Evaluation of Different Tomato (Solanum lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Condition
2.2. Experimental Layout
2.3. Field Data Collection
2.4. Fruit Quality Analysis
2.5. Data Analysis
3. Results
3.1. Disease Incidence
3.2. Yield
3.3. Fruit Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grandillo, S.; Zamir, D.; Tanksley, S.D. Genetic improvement of processing tomatoes: A 20 years perspective. Euphytica 1999, 110, 85–97. [Google Scholar] [CrossRef]
- Willcox, J.K.; Catignani, G.L.; Lazarus, S. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2003, 43, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Freeman, B.B.; Reimers, K. Tomato consumption and health: Emerging benefits. Am. J. Lifestyle Med. 2011, 5, 182–191. [Google Scholar] [CrossRef]
- Kelly, V.; Carpenter, J.; Diall, O.; Easterling, T.; Kone, M.; McCornick, P.; McGahuey, M. Options for Economic Growth in Mali through the Application of Science and Technology to Agriculture; USAID: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Arah, I.k.; Kumah, E.K.; Anku, E.K.; Amaglo, H. An Overview of Post-Harvest Losses in Tomato Production in Africa: Causes and Possible Prevention Strategies. J. Biol. Agric. Healthc. 2015, 5, 78–88. [Google Scholar]
- USAID. On the Functioning of Agricultural Markets in Mali: Strategies for Development; USAID: Washington, DC, USA, 2018. [Google Scholar]
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 11 July 2021).
- Nouhoheflin, T.; Coulibaly, O.; Norton, G.; Soumare, S.; Sissoko, P. Impact Assessment of agricultural research and development to reduce virus problems in tomato production in Mali: Farmer’s perceptions. In Proceedings of the African Association of Agricultural Economists (AAAE) 2007 Second International Conference, Accra, Ghana, 20–22 August 2007; pp. 199–203. [Google Scholar]
- Fufa, F.; Hanson, P.; Dagnoko, S.; Dhaliwal, M. AVRDC—The World Vegetable Center Tomato Breeding in Sub-Saharan Africa: Lessons from the Past, Present Work, and Future Prospects. In Proceedings of the First All African Horticultural Congress, Nairobi, Kenya, 31 August–3 September 2009; pp. 87–98. [Google Scholar]
- Bihon, W.; Chen, J.-R.; Lawrence, K. Identification and characterization of Ralstonia spp. causing bacterial wilt disease of vegetables in Mali. J. Plant Pathol. 2020, 102, 1029–1039. [Google Scholar] [CrossRef]
- Perez, K.; Froikin-Gordon, J.S.; Abdourhamane, I.K.; Levasseur, V.; Alfari, A.A.; Mensah, A.; Bonsu, O.; Habsatou, B.; Assogba-Komlan, F.; Mbaye, A.A.; et al. Connecting smallholder tomato producers to improved seed in West Africa. Agric. Food Secur. 2017, 6, 42. [Google Scholar] [CrossRef]
- Thera, A.T.; Jacobsen, B.J.; Neher, O.T. Bacterial wilt of Solanaceae caused by Ralstonia solanacearum race 1 Biovar 3 in Mali. Plant Dis. 2010, 94, 372. [Google Scholar] [CrossRef]
- N’Guessan, C.A.; Abo, K.; Fondio, L.; Chiroleu, F.; Lebeau, A.; Poussier, S.; Wicker, E.; Koné, D. So near and yet so far: The specific case of Ralstonia solanacearum populations from Côte d’Ivoire in Africa. Phytopathology 2012, 102, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, D.; Muniappan, R.; Dienaba, S.; Paterne, D.; Diongue, A.; Dieng, E. First Record of Tuta absoluta (Lepidoptera: Gelechiidae) in Senegal. Fla. Entomol. 2013, 96, 661–662. [Google Scholar] [CrossRef]
- Haggblade, S.; Keita, N.; Traoré, A.; Traoré, P.; Diarra, A.; Thériault, V. A Market Survey of Fraudulent Pesticides Sold in Mali. Feed the Future Innovation Lab for Food Security Policy; Research Paper; Michigan State University: East Lansing, MI, USA, 2019; p. 157. [Google Scholar]
- Hanson, P.; Lua, S.-F.; Wanga, J.-F.; Chena, W.; Kenyona, L.; Tana, C.-W.; Tee, K.L.; Wang, Y.-Y.; Hsua, Y.-C.; Schafleitner, R.; et al. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci. Hortic. 2016, 201, 346–354. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- VSN International. Genstat for Windows, 20th ed.; VSN International: Hemel Hempstead, UK, 2019. [Google Scholar]
- Jones, J.B.; Zitter, T.A.; Momol, T.M.; Miller, S.A. Compendium of Tomato Diseases and Pests, 2nd ed.; APS Press: St. Paul, MN, USA, 2016; p. 73. [Google Scholar] [CrossRef]
- Zhou, Y.-C.; Noussourou, M.; Kon, T.; Rojas, M.R.; Jiang, H.; Chen, L.-F.; Gamby, K.; Foster, R.; Gilbertson, R.L. Evidence of local evolution of tomato-infecting begomovirus species in West Africa: Characterization of tomato leaf curl Mali virus and tomato yellow leaf crumple virus from Mali. Arch. Virol. 2008, 153, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Leke, W.N.; Mignouna, D.B.; Brown, J.K.; Kvarnheden, A. Begomovirus disease complex: Emerging threat to vegetable production systems of West and Central Africa. Agric. Food Secur. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Sattar, M.N.; Koutou, M.; Hosseini, S.; Leke, W.N.; Brown, J.K.; Kvarnheden, A. First identification of begomoviruses infecting tomato with leaf curl disease in Burkina Faso. Plant Dis. 2015, 99, 732. [Google Scholar] [CrossRef]
- Pasternak, D. Agricultural Prosperity in Dry Africa; ContentoNow: Tel Aviv, Israel, 2011. [Google Scholar]
- Kader, A.A. Quality and safety factors: Definition and evaluation for fresh horticultural crops. In Postharvest Technology of Horticultural Crops, 2nd ed.; Kader, A.A., Ed.; University of California, Division of Agriculture and Natural Resources: Berkeley, CA, USA, 1992; pp. 185–190. [Google Scholar]
- Kaaya, A.N.; Namutebi, A.; Tujjunge, J. Chemical and nutrient composition of tomato varieties grown in Uganda. Uganda J. Agric. Sci. 2001, 7, 19–22. [Google Scholar]
- Guichard, S.; Bertin, N.; Leonardi, C.; Gary, C. Tomato fruit quality in relation to water and carbon fluxes. Agronomie 2001, 21, 385–392. [Google Scholar] [CrossRef]
- Riga, P.; Anza, M.; Garbisu, C. Tomato quality is more dependent on temperature than on photosynthetically active radiation. J. Sci. Food Agric. 2008, 88, 158–166. [Google Scholar] [CrossRef]
- Tuzel, Y.; Ul, M.A.; Tuzel, I.H.; Cockshull, K.E.; Gul, A. Effects of different irrigation intervals and rates on spring season glasshouse tomato production: II. Fruit quality. In Proceedings of the 2nd Symposium Protected Cultivation of Solanacea in Mild Winter Climates, Adana, Turkey, 13–16 April 1993; Volume 366, pp. 389–396. [Google Scholar]
- Aurand, R.; Faurobert, M.; Page, D.; Maingonnat, J.F.; Brunel, B.; Causse, M.; Bertin, N. Anatomical and biochemical trait network underlying genetic variations in tomato fruit texture. Euphytica 2012, 187, 99–116. [Google Scholar] [CrossRef]
- Dorais, M.; Papadopoulos, A.P.; Gosselin, A. Greenhouse tomato fruit quality. Hortic. Rev. 2001, 26, 239–319. [Google Scholar]
- Saha, P.; Das, N.; Deb, P.; Suresh, C.P. Effect of NAA and GA3 on yield and quality of tomato (Lycopersicon esculentum Mill). Environ. Ecol. 2009, 27, 1048–1050. [Google Scholar]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Lower, R.; Thompson, A.E. Inheritance of acidity and solids content of small fruited tomatoes. Proc. Am. Soc. Hort. Sci. 1967, 91, 486–494. [Google Scholar]
- Campos, C.A.B.; Fernandes, P.D.; Gheyi, H.R.; Blanco, F.F.; Gonçalves, C.B.; Campos, S.A.F. Yield and fruit quality of industrial tomato under saline irrigation. Scientia 2006, 63, 146–152. [Google Scholar] [CrossRef] [Green Version]
TYLCD Resistance Genes | Bacterial Wilt Genes | RKN | FW | LB | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Distribution Code | Internal Code | Type | Ty1/3 | Ty-2 | Ty-5 | Bwr-12 | Bwr-6a | Bwr-c | Bwr6-d | Mi | I2 | Ph-3 | ||
6–124 | 6–118 | 6–17 | 6–94 | 6–110 | ||||||||||
AVTO1003 | CLN3125L | Introduced Line | + | + | – | + | – | – | – | – | – | – | – | – |
AVTO1007 | CLN3078A | Introduced Line | + | + | – | + | – | – | – | – | – | – | – | – |
AVTO1008 | CLN3078C | Introduced Line | + | + | – | + | – | – | – | – | – | – | – | – |
AVTO1122 | CLN3150A-5 | Introduced Line | – | – | + | + | – | – | – | – | – | – | – | – |
AVTO1429 | FMTT1733D | Introduced Line | + | + | – | + | – | – | – | – | – | – | + | – |
AVTO1464 | FMTT1733E | Introduced Line | + | + | – | + | – | – | – | – | – | – | + | – |
AVTO1704 | CLN3900D | Introduced Line | + | + | – | + | – | – | – | – | – | + | + | – |
AVTO1705 | CLN3902C | Introduced Line | + | + | – | + | – | – | – | – | – | – | + | + |
AVTO1706 | CLN3961D | Introduced Line | + | + | – | + | – | – | – | – | – | – | – | – |
AVTO1707 | CLN3961C | Introduced Line | + | + | – | + | – | – | – | – | – | – | – | – |
AVTO1710 | CLN3641F | Introduced Line | – | – | – | + | + | + | + | + | + | – | – | – |
AVTO1715 | CLN3938E | Introduced Line | + | – | – | + | + | + | + | – | + | – | – | – |
AVTO1716 | CLN4018A | Introduced Line | – | – | – | + | + | + | + | + | + | – | – | – |
AVTO1717 | CLN4018B | Introduced Line | – | – | – | + | + | + | + | + | + | – | – | – |
AVTO1718 | CLN4018C | Introduced Line | – | – | – | + | + | + | + | + | + | – | – | – |
AVTO1719 | CLN4018D | Introduced Line | + | – | – | + | – | – | + | + | + | + | – | – |
AVTO1726 | CLN3902D | Introduced Line | + | + | – | + | – | – | – | – | – | – | + | + |
AVTO1729 | CLN3961E | Introduced Line | + | + | – | + | – | – | – | – | – | – | – | – |
H9205 | Commercial hybrid (Heinz Seeds) | |||||||||||||
H9881 | Commercial hybrid (Heinz Seeds) | + | + | |||||||||||
ICRIXINA | Popular inbred line variety | - | - | - | + | |||||||||
Kènèya | Popular inbred line variety | |||||||||||||
Konica | Popular inbred line variety | |||||||||||||
Nayeli | Popular inbred line variety | |||||||||||||
UC82 | Popular inbred line variety | |||||||||||||
VI043614 | H7996 | Bacterial wilt resistant rootstock | – | – | – | + | + | + | + | + | + | – |
Entry | %TYLCD | % Bw | BLS | Plt ht. (cm) | Days 50% Flowering | TY (t/ha) | NMY (t/ha) |
---|---|---|---|---|---|---|---|
AVTO1003 | 30.23 a–e | 25.0 ab | 1.42 e–j | 53.1 abc | 66.0 c | 7.60 a | 0.43 ab |
AVTO1007 | 11.9 a–d | 18.8 ab | 0.81 a–d | 56.2 abc | 66.0 c | 17.1 a–d | 0.79 a–d |
AVTO1008 | 19.1 a–d | 21.9 ab | 0.63 abc | 51.3 abc | 66.0 c | 19.3 a–d | 0.14 a |
AVTO1122 | 29.2 a–e | 18.8 ab | 1.79 h–l | 52.9 abc | 64.5 abc | 24.7 b–e | 1.85 b–e |
AVTO1429 | 16.5 a–d | 6.25 a | 1.22 d–g | 53.1 abc | 66.0 c | 25.9 b–e | 0.72 a–d |
AVTO1464 | 0 a | 21.9 ab | 1.12 c–f | 59.3 bc | 63.0 ab | 25.4 b–e | 0.91 a–d |
AVTO1704 | 9.38 abc | 15.6 ab | 1.73 g–l | 48.0 ab | 64.5 abc | 6.50 a | 0.36 ab |
AVTO1705 | 8.33 abc | 28.1 ab | 0.37 a | 59.9 bc | 63.0 ab | 9.20 ab | 0.11 a |
AVTO1707 | 49.6 b–e | 21.9 ab | 1.47 e–k | 49.3 abc | 64.0 abc | 17.4 a–d | 0.61 abc |
AVTO1710 | 20.0 a–d | 9.38 ab | 1.94 jkl | 57.7 bc | 62.5 ab | 40.9 e | 2.51 e |
AVTO1715 | 0 a | 15.6 ab | 1.19 c–g | 57.2 bc | 64.5 abc | 19.3 a–d | 1.00 a–d |
AVTO1716 | 20.6 a–d | 25.0 ab | 1.40 e–j | 55.5 abc | 62.5 ab | 10.9 ab | 1.42 a–e |
AVTO1717 | 9.38 abc | 15.6 ab | 1.60 e–k | 58.0 bc | 62.5 ab | 25.7 b–e | 2.21 de |
AVTO1718 | 3.85 ab | 25.0 ab | 1.33 d–h | 54.0 abc | 63.5 abc | 24.9 b–e | 1.99 cde |
AVTO1719 | 6.25 abc | 0 a | 1.35 d–i | 60.1 c | 65.0 bc | 26.3 b–e | 0.77 a–d |
AVTO1729 | 56.4 de | 21.9 ab | 1.67 f–k | 55.8 abc | 64.0 abc | 12.9 abc | 0.33 a |
H9205 | 26.7 a–d | 6.25 a | 2.01 kl | 51.5 abc | 62.5 ab | 28.8 cde | 0.59 abc |
H9881 | 50.0 cde | 21.9 ab | 1.20 d–g | 52.4 abc | 62.0 a | 31.0 de | 0.60 abc |
ICRIXINA | 75.0 e | 6.25 a | 1.90 i–l | 51.6 abc | 62.0 a | 38.9 e | 1.95 cde |
Konica | 29.4 a–e | 37.5 b | 2.274 l | 53.9 abc | 62.5 ab | 14.4 a–d | 0.68 abc |
Nayeli | 35.6 a–e | 9.38 ab | 1.05 b–e | 44.4 a | 63.5 abc | 25.6 b–e | 0.47 abc |
VI043614 | 18.8 a–d | 15.0 ab | 0.54 ab | 58.6 bc | 63.0 ab | 25.3 b–e | 1.13 a–e |
F-test (P) | <0.001 | 0.004 | <0.001 | <0.001 | <0.001 | 0.003 | <0.001 |
Entry | %TYLCD | Days 50% Flowering | Days 50% Fruiting | TY (t/ha) | NMY (t/ha) |
---|---|---|---|---|---|
AVTO1003 | 79.7 d–g | 57.0 b–f | 65.3 c–g | 9.72 a | 1.38 abc |
AVTO1007 | 77.3 d–g | 56.0 a–f | 64.0 b–f | 11.0 ab | 1.53 abc |
AVTO1008 | 56.9 a–f | 55.0 a–e | 62.0 a–e | 16.6 ab | 3.29 d |
AVTO1122 | 62.3 a–g | 54.0 a–d | 62.0 a–e | 11.9 ab | 1.07 abc |
AVTO1429 | 65.4 a–g | 54.0 a–d | 61.0 a–d | 10.8 ab | 1.31 abc |
AVTO1464 | 45.0 a–d | 58.0 b–f | 64.0 b–f | 10.1 a | 0.55 a |
AVTO1704 | 31.6 a | 61.0 def | 70.3 fg | 10.0 a | 1.48 abc |
AVTO1705 | 64.5 a–g | 58.0 b–f | 65.0 bf | 8.20 a | 0.99 ab |
AVTO1706 | 100.0 g | 50.7 ab | 56.0 a | 10.1 a | 1.56 abc |
AVTO1707 | 94.4 fg | 52.7 abc | 58.3 abc | 10.9 ab | 1.96 a–d |
AVTO1710 | 63.8 a–g | 53.0 abc | 60.0 a–d | 12.7 ab | 2.79 cd |
AVTO1715 | 37.5 abc | 59.0 b–f | 66.3 d–g | 13.7 ab | 2.45 acd |
AVTO1716 | 35.3 ab | 55.0 a–e | 63.0 a–f | 13.6 ab | 1.72 a–d |
AVTO1717 | 52.4 a–e | 54.0 a–d | 62.0 a–e | 15.1 ab | 2.06 a–d |
AVTO1718 | 70.0 b–g | 54.0 a–d | 59.3 a–d | 12.3 ab | 1.89 a–d |
AVTO1719 | 68.1 a–g | 51.8 ab | 61.0 a–d | 10.2 a | 2.16 a–d |
AVTO1726 | 64.4 a–g | 54.0 a–d | 65.0 b–f | 10.0 a | 1.16 abc |
AVTO1729 | 87.5 efg | 54.0 a–d | 61.0 a–d | 11.4 ab | 2.14 a–d |
ICRIXINA | 86.1 efg | 52.7 abc | 63.0 a–f | 13.3 ab | 1.36 abc |
Kènèya | 59.7 a–f | 65.0 f | 73.0 g | 8.80 a | 0.83 ab |
Konica | 67.9 a–g | 63.0 ef | 69.3 efg | 10.4 ab | 1.13 abc |
Nayeli | 79.2 d–g | 61.0 c–f | 65.0 b–f | 15.9 ab | 1.47 abc |
UC82 | 73.6 c–g | 57.0 b–f | 64.0 b–f | 15.8 ab | 1.13 abc |
VI043614 | 73.6 c–g | 47.7 a | 57.0 ab | 20.3 b | 1.76 a–d |
F-test (P) | 0.003 | <0.001 | <0.001 | 0.49 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bihon, W.; Ognakossan, K.E.; Tignegre, J.-B.; Hanson, P.; Ndiaye, K.; Srinivasan, R. Evaluation of Different Tomato (Solanum lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa. Horticulturae 2022, 8, 579. https://doi.org/10.3390/horticulturae8070579
Bihon W, Ognakossan KE, Tignegre J-B, Hanson P, Ndiaye K, Srinivasan R. Evaluation of Different Tomato (Solanum lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa. Horticulturae. 2022; 8(7):579. https://doi.org/10.3390/horticulturae8070579
Chicago/Turabian StyleBihon, Wubetu, Kukom Edoh Ognakossan, Jean-Baptiste Tignegre, Peter Hanson, Kabirou Ndiaye, and Ramasamy Srinivasan. 2022. "Evaluation of Different Tomato (Solanum lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa" Horticulturae 8, no. 7: 579. https://doi.org/10.3390/horticulturae8070579
APA StyleBihon, W., Ognakossan, K. E., Tignegre, J. -B., Hanson, P., Ndiaye, K., & Srinivasan, R. (2022). Evaluation of Different Tomato (Solanum lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa. Horticulturae, 8(7), 579. https://doi.org/10.3390/horticulturae8070579