2017, 10, 85–94. [Google Scholar]
- Liu, G.Y.; Du, Q.J.; Jiao, X.C.; Li, J.M. Irrigation at the level of evapotranspiration aids growth recovery and photosynthesis rate in tomato grown under chilling stress. Acta Physiol. Plant. 2018, 40, 2. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Li, B.; Feng, X.; Yao, M.Z.; Xie, Y.; Xing, J.W.; Li, C.X. Parameter estimation and verification of DSSAT-CROPGRO-Tomato model under different irrigation levels in greenhouse. J. Appl. Ecol. 2018, 29, 2017–2027. [Google Scholar]
- Ozbahce, A.; Tari, A.F.; Gonulal, E.; Simsekli, N. Zeolite for Enhancing Yield and Quality of Potatoes Cultivated Under Water-Deficit Conditions. Potato Res. 2018, 61, 247–259. [Google Scholar] [CrossRef]
- Nozari, R.; Tohidi-Moghadam, H.R.; Mashhadi-Akbar-Boojar, M. Effects of zeolite and cattle manure on growth, yield and yield components of soybean grown under water deficit stress. Res. Crop. 2012, 13, 920–927. [Google Scholar]
- Ozbahce, A.; Tari, A.F.; Gonulal, E.; Simsekli, N.; Padem, H. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Arch. Agron. Soil Sci. 2015, 61, 615–626. [Google Scholar] [CrossRef]
- Bi, Y.J.; Lv, P.P.; Su, R.D.; Wang, Y.M.; Wang, J.; Lei, M.J. Determination of the buried depth and pressure head under moistube irrigation based on principal component analysis. Fresenius Environ. Bull. 2020, 29, 5021–5028. [Google Scholar]
- Wang, Y.; Zhang, F.-C.; Wang, H.-D.; Bi, L.-F.; Cheng, M.-H.; Yan, F.-L.; Fan, J.-L.; Xiang, Y.-Z. Effects of the frequency and amount of drip irrigation on yield, tuber quality and water use efficiency of potato in sandy soil of Yulin, northern Shaanxi, China. J. Appl. Ecol. 2019, 30, 4159–4168. [Google Scholar]
- Zhang, G.W.; Yang, C.Q.; Liu, R.X.; Ni, W.C. Effects of p-hydroxybenzoic acid and phloroglucinol on mitochondria function and root growth in cotton (Gossypium hirsutum L.) seedling roots. J. Appl. Ecol. 2018, 29, 231–237. [Google Scholar]
- Zhang, L.; Lu, C.; Peng, L.; Ma, W.; Qian, W. Progress in improving photosynthetic efficiency by synthetic biology. Chin. J. Biotechnol. 2017, 33, 486–493. [Google Scholar]
- Colaric, M.; Stampar, F.; Hudina, M. Content levels of various fruit metabolites in the “Conferenc” pear response to branch bending. Sci. Hortic. 2007, 113, 261–266. [Google Scholar] [CrossRef]
- Fan, B.H.; Ma, L.L.; Ren, R.D.; He, J.X.; Hamiti, A.; Li, J.M. Effects of irrigation frequency of organic nutrient solution and irrigation amount on yield, quality, fertilizer and water use efficiency of melon in facility. J. Appl. Ecol. 2019, 30, 1261–1268. [Google Scholar]
- Tang, L.; Luo, W.J.; He, Z.L.; Gurajala, H.K.; Hamid, Y.; Khan, K.Y.; Yang, X.E. Variations in cadmium and nitrate co-accumulation among water spinach genotypes and implications for screening safe genotypes for human consumption. Zhejiang Univ.-Sci. B 2018, 19, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.; Li, H.F.; Tian, M.; Liu, X.X.; Chen, Q.; Zhu, Z.L.; Jiang, Y.M.; Ge, S.F. Effects of different integration of water and fertilizer modes on the absorption and utilization of nitrogen fertilizer and fruit yield and quality of apple trees. J. Appl. Ecol. 2020, 31, 1867–1874. [Google Scholar]
- Yin, S.X.; Wei, L.F.; Mei, Y.Q.; Liu, X.H.; Zou, L.S.; Cai, Z.C.; Yuan, J.H.; Ge, H.-T.; Wang, D.-G.; Wang, D.-D. Simultaneous determination of multiple bioactive constituents in Abelmoschi Corolla by UFLC-QTRAP-MS/MS. China J. Chin. Mater. Med. 2021, 46, 2527–2536. [Google Scholar]
- Wang, X.; Cui, S.X.; Sun, Z.M.; Mu, G.J.; Cui, S.L.; Wang, P.C.; Liu, L.F. Ecological adaptability evaluation of peanut cultivars based on biomass and nutrient accumulation. J. Appl. Ecol. 2015, 26, 2023–2029. [Google Scholar]
- Wei, C.L.; Zhu, Y.; Zhang, J.Z.; Wang, Z.H. Evaluation of Suitable Mixture of Water and Air for Processing Tomato in Drip Irrigation in Xinjiang Oasis. Sustainability 2021, 13, 7845. [Google Scholar] [CrossRef]
- Cabello, M.J.; Castellanos, M.T.; Romojaro, F.; Martinez-Madrid, C.; Ribas, F. Yield and quality of melon grown under different irrigation and nitrogen rates. Agric. Water Manag. 2009, 96, 866–874. [Google Scholar] [CrossRef]
- Guichard, S.; Gary, C.; Longuenesse, J.J.; Leonardi, C. Water Fluxes and Growth of Greenhouse Tomato Fruits under Summer Conditions; International Society for Horticultural Science (ISHS): Leuven, Belgium, 1999; pp. 223–230. [Google Scholar]
- Song, Q.L.; Yue, S.C.; Cai, L.Q. Response of Maize Root Morphology to Nitrogen Application Under Film Mulch. Res. Soil Water Conserv. 2020, 27, 23–29. (In Chinese) [Google Scholar]
- Guo, S.J.; Yang, K.M.; Huo, J.; Zhou, Y.H.; Wang, Y.P.; Li, G.Q. Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain filling stage. J. Appl. Ecol. 2015, 26, 1419–1425. [Google Scholar]
- Luo, D.D.; Wang, C.K.; Jin, Y. Stomatal regulation of plants in response to drought stress. J. Appl. Ecol. 2019, 30, 4333–4343. [Google Scholar]
- Winter, K.; Schramm, M.J. Analysis of Stomatal and Nonstomatal Components in the Environmental Control of CO2 Exchange in Leaves of Welwitschia mirabilis. Plant Physiol. 1986, 82, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.B.; Yu, X.C.; Gao, J.J. Effects of moisture content in organic substrate on the physiological characters, fruit quality and yield of tomato plant. J. Appl. Ecol. 2007, 18, 2710–2714. [Google Scholar]
- Agbna, G.H.D.; She, D.L.; Liu, Z.P.; Elshaikh, N.A.; Shao, G.C.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Obregón-Portocarrero, N.; Díaz-Ortiz, J.E.; Daza-Torres, M.C.; Aristizabal-Rodríguez, H.F. Efecto de la aplicación de zeolita en la recuperación de nitrógeno y el rendimiento de maíz. Acta Agron. 2016, 65, 24–30. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, A.; Xyrafis, E.; Polyzos, N.; Antoniadis, V.; Barros, L.; Ferreira, I. The Optimization of Nitrogen Fertilization Regulates Crop Performance and Quality of Processing Tomato (Solanum lycopersicum L. cv. Heinz 3402). Agronomy 2020, 10, 715. [Google Scholar] [CrossRef]
- Palanivell, P.; Ahmed, O.H.; Omar, L.; Majid, N.M.A. Nitrogen, Phosphorus, and Potassium Adsorption and Desorption Improvement and Soil Buffering Capacity Using Clinoptilolite Zeolite. Agronomy 2021, 11, 379. [Google Scholar] [CrossRef]
- Ma, M.L. Effects of controlled root zoning and alternating sub-film drip irrigation on water consumption and yield of tomato. Inn. Mong. Sci. Technol. Econ. 2019, 18, 86–87. (In Chinese) [Google Scholar]
- Wu, Q.; Chen, H.Y.; Wang, Y.Z.; Chi, D.C. Water-saving and Fertilizer-reducing Effect of Clinoptilolite in Water-saving Irrigated Paddy Fields in Semiarid Areas of Western Liaoning. J. Agric. Mach. 2021, 52, 305–313+406. (In Chinese) [Google Scholar]
- Zheng, J.L.; Chen, T.T.; Wu, Q.; Yu, J.M.; Chen, W.; Chen, Y.L.; Siddique, K.H.M.; Meng, W.Z.; Chi, D.C.; Xia, G.M. Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress. Agric. Water Manag. 2018, 206, 241–251. [Google Scholar] [CrossRef]
- Chi, D.C.; Yu, J.M.; Chen, T.T.; Zheng, J.L.; Chen, W.; Yi, E.B. Effects of the Coupling of Nitrogen and Zeolite on Physiological Characteristics of Rice during Milky Ripe Stage. J. Shenyang Agric. Univ. 2017, 48, 745–750. (In Chinese) [Google Scholar]
- Amiri, H.; Ghalavand, A.; Mokhtassi-Bidgoli, A. Growth, Seed Yield and Quality of Soybean as Affected by Integrated Fertilizer Managements and Zeolite Application. Commun. Soil Sci. Plant Anal. 2021, 52, 1834–1851. [Google Scholar] [CrossRef]
- Kang, S.Z.; Pan, Y.H.; Shi, P.Z.; Zhang, J.H. Theory and Experiment on Alternate Irrigation of Root System of Controlled Crops. J. Hydraul. Eng. 2001, 80–86. (In Chinese) [Google Scholar]
Treament | FJv | Ranking | FBi | Ranking | FWang | Ranking |
---|---|---|---|---|---|---|
Z0W50 | −1.53 | 12 | −1.465 | 12 | 0.418 | 5 |
Z0W75 | −0.41 | 8 | −0.842 | 11 | −0.505 | 9 |
Z0W100 | 0.59 | 4 | 0.007 | 7 | −1.335 | 12 |
Z3W50 | −0.95 | 11 | −0.588 | 10 | 0.967 | 2 |
Z3W75 | 0.02 | 7 | 0.076 | 6 | −0.008 | 7 |
Z3W100 | 0.76 | 3 | 0.587 | 3 | −0.567 | 10 |
Z6W50 | −0.54 | 9 | −0.153 | 8 | 1.118 | 1 |
Z6W75 | 0.40 | 5 | 0.722 | 2 | 0.605 | 4 |
Z6W100 | 1.29 | 1 | 1.440 | 1 | −0.371 | 8 |
Z9W50 | −0.71 | 10 | −0.476 | 9 | 0.698 | 3 |
Z9W75 | 0.14 | 6 | 0.116 | 5 | 0.052 | 6 |
Z9W100 | 0.93 | 2 | 0.576 | 4 | −1.072 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, X.; Lei, T.; Guo, X.; Sun, X.; Ma, J.; Liu, R.; Zhang, M. Evaluation of Suitable Water–Zeolite Coupling Regulation Strategy of Tomatoes with Alternate Drip Irrigation under Mulch. Horticulturae 2022, 8, 536. https://doi.org/10.3390/horticulturae8060536
Ju X, Lei T, Guo X, Sun X, Ma J, Liu R, Zhang M. Evaluation of Suitable Water–Zeolite Coupling Regulation Strategy of Tomatoes with Alternate Drip Irrigation under Mulch. Horticulturae. 2022; 8(6):536. https://doi.org/10.3390/horticulturae8060536
Chicago/Turabian StyleJu, Xiaolan, Tao Lei, Xianghong Guo, Xihuan Sun, Juanjuan Ma, Ronghao Liu, and Ming Zhang. 2022. "Evaluation of Suitable Water–Zeolite Coupling Regulation Strategy of Tomatoes with Alternate Drip Irrigation under Mulch" Horticulturae 8, no. 6: 536. https://doi.org/10.3390/horticulturae8060536
APA StyleJu, X., Lei, T., Guo, X., Sun, X., Ma, J., Liu, R., & Zhang, M. (2022). Evaluation of Suitable Water–Zeolite Coupling Regulation Strategy of Tomatoes with Alternate Drip Irrigation under Mulch. Horticulturae, 8(6), 536. https://doi.org/10.3390/horticulturae8060536