Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage
Abstract
:1. Introduction
2. Causes of Postharvest Loss in Citrus Fruit
2.1. Postharvest Diseases
2.2. Physiological Disorders
3. Novel Citrus Postharvest Technologies and Strategies
3.1. Physical Treatments
3.1.1. Heat Treatments
3.1.2. Irradiation
3.1.3. LED Blue Light
3.1.4. Other Emerging Non-Thermal Technologies
3.1.5. Cold Atmospheric Plasma (CAP)
3.1.6. Precooling
3.1.7. Modified and Controlled Atmosphere Storage
3.1.8. Innovative Packaging
3.2. Emerging Chemical Strategies
3.2.1. Sanitizing Agents
3.2.2. Inorganic and Organic Compounds
3.2.3. Natural Antifungal Compounds
3.2.4. 1-MCP
3.3. Biocontrol
3.4. Coatings
4. Non-Destructive Methods for Quality Assessment
4.1. Visible and Near-Infrared Reflectance Spectroscopy (Vis/NIR)
4.2. Hyperspectral Imaging Analysis
4.3. Raman Spectroscopy
4.4. Nuclear Magnetic Resonance
4.5. Nanosensors for Early Detection
5. Future Directions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2021. Available online: http://www.fao.org/faostat/en/#home (accessed on 20 October 2021).
- Wu, G.; Terol, J.; Ibanez, V.; López-García, A.; Pérez-Román, E.; Borredá, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the origin and evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, M.; Ferlito, F.; Licciardello, C.; Allegra, M.; Strano, M.C.; Di Silvestro, S.; Russo, M.P.; Pietro Paolo, D.; Caruso, P.; Las Casas, G.; et al. Pomological diversity of the Italian blood orange germplasm. Sci. Hortic. 2016, 213, 331–339. [Google Scholar] [CrossRef]
- Strano, M.C.; Di Silvestro, S.; Allegra, M.; Russo, G.; Caruso, M. Effect of cold storage on the postharvest quality of different Tarocco sweet orange clonal selections. Sci. Hortic. 2021, 285, 110167. [Google Scholar] [CrossRef]
- Strano, M.C.; Altieri, G.; Admane, N.; Genovese, F.; Di Renzo, G.C. Advance in Citrus Postharvest Management: Diseases, Cold Storage and Quality Evaluation. In Citrus Pathology; IntechOpen: London, UK, 2017; pp. 139–159. [Google Scholar] [CrossRef] [Green Version]
- Zacarias, L.; Cronje, P.J.; Palou, L. Postharvest technology of citrus fruits. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 421–446. ISBN 9780128121634. [Google Scholar]
- Chen, J.; Shen, Y.; Chen, C.; Wan, C. Inhibition of key citrus postharvest fungal strains by plant extracts in vitro and in vivo: A review. Plants 2019, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sui, Y.; Li, J.; Tian, X.; Wang, Q. Biological control of postharvest fungal decays in citrus: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Droby, S.; Eick, A.; Macarisin, D.; Cohen, L.; Rafael, G.; Stange, R.R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M.; et al. Role of citrus volatiles in host recognition, germination, and growth of P. digitatum and P. italicum. Postharvest Biol. Technol. 2008, 49, 386–396. [Google Scholar] [CrossRef]
- Lanza, G.; Strano, M.C. Gestione postraccolta. In Citrus; Di Agrumicoltura, T., Ed.; Edagricole: Bologna, Italy, 2009; pp. 273–288. ISBN 978-88-506-5272-3. [Google Scholar]
- Smilanick, J.L.; Brown, G.E.; Eckert, J.W. The biology and control of postharvest diseases. In Fresh Citrus Fruits; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Science Source, Inc.: Longboat Key, FL, USA, 2006; pp. 339–396. ISBN 978-0944961087. [Google Scholar]
- Palou, L. Penicillium digitatum, Penicillium italicum (Green mold, Blue mold). In Postharvest Decay: Control Strategies; Bautista-Baños, S., Ed.; Academic Press: Amsterdam, The Netherlands, 2014; pp. 45–102. ISBN 978-0-12-411552-1. [Google Scholar]
- Genovese, F.; Di Renzo, G.C.; Altieri, G.; Scarano, L.; Strano, M.C. Effect of packaging technology on the quality of pre-cooled Clementine fruit. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production, Proceedings of the International Mid-Term Conference of the Italian Association of Agricultural Engineering, Matera, Italy, 12–13 September 2019; Springer: Berlin/Heidelberg, Germany; pp. 723–733.
- El-Otmani, M.; Ait-Oubahou, A.; Zacarías, L. Citrus spp.: Orange, mandarin, tangerine, clementine, grapefruit, pomelo, lemon and lime. In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing: Sawston, UK, 2011; Volume 2, pp. 437–514. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Zacarias, L. Postharvest physiological disorders in citrus fruit. Stewart Posthar. Rev. 2006, 2, 1–9. [Google Scholar] [CrossRef]
- Lado, J.; Cronje, P.J.R.; Rodrigo, M.J.; Zacarias, L. Citrus. In Postharvest Physiological Disorders of Fruits and Vegetables; de Freitas, S.T., Pareek, S., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 321–342. [Google Scholar] [CrossRef]
- Habibi, F.; Ramezanian, A.; Guillén, F.; Martínez-Romero, D.; Serrano, M.; Valero, D. Susceptibility of blood orange cultivars to chilling injury based on antioxidant system and physiological and biochemical responses at different storage temperatures. Foods 2020, 9, 1609. [Google Scholar] [CrossRef]
- Lyons, J.M. Chilling injury in plants. Ann. Rev. Plant Physiol. 1973, 24, 445–466. [Google Scholar] [CrossRef]
- Patel, B.; Tandel, Y.N.; Patel, A.H.; Patel, B.L. Chilling injury in tropical and subtropical fruits: A cold storage problem and its remedies: A review. Int. J. Environ. Sci. Technol. 2016, 5, 1882–1887. [Google Scholar]
- Liang, S.; Kuang, J.; Ji, S.; Chen, Q.; Deng, W.; Min, T.; Shan, W.; Chen, J.; Lu, W. The membrane lipid metabolism in horticultural products suffering chilling injury. Food Qual. Saf. 2020, 4, 9–14. [Google Scholar] [CrossRef]
- Lafuente, M.; Zacarías, L.; Sala, J.; Sánchez-Ballesta, M.T.; Gosalbes, M.; Marcos, J.; González-Candelas, L.; Lluch, Y.; Granell, A. Understanding the basis of chilling injury in citrus fruit. Acta Hortic. 2005, 682, 831–842. [Google Scholar] [CrossRef]
- Albrigo, L.G. Distribution of stomata and epicuticular wax on oranges as related to stem-end rind breakdown and water loss. J. Am. Soc. Hortic. Sci. 1972, 97, 220–223. [Google Scholar]
- Petracek, P.D.; Wardowski, W.F.; Brown, G.E. Pitting of grapefruit that resembles chilling injury. HortScience 1995, 30, 1422–1426. [Google Scholar] [CrossRef] [Green Version]
- Alférez, F.; Burns, J. Postharvest peel pitting at non–chilling temperatures in grapefruit is promoted by changes from low to high relative humidity during storage. Postharvest Biol. Technol. 2004, 32, 79–87. [Google Scholar] [CrossRef]
- FAO. Manual for the preparation and sale of fruits and vegetables, from field to market. Agric. Serv. Bull. 2004, 151, 55–69. [Google Scholar]
- USDA. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks. In Agriculture Handbook; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2016; Volume 66. [Google Scholar]
- Altieri, G.; Di Renzo, G.C.; Genovese, F.; Calandra, M.; Strano, M.C. A new method for the postharvest application of imazalil fungicide to citrus fruit. Biosyst. Eng. 2013, 115, 434–443. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Papoutsis, K.; Mathioudakis, M.M.; Hasperué, J.H.; Ziogas, V. Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Trends Food Sci. Technol. 2019, 86, 479–491. [Google Scholar] [CrossRef]
- Erkan, M.; Pekmezci, M.; Wang, C.Y. Hot water and curing treatments reduce chilling injury and maintain post-harvest quality of ‘Valencia’ oranges. Int. J. Food Sci. 2005, 40, 91–96. [Google Scholar] [CrossRef]
- Lanza, G.; Di Martino Aleppo, E.; Strano, M.C. Evaluation of alternative treatments to control green mold in citrus fruit. Acta Hortic. 2004, 632, 343–349. [Google Scholar] [CrossRef]
- Palou, L. Heat treatments for the control of citrus postharvest green mold caused by Penicillium digitatum. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Mén-dez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; Volume 1, pp. 504–514. [Google Scholar]
- Hong, S.I.; Lee, H.H.; Kim, D. Effects of hot water treatment on the storage stability of satsuma mandarin as a postharvest decay control. Postharvest Biol. Technol. 2007, 43, 271–279. [Google Scholar] [CrossRef]
- Schirra, M.; D’Aquino, S.; Cabras, P.; Angioni, A. Control of postharvest diseases of fruit by heat and fungicides: Efficacy, residue levels, and residue persistence. A Review. J. Agr. Food Chem. 2011, 59, 8531–8542. [Google Scholar] [CrossRef] [PubMed]
- Yun, Z.; Gao, H.; Liu, P.; Liu, S.; Luo, T.; Jin, S.; Xu, Q.; Xu, J.; Cheng, Y.; Deng, X. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol. 2013, 13, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Kan, C.; Wan, C.; Chen, C.; Chen, M.; Chen, J. Effects of hot air treatment and chitosan coating on citric acid metabolism in ponkan fruit during cold storage. PLoS ONE 2018, 16, e0206585. [Google Scholar] [CrossRef]
- Wan, C.; Kahramanoğlu, I.; Chen, J.; Gan, Z.; Chen, C. Effects of hot air treatments on postharvest storage of Newhall Navel orange. Plants 2020, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Schirra, M.; Mulas, M.; Fadda, A.; Cauli, E. Cold quarantine responses of blood oranges to postharvest hot water and hot air treatments. Postharvest Biol. Technol. 2004, 31, 191–200. [Google Scholar] [CrossRef]
- Fallik, E. Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biol. Technol. 2004, 32, 125–134. [Google Scholar] [CrossRef]
- Porat, R.; Daus, A.; Weiss, B.; Cohen, L.; Fallik, E.; Droby, S. Reduction of postharvest decay in organic fruit by a short hot water brushing treatment. Postharvest Biol. Technol. 2000, 18, 151–157. [Google Scholar] [CrossRef]
- Ansari, N.A.; Feridoon, H. Postharvest application of hot water, fungicide and waxing on the shelf life of Valencia and local oranges of Siavarz. Asian J. Plant Sci. 2007, 6, 314–319. [Google Scholar] [CrossRef]
- Bassal, M.; El-Hamahmy, M. Hot water dip and preconditioning treatments to reduce chilling injury and maintain post-harvest quality of Navel and Valencia oranges during cold quarantine. Postharvest Biol. Technol. 2011, 60, 186–191. [Google Scholar] [CrossRef]
- Deepshikha, D.; Kumari, B.; Devi, E.P.; Sharma, G.; Rawat, S.; Jaiswal, J.P. Irradiation as an alternative method for post–harvest disease management: An overview. Int. J. Agric. Environ. Biotechnol. 2017, 10, 625–633. [Google Scholar] [CrossRef]
- Komolprasert, V. Packaging food for radiation processing. Radiat. Phys. Chem. 2016, 129, 35–38. [Google Scholar] [CrossRef]
- Kader, A.A. Current and potential applications of ionizing radiation in postharvest handling of fresh horticultural perishables. Int. Prod. J. 1999, 8, 38–39. [Google Scholar]
- Gündüz, G.T.; Pazir, F. Inactivation of Penicillium digitatum and Penicillium italicum under in vitro and in vivo conditions by using UV-C light. J. Food Prot. 2013, 76, 1761–1766. [Google Scholar] [CrossRef]
- Liao, H.L.; Alferez, F.; Burns, J.K. Assessment of blue light treatments on citrus postharvest diseases. Postharvest Biol. Technol. 2013, 81, 81–88. [Google Scholar] [CrossRef]
- Jeong, R.-D.; Chu, E.-H.; Lee, G.W.; Cho, C.; Park, H.-J. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins. Int. J. Food Microbiol. 2016, 234, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Argudo, C.; Palou, L.; Bermejo, A.; Cano, A.; del Río, M.A.; Carmen González-Mas, M. Effect of X-ray irradiation on nutritional and antifungal bioactive compounds of ‘Clemenules’ clementine mandarins. Postharvest Biol. Technol. 2012, 68 (Suppl. C), 47–53. [Google Scholar] [CrossRef]
- Yamaga, I.; Kuniga, T.; Aoki, S.; Kato, M.; Kobayashi, Y. Effect of ultraviolet-b irradiation on disease development caused by Penicillium italicum in satsuma Mandarin fruit. Hortic. J. 2016, 85, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.; Nam, H.A.; Ramakrishnan, S.R.; Baek, M.E.; Lim, S.B.; Kwon, J.H. Postharvest irradiation as a quarantine treatment and its effects on the physicochemical and sensory qualities of Korean citrus fruits. Sci. Hortic. 2018, 236, 265–271. [Google Scholar] [CrossRef]
- Pillai, S.D.; Shayanfar, S. Electron beam processing of fresh produce. A critical review. Radiat. Phys. Chem. 2018, 143, 85–88. [Google Scholar] [CrossRef]
- Miller, R.B. Electronic Irradiation of Foods: An Introduction to the Technology; Barbosa-Canovas, G.V., Ed.; Washington State University: Pullman, WA, USA, 2005; pp. 43–67. ISBN 0-387-23784-4. [Google Scholar]
- FDA. Irradiation in the Production, Processing and Handling of Food. C.F.R. Title 21 Part 179.26. Available online: www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-179 (accessed on 30 May 2022).
- Civello, P.M.; Villarreal, N.; Lobato, M.G.; Martinez, G.A. Physiological effects of post-harvest UV treatments: Recent progress. Stewart Post-Harvest. Rev. 2014, 10, 1–6. [Google Scholar]
- D’hallewin, G.; Schirra, M.; Manueddu, E.; Piga, A.; Ben-Yehoshua, S. Scoparone and Scopoletin accumulation and ultraviolet-C induced resistance to postharvest decay in oranges as influenced by harvest date. J. Am. Soc. Hortic. Sci. 1999, 124, 702–707. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, R.; Rashid, S.; Naz, S.; Iqtedar, M.; Kaleem, A. Postharvest preservation of citrus fruits (Kinnow) by gamma irradiation and its impact on physicochemical characteristics. Prog. Nutr. 2018, 20, 133–145. [Google Scholar] [CrossRef]
- Ladaniya, M.S.; Singha, S.; Wadhawan, A.K. Response of ‘Nagpur’ mandarin, ‘Mosambi’ sweet orange and ‘Kagzi’ acid lime to gamma radiation. Radiat. Phys. Chem. 2003, 67, 665–675. [Google Scholar] [CrossRef]
- Oufedjikh, H.; Mahrouz, M.; Amiot, M.-J.; Lacroix, M. Effect of γ-irradiation on phenolic compounds and phenylalanine ammonia-lyase activity during storage in relation to peel injury from peel of Citrus clementina Hort ex. Tanaka. J. Agric. Food Chem. 2000, 48, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.A.; Ramakrishnan, S.R.; Kwon, J.H. Effects of electron-beam irradiation on the quality characteristics of mandarin oranges (Citrus unshiu (Swingle) Marcov) during storage. Food Chem. 2019, 286, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.R.; Jo, Y.; Nam, H.A.; Gu, S.Y.; Baek, M.E.; Kwon, J.H. Implications of low-dose e-beam irradiation as a phytosanitary treatment on physicochemi-cal and sensory qualities of grapefruit and lemons during postharvest cold storage. Sci. Hortic. 2019, 245, 1–6. [Google Scholar] [CrossRef]
- Palou, L.; Marcilla, A.; Rojas-Argudo, C.; Alonso, M.; Jacas, J.A.; del Rio, M.A. Effects of X-ray irradiation and sodium carbonate treatments on postharvest Penicillium decay and quality attributes of clementine mandarins. Postharvest Biol. Technol. 2007, 46, 252–261. [Google Scholar] [CrossRef]
- Alonso, M.; Palou, L.; del Río, M.A.; Jacas, J.A. Effect of X-ray irradiation on fruit quality of clementine mandarin cv. ‘Clemenules’. Radiat. Phys. Chem. 2007, 76, 1631–1635. [Google Scholar] [CrossRef]
- Nambeesan, S.U.; Doyle, J.W.; Capps, H.D.; Starns, C.; Scherm, H. Effect of electronic cold-pasteurizationTM (ECPTM) on fruit quality and postharvest diseases during blueberry storage. Horticulturae 2018, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Phonyiam, O.; Ohara, H.; Kondo, S.; Naradisorn, M.; Setha, S. Postharvest UV-C Irradiation Influenced Cellular Structure, Jasmonic Acid Accumulation, and Resistance Against Green Mold Decay in Satsuma Mandarin Fruit (Citrus unshiu). Front. Sustain. Food Syst. 2021, 5, 684434. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Pan, Z.; Vidyarthi, S.K.; Xu, J.; Zielinska, M.; Xiao, H.W. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2481–2508. [Google Scholar] [CrossRef] [PubMed]
- Yamaga, I.; Takahashi, T.; Ishii, K.; Kato, M.; Kobayashi, Y. Suppression of Blue mold symptom development in Satsuma mandarin fruits treated by Low-Intensity Blue LED irradiation. Food Sci. Technol. Res. 2015, 21, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Lafuente, M.T.; Alférez, F.; González-Candelas, L. Light-emitting diode blue light alters the ability of Penicillium digitatum to infect citrus fruits. Photochem. Photobiol. 2018, 94, 1003–1009. [Google Scholar] [CrossRef]
- Ballester, A.R.; Lafuente, M.T. LED blue light-induced changes in phenolics and ethylene in citrus fruit: Implication in elicited resistance against Penicillium digitatum infection. Food Chem. 2017, 218, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Lafuente, M.; Romero, T.P.; Ballester, A.R. Coordinated activation of the metabolic pathways induced by LED blue light in citrus fruit. Food Chem. 2021, 341, 128050. [Google Scholar] [CrossRef]
- Hu, L.; Yang, C.; Zhang, L.; Feng, J.; Xi, W. Effect of light-emitting diodes and ultraviolet irradiation on the soluble sugar, organic acid, and carotenoid content of postharvest sweet oranges (Citrus sinensis (L.) Osbeck). Molecules 2019, 24, 3440. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ma, G.; Yamawaki, K.; Ikoma, Y.; Matsumoto, H.; Yoshioka, T.; Ohta, S.; Kato, M. Effect of blue LED light intensity on carotenoid accumulation in citrus juice sacs. J. Plant Physiol. 2015, 188, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ma, G.; Yamawaki, K.; Ikoma, Y.; Matsumoto, H.; Yoshioka, T.; Ohta, S.; Kato, M. Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs. Plant Sci. 2015, 233, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Mandal, R.; Mohammadi, X.; Wiktor, A.; Singh, A.; Singh, A.P. Applications of pulsed light decontamination technology in food processing: An overview. Appl. Sci. 2020, 10, 3606. [Google Scholar] [CrossRef]
- FDA. CFR-Code of Federal Regulations Title 21; Pub. L. No. 179.41; Food and Drug Administration: Silver Spring, MD, USA, 2020.
- Vargas-Ramella, M.; Pateiro, M.; Gavahian, M.; Franco, D.; Zhang, W.; Khaneghah, A.M.; Guerrero-Sánchez, Y.; Lorenzo, J.M. Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends Food Sci. Technol. 2021, 115, 1–11. [Google Scholar] [CrossRef]
- Mahendran, R.; Ramanan, K.R.; Barba, F.J.; Lorenzo, J.M.; López-Fernández, O.; Munekata, P.E.S.; Roohinejad, S.; Sant’Ana, A.S.; Tiwari, B.K. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol. 2019, 88, 67–79. [Google Scholar] [CrossRef]
- Huang, R.; Chen, H. A novel water-assisted light processing for decontamination of blueberries. Food Microbiol. 2014, 40, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Filho, F.O.; Silva, E.D.O.; Lopes, M.M.D.A.; Ribeiro, P.R.V.; Oster, A.H.; Guedes, J.A.C.; Zampieri, D.D.S.; Bordallo, P.D.N.; Zocolo, G.J. Effect of pulsed light on postharvest disease control-related metabolomic variation in melon (Cucumis melo) artificially inoculated with Fusarium pallidoroseum. PLoS ONE 2020, 15, e0220097. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Wrenn, S.; Tikekar, R.; Nitin, N. Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. J. Food Eng. 2018, 224, 95–104. [Google Scholar] [CrossRef]
- He, Q.; Mingming, G.; Jin, T.Z.; Arabi, S.A.; Liu, D. Ultrasound improves the decontamination effect of thyme essential oil nanoemulsions against Escherichia coli O157: H7 on cherry tomatoes. Int. J. Food Microbiol. 2021, 337, 108936. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Petruzzi, L.; Perricone, M. Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Compr. Rev. Food Sci. Food Saf. 2018, 17, 2–62. [Google Scholar] [CrossRef] [Green Version]
- Temizkan, R.; Atan, M.; Büyükcan, M.B.; Caner, C. Efficacy evaluation of ultrasound treatment on the postharvest storability of white nectarine by both physicochemical and image processing analyses. Postharvest Biol. Technol. 2019, 154, 41–51. [Google Scholar] [CrossRef]
- Kentish, S.; Feng, H. Applications of power ultrasound in food processing. Annu. Rev. Food Sci. Technol. 2014, 5, 263–284. [Google Scholar] [CrossRef]
- Suo, G.; Zhou, C.; Su, W.; Hu, X. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. Ultrason. Sonochem. 2022, 84, 105974. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, M.; Yang, C.H. Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrason. Sonochem. 2020, 63, 104953. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.W.; Cheng, J.H.; Sun, D.W. Inhibition of fruit softening by cold plasma treatments: Affecting factors and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Saremnezhad, S.; Soltani, M.; Faraji, A.; Hayaloglu, A.A. Chemical changes of food constituents during cold plasma processing: A review. Food Res. Int. 2021, 147, 110552. [Google Scholar] [CrossRef] [PubMed]
- Hertwig, C.; Meneses, N.; Mathys, A. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends Food Sci. Technol. 2018, 77, 131–142. [Google Scholar] [CrossRef]
- Siddique, S.S.; Hardy, G.E.S.J.; Bayliss, K.L. Cold plasma: A potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 2018, 67, 1011–1021. [Google Scholar] [CrossRef]
- Puligundla, P.; Lee, T.; Mok, C. Effect of intermittent corona discharge plasma treatment for improving microbial quality and shelf life of kumquat (Citrus japonica) fruits. LWT-Food Sci. Technol. 2018, 91, 8–13. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D. Advances in Cold Plasma Applications for Food Safety and Preservation; Academic Press: Cambridge, UK, 2019; ISBN 9780128149218. [Google Scholar]
- Chen, Y.Q.; Cheng, J.H.; Sun, D.W. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Crit. Rev. Food Sci. Nutr. 2020, 60, 2676–2690. [Google Scholar] [CrossRef]
- Limnaios, A.; Pathak, N.; Grossi Bovi, G.; Fröhling, A.; Valdramidis, V.P.; Taoukis, P.S.; Schlüter, O. Effect of cold atmospheric pressure plasma processing on quality and shelf life of red currants. LWT-Food Sci. Technol. 2021, 151, 112213. [Google Scholar] [CrossRef]
- Ziuzina, D.; Misra, N.N.; Han, L.; Cullen, P.J.; Moiseev, T.; Mosnier, J.P.; Keener, K.; Gaston, E.; Vilaró, I.; Bourke, P. Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innov. Food Sci. Emerg. Technol. 2020, 59, 102229. [Google Scholar] [CrossRef]
- Dimitrakellis, P.; Giannoglou, M.; Zeniou, A.; Gogolides, E.; Katsaros, G. Food container employing a cold atmospheric plasma source for prolonged preservation of plant and animal origin food products. MethodsX 2021, 8, 101177. [Google Scholar] [CrossRef] [PubMed]
- Won, M.Y.; Lee, S.J.; Min, S.C. Mandarin preservation by microwave-powered cold plasma treatment. Innov. Food Sci. Emerg. Technol. 2017, 39, 25–32. [Google Scholar] [CrossRef]
- Sakudo, A.; Yagyu, Y. Application of a roller conveyor type plasma disinfection device with fungus-contaminated citrus fruits. AMB Expr. 2021, 11, 16. [Google Scholar] [CrossRef]
- Tauriello, A.; Di Renzo, G.C.; Altieri, G.; Strano, M.C.; Genovese, F.; Calandra, M. Simulation of cold treatment during a cargo shipment of citrus fruit. Acta Hortic. 2015, 1065, 1685–1692. [Google Scholar] [CrossRef]
- Wu, W.; Häller, P.; Cronjé, P.; Defraeye, T. Full-scale experiments in forced-air precoolers for citrus fruit: Impact of packaging design and fruit size on cooling rate and heterogeneity. Biosyst. Eng. 2018, 169, 115–125. [Google Scholar] [CrossRef]
- Defraeye, T.; Lambrecht, R.; Admasu Delele, M.; Tsige, A.A.; Opara, U.L.; Cronjé, P.; Verboven, P.; Nicolai, B. Forced-convective cooling of citrus fruit: Cooling conditions and energy consumption in relation to package design. J. Food Eng. 2014, 121, 118–127. [Google Scholar] [CrossRef]
- Elansari, A.M.; Mostafa, Y.S. Vertical forced air pre-cooling of orange fruits on bin: Effect of fruit size, air direction, and air velocity. J. Saudi Soc. Agric. Sci. 2020, 19, 92. [Google Scholar] [CrossRef]
- Wardowsky, W.F.; Grierson, W.; Edwards, G.J. Chilling injury of stored limes and grapefruit as affected by differentially permeable packaging films. Hortic. Sci. 1973, 8, 173–175. [Google Scholar]
- Ismail, H.A.; El Menshawy, E.A. Effect of polyethylene seal packaging on storage quality of lemon and grape fruit. Ann. Agric. Sci. Moshtohor 1997, 35, 511–519. [Google Scholar]
- Henriod, R.E. Postharvest characteristics of navel oranges following high humidity and low temperature storage and transport. Postharvest Biol. Technol. 2006, 42, 57–64. [Google Scholar] [CrossRef]
- Serry, N.K.H. Some modified atmosphere packaging treatments reduce chilling injury and maintain postharvest quality of Washington navel orange. J. Hortic. Sci. Ornam. Plants 2010, 2, 108–113. [Google Scholar]
- Techavises, N.; Hikida, Y. Prevention of citrus rind injury by utilizing modified atmosphere packaging with perforation. Acta Hortic. 2010, 857, 381–388. [Google Scholar] [CrossRef]
- Chaudhary, P.R.; Jayaprakasha, G.K.; Porat, R.; Patil, B.S. Influence of Modified Atmosphere Packaging on ‘Star Ruby’ Grapefruit Phytochemicals. J. Agric. Food Chem. 2015, 63, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, W.S.; Mahajan, B.V.C.; Chahal, T.S.; Kumar, M.; Sidhu, M.K.; Singh, S.P. Effect of different packaging films on shelf-life and quality of Daisy mandarin under ambient conditions. Indian J. Hortic. 2016, 73, 262–266. [Google Scholar] [CrossRef]
- Baswal, A.K.; Dhaliwal, H.S.; Zora, S.; Mahajan, B.V.C. Influence of Types of Modified Atmospheric Packaging (MAP) Films on Cold-Storage Life and Fruit Quality of ‘Kinnow’ Mandarin (Citrus nobilis Lour X C. deliciosa Tenora). Int. J. Fruit Sci. 2020, 20, 1552–1569. [Google Scholar] [CrossRef]
- D’Aquino, S.; Piga, A.; Agabbio, M.; McCollum, T.G. Film wrapping delays ageing of ‘Minneola’ tangelos under shelf-life conditions. Postharvest Biol. Technol. 1998, 14, 107–116. [Google Scholar] [CrossRef]
- D’Aquino, S.; Angioni, M.; Schirru, S.; Agabbio, M. Quality and physiological changes of film packaged ‘Malvasio’ mandarins during long yerm storage. Lebensm.-Wiss. Technol. 2001, 34, 206–214. [Google Scholar] [CrossRef]
- Ladaniya, M.S. Citrus Fruit: Biology, Technology and Evaluation; Elsevier: Amsterdam, The Netherlands, 2010; pp. 311–318. [Google Scholar]
- Luengwilai, K.; Sukjamsai, K.; Kader, A.A. Responses of ‘Clemenules Clementine’ and ‘W. Murcott’ mandarins to low oxygen atmospheres. Postharvest Biol. Technol. 2007, 44, 48–54. [Google Scholar] [CrossRef]
- Davis, P.L.; Roe, B.; Bruemmer, J.H. Biochemical changes in citrus fruits during controlled-atmosphere storage. J. Food Sci. 1973, 38, 225–229. [Google Scholar] [CrossRef]
- Norman, S.M.; Craft, C.C. Production of ethanol, acetaldehyde, and methanol by intact oranges during and after nitrogen storage. J. Am. Soc. Hortic. Sci. 1971, 96, 464–467. [Google Scholar]
- Pesis, E.; Avissar, I. The post-harvest quality of orange fruits as affected by pre-storage treatments with acetaldehyde vapour or anaerobic conditions. J. Hortic. Sci. 1989, 64, 107–113. [Google Scholar] [CrossRef]
- Hatton, T.T.; Cubbedge, R.H. Effects of prestorage carbon dioxide treatments and delayed storage on stem-end rind breakdown of ‘Marsh’ grapefruits. HortScience 1977, 12, 120–121. [Google Scholar]
- Ke, D.; Kader, A.A. Tolerance of `Valencia’ Oranges to Controlled Atmospheres, as Determined by Physiological Responses and Quality Attributes. J. Am. Soc. Hortic. Sci. 1990, 115, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Erkan, M.; Wang, C.Y. Modified and controlled atmosphere storage of subtropical crops. Stewart Postharvest Rev. 2006, 5, 5. [Google Scholar]
- Yang, Y.J.; Lee, K.A. Postharvest quality of satsuma mandarin fruit affected by controlled atmosphere. Acta Hortic. 2003, 600, 775–779. [Google Scholar] [CrossRef]
- Boonyaritthongchai, P.; Kakaew, P.; Puthmee, T.; Kanlayanarat, S. Influence of controlled atmosphere on the quality and storage life of lime (Citrus aurantifolia ‘Paan’). Acta Hortic. 2010, 876, 95–102. [Google Scholar] [CrossRef]
- Ma, Y.; Li, S.; Yin, X.; Xing, Y.; Lin, H.; Xu, Q.; Bi, X.; Chen, C. Effects of controlled atmosphere on the storage quality and aroma compounds of lemon fruits using the designed automatic control apparatus. BioMed Res. Int. 2019, 3, 6917147. [Google Scholar] [CrossRef] [PubMed]
- Kader, A.A.; Ben-Yehoshua, S. Effects of superatmospheric oxygen levels on postharvest physiology and quality of fresh fruits and vegetables. Postharvest Biol. Technol. 2000, 20, 1–13. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables: A review. Int. J. Food Sci. Technol. 2009, 44, 875–889. [Google Scholar] [CrossRef]
- Molinu, M.G.; Dore, A.; Palma, A.; D’Aquino, S.; Azara, E.; Rodov, V.; D’hallewin, G. Effect of superatmospheric oxygen storage on the content of phytonutrients in ‘Sanguinello Comune’ blood orange. Postharvest Biol. Technol. 2016, 112, 24–30. [Google Scholar] [CrossRef]
- Li, L.; Ban, Z.; Li, X.; Wang, X.; Guan, J. Phytochemical and microbiological changes of honey pomelo (Citrus grandis L.) slices stored under super atmospheric oxygen, low-oxygen and passive modified atmospheres. Int. J. Food Sci. Technol. 2012, 47, 2205–2211. [Google Scholar] [CrossRef]
- Gil, M.I.; Beaudry, R. Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Gil, M., Beaudry, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128045992. [Google Scholar]
- Berk, Z. Citrus Fruit Processing; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Defraeye, T.; Lambrecht, R.; Tsige, A.A.; Delele, M.A.; Opara, U.L.; Cronjé, P.; Verboven, P.; Nicolai, B. Forced-convective cooling of citrus fruit: Package design. J. Food Eng. 2013, 118, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Chen, J.; Lin, M.; Wang, D.; Lin, Q.; Cao, J.; Yang, X.; Duan, Y.; Ye, X.; Sun, C.; et al. Packaging design to protect Hongmeiren orange fruit from mechanical damage during simulated and road transportation. Horticulturae 2022, 8, 258. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Buendía-Moreno, L.; Ros-Chumillas, M.; Navarro-Segura, L.; Sánchez-Martínez, M.J.; Soto-Jover, S.; Antolinos, V.; Martínez-Hernández, G.B.; López-Gómez, A. Effects of an active cardboard box using encapsulated essential oils on the tomato shelf life. Food Bioproc. Technol. 2019, 12, 1548–1558. [Google Scholar] [CrossRef]
- Buendía-Moreno, L.; Soto-Jover, S.; Ros-Chumillas, M.; Antolinos-López, V.; Navarro-Segura, L.; Sánchez-Martínez, M.J.; Martínez−Hernández, G.B.; López−Gómez, A. An innovative active cardboard box for bulk packaging of fresh bell pepper. Postharvest Biol. Technol. 2020, 164, 111171. [Google Scholar] [CrossRef]
- López-Gómez, A.; Ros-Chumillas, M.; Buendía-Moreno, L.; Navarro-Segura, L.; Martínez-Hernández, G.B. Active cardboard box with smart internal lining based on encapsulated essential oils for enhancing the shelf life of fresh mandarins. Foods 2020, 9, 590. [Google Scholar] [CrossRef]
- Mathew, E.N.; Muyyarikkandy, M.S.; Bedell, C.A.; Malaradjou, M.A. Efficacy of chlorine, chlorine dioxide, and peroxyacetic acid in reducing Salmonella contamination in wash water and on mangoes under simulated mango packinghouse washing operations. Front. Sustain. Food Syst. 2018, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Baldwin, E.; Bai, J. Applications of gaseous chlorine dioxide on postharvest handling and storage of fruits and vegetables—A review. Food Control 2019, 95, 18–26. [Google Scholar] [CrossRef]
- Lee, H.; Beuchat, L.R.; Ryu, J.H.; Kim, H. Inactivation of Salmonella typhimurium on red chili peppers by treatment with gaseous chlorine dioxide followed by drying. Food Microbiol. 2018, 76, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Zhang, J.; Sun, X.; Kou, J.; Zhang, Z.; Bai, J.; Ritenour, M.A. The potential of gaseous chlorine dioxide for the control of citrus postharvest Stem-End rot caused by Lasiodiplodia theobromae. Plant Dis. 2021, 105, 3426–3432. [Google Scholar] [CrossRef] [PubMed]
- Behlau, F.; Paloschi, A.; Marin, T.G.S.; Santos, T.A.; Ferreira, H.; do Nascimento, L.M. Chlorine dioxide, peroxyacetic acid, and calcium oxychloride for post-harvest decontamination of citrus fruit against Xanthomonas citri subsp. citri, causal agent of citrus canker. Crop Prot. 2021, 146, 105679. [Google Scholar] [CrossRef]
- Scaramuzza, N.; Cigarini, M.; Mutti, P.; Berni, E. Sanitization of packaging and machineries in the food industry: Effect of hydrogen peroxide on ascospores and conidia of filamentous fungi. Int. J. Food Microbiol. 2020, 316, 108421. [Google Scholar] [CrossRef]
- Finnegan, M.; Linley, E.; Denyer, S.P.; McDonnell, G.; Simons, C.; Maillard, J.Y. Mode of action of hydrogen peroxide and other oxidizing agents: Differences between liquid and gas forms. J. Antimicrob. Chemother. 2010, 65, 2108–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Zepeng, H.; Fan, C. Postharvest treatment with Hydrogen Peroxide to control orange fruit decay caused by Penicillum digitatum and Penicillum italicum. Int. J. Agric. Sci. 2019, 5, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.I.; Park, S.Y.; Ha, S.D. Effects of sodium hypochlorite and peroxyacetic acid on the inactivation of murine norovirus-1 in Chinese cabbage and green onion. LWT-Food Sci. Technol. 2018, 96, 663–670. [Google Scholar] [CrossRef]
- González-Estrada, R.; Blancas-Benítez, F.; Velázquez-Estrada, R.M.; Montaño-Leyva, B.; Ramos-Guerrero, A.; Aguirre-Güitrón, L.; Moreno-Hernández, C.; Coronado-Partida, L.; Herrera-González, J.A.; Rodríguez-Guzmán, C.A.; et al. Alternative Eco-Friendly Methods in the Control of Post-Harvest Decay of Tropical and Subtropical Fruits. In Modern Fruit Industry; Kahramanoglu, I., Kafkas, N.E., Küden, A., Çömlekçioğlu, S., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Nicolau-Lapeña, I.; Abadias, M.; Bobo, G.; Aguiló-Aguayo, I.; Lafarga, T.; Viñas, I. Strawberry sanitization by peracetic acid washing and its effect on fruit quality. Food Microbiol. 2019, 83, 159–166. [Google Scholar] [CrossRef]
- Zoellner, C.; Aguayo-Acosta, A.; Siddiqui, M.W.; Dávila-Aviña, J. Peracetic acid in disinfection of fruits and vegetables. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2018; pp. 53–66. ISBN 978-0-12-812698-1. [Google Scholar]
- Singh, S.P.; Golding, J.; Marques, R. Food Safety and Postharvest Sanitation Practices in Citrus Packing Houses. 2015. Available online: https://www.dpi.nsw.gov.au/agriculture/horticulture/citrus/citrus-connect/2015_08_citrusconnect_articles/citrus-fruit-injury-test (accessed on 3 March 2022).
- Taverner, P.; Leo, A.; Cunningham, N. Efficacy of peracetic acid in ambient and warm water to control conidia of Penicillium digitatum. N. Z. J. Crop Hortic. Sci. 2018, 46, 264–268. [Google Scholar] [CrossRef]
- Lanza, G.; Di Martino Aleppo, E.; Strano, M.C.; Calandra, M.; Aloisi, V. Evaluation of new treatments to control postharvest decay of citrus. In Proceedings of the 12th Congress of the Mediterranean Phytopathological Union, Rhodes Island, Greece, 11–15 June 2006; pp. 172–174. [Google Scholar]
- Lanza, G.; di Martino Aleppo, E.; Strano, M.C.; Aloisi, V.; Privitera, D. Effectiveness of peracetic acid in integrated control strategies of Penicillium decay in tarocco orange fruit. In Proceedings of the COST 924 International Congress on Novel Approaches for the Control of Postharvest Diseases and Disorders, Bologna, Italy, 3–5 May 2007; pp. 60–65. [Google Scholar]
- Akata, I.; Torlak, E.; Erci, F. Efficacy of gaseous ozone for reducing microflora and foodborne pathogens on button mushroom. Postharvest Biol. Technol. 2015, 109, 40–44. [Google Scholar] [CrossRef]
- Brodowska, A.J.; Nowak, A.; Śmigielski, K. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 2176–2201. [Google Scholar] [CrossRef]
- Botondi, R.; De Sanctis, F.; Moscatelli, N.; Vettraino, A.M.; Catelli, C.; Mencarelli, F. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Food Chem. 2015, 188, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Palou, L.; Smilanick, J.L.; Crisosto, C.H.; Mansour, M.; Plaza, P. Ozone gas penetration and control of the sporulation of Penicillium digitatum and Penicillium italicum within commercial packages of oranges during cold storage. Crop Prot. 2003, 22, 1131–1134. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Chrysargyris, A. Postharvest ozone application for the preservation of fruits and vegetables. Food Rev. Int. 2017, 33, 270–315. [Google Scholar] [CrossRef]
- Perry, J.J.; Yousef, A.E. Decontamination of raw foods using ozone-based sanitization techniques. Annu. Rev. Food Sci. Technol. 2011, 2, 281–298. [Google Scholar] [CrossRef] [PubMed]
- de Souza, L.P.; D’Antonino Faroni, L.R.; Heleno, F.F.; Cecon, P.R.; Carvalho Gonçalves, T.D.; da Silva, G.J.; Figueiredo Prates, L.H. Effects of ozone treatment on postharvest carrot quality. LWT-Food Sci. Technol. 2018, 90, 53–60. [Google Scholar] [CrossRef]
- Di Renzo, G.C.; Altieri, G.; D’Erchia, L.; Lanza, G.; Strano, M.C. Effects of gaseous ozone exposure on cold stored orange fruit. In Proceedings of the 5th International Postharvest Symposium, Verona, Italy, 6–11 June 2004; pp. 1605–1610. [Google Scholar] [CrossRef]
- Di Renzo, G.C.; Altieri, G.; Lanza, G.; Di Martino Aleppo, E.; Strano, M.C. Continuous monitoring of ozone and imazalil used in citrus postharvest. Italus Hortus 2006, 13, 48–53. [Google Scholar]
- Strano, M.C.; Romeo, F.V.; Foti, P.; Allegra, M.; Carboni, C. Effectiveness of ozonated water treatment on microbial control and storage quality of different Citrus fruit species. In Proceedings of the 24th World Congress and Exhibition “Ozone and advanced oxidation leading-edge science and technologies”, Nice, France, 20–25 October 2019; Volume 16, pp. 1–9, ISBN 979-10-92607-05-5. [Google Scholar]
- Strano, M.C.; Timpanaro, N.; Allegra, M.; Foti, P.; Pangallo, S.; Romeo, F.V. Effect of ozonated water combined with sodium bicarbonate on microbial load and shelf life of cold stored Clementine (Citrus clementina Hort. ex Tan.). Sci. Hortic. 2021, 276, 109775. [Google Scholar] [CrossRef]
- Heleno, F.F.; Queiroz, M.E.L.R.; Neves, A.A.; Freitas, R.S.; Faroni, L.R.A.; Oliveira, A.F. Effects of ozone fumigation treatment on the removal of residual difenoconazole from strawberries and on their quality. J. Environ. 2014, 49, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Ngnitcho, P.F.K.; Khan, I.; Tango, C.N.; Hussain, M.S.; Oh, D.H. Inactivation of bacterial pathogens on lettuce, sprouts, and spinach using hurdle technology. Innov. Food Sci. Emerg. Technol. 2017, 43, 68–76. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Khan, I.; Oh, D.H. Electrolyzed water as a novel sanitizer in the food industry: Current trends and future perspectives. Compr. Rev. Food Sci. Food Saf. 2016, 15, 471–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graça, A.; Santo, D.; Pires-Cabral, P.; Quintas, C. The effect of UV-C and electrolyzed water on yeasts on fresh-cut apple at 4 C. J. Food Eng. 2020, 282, 110034. [Google Scholar] [CrossRef]
- Youssef, K.; Hussien, A. Electrolysed water and salt solutions can reduce green and blue molds while maintain the quality properties of ‘Valencia’ late oranges. Postharvest Biol. Technol. 2020, 159, 111025. [Google Scholar] [CrossRef]
- Palou, L.; Ali, A.; Fallik, E.; Romanazzi, G. GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Technol. 2016, 122, 41–52. [Google Scholar] [CrossRef]
- Cerioni, L.; Sepulveda, M.; Rubio-Ames, Z.; Volentini, S.I.; Rodríguez-Montelongo, L.; Smilanick, J.L.; Ramallo, J.; Rapisarda, V.A. Control of lemon postharvest diseases by low-toxicity salts combined with hydrogen peroxide and heat. Postharvest Biol. Technol. 2013, 83, 17–21. [Google Scholar] [CrossRef]
- Montesinos-Herrero, C.; del Río, M.A.; Pastor, C.; Brunetti, O.; Palou, L. Evaluation of brief potassium sorbate dips to control postharvest Penicillium decay on major citrus species and cultivars. Postharvest Biol. Technol. 2009, 52, 117–125. [Google Scholar] [CrossRef]
- Palou, L. Postharvest treatments with GRAS salts to control fresh fruit decay. Horticulturae 2018, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Youssef, K.; Sanzani, S.M.; Ligorio, A.; Ippolito, A.; Terry, L.A. Sodium carbonate and bicarbonate treatments induce resistance to postharvest green mould on citrus fruit. Postharvest Biol. Technol. 2014, 87, 61–69. [Google Scholar] [CrossRef]
- Kanan, G.J.; Al-Najar, R.A. In vitro antifungal activities of various plant crude extracts and fractions against citrus post-harvest disease agent Penicillium digitatum. Jordan J. Biol. Sci. 2008, 1, 89–99. [Google Scholar]
- Hintz, T.; Matthews, K.K.; Di, R. The use of plant antimicrobial compounds for food preservation. BioMed Res. Int. 2015, 2015, 246264. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Rayaz, M.F.; Carrasco, H.; Olea, A.; Silva-Moreno, E. Natural compounds: A sustainable alternative for controlling phytopathogens. PeerJ 2018, 6, e26664v1. [Google Scholar]
- Askarne, L.; Talibi, I.; Boubaker, H.; Boudyachet, E.H.; Msanda, F.; Saadi, B.; Serghini, M.A.; Aoumar, A.A.B. In vitro and in vivo antifungal activity of several Moroccan plants against Penicillium italicum, the causal agent of citrus blue mold. Crop Prot. 2012, 40, 53–58. [Google Scholar] [CrossRef]
- OuYang, Q.; Okwong, R.O.; Chen, Y.; Tao, N. Synergistic activity of cinnamaldehyde and citronellal against green mold in citrus fruit. Postharvest Biol. Technol. 2020, 162, 111095. [Google Scholar] [CrossRef]
- Wu, Y.L.; Duan, X.F.; Jing, G.X.; Tao, N.G. Cinnamaldehyde inhibits the mycelial growth of Geotrichum citri-aurantii and induces defense responses against sour rot in citrus fruit. Postharvest Biol. Technol. 2017, 129, 23–28. [Google Scholar] [CrossRef]
- Gao, Y.; Kan, C.N.; Chen, M.; Chen, C.Y.; Chen, Y.H.; Fu, Y.Q.; Wan, C.P.; Chen, J.Y. Effects of chitosan-based coatings enriched with cinnamaldehyde on Mandarin fruit cv. Ponkan during room-temperature storage. Coatings 2018, 8, 372. [Google Scholar] [CrossRef]
- Duan, X.F.; OuYang, Q.L.; Tao, N.G. Effect of applying cinnamaldehyde incorporated in wax on green mould decay in citrus fruits. J. Sci. Food Agric. 2018, 98, 527–533. [Google Scholar] [CrossRef]
- Wu, Y.L.; OuYang, Q.L.; Tao, N.G. Plasma membrane damage contributes to antifungal activity of citronellal against Penicillium digitatum. J. Food Sci. Technol. 2016, 53, 3853–3858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obagwu, J.; Korsten, L. Control of citrus green and blue molds with garlic extracts. Eur. J. Plant Pathol. 2003, 109, 221–225. [Google Scholar] [CrossRef]
- Kara, M.; Soylu, E.M. Assessment of glucosinolate-derived isothiocyanates as potential natural antifungal compounds against citrus sour rot disease agent Geotrichum citri-aurantii. J. Phytopathol. 2020, 168, 279–289. [Google Scholar] [CrossRef]
- Yang, S.; Peng, L.; Cheng, Y.; Chen, F.; Pan, S. Control of Citrus Green and Blue Molds by Chinese Propolis. Food Sci. Biotechnol. 2010, 19, 1303–1308. [Google Scholar] [CrossRef]
- Musto, M.; Potenza, G.; Cellini, F. Inhibition of Penicillium digitatum by a crude extract from Solanum nigrum leaves. Biotechnol. Agron. Soc. Environ. 2014, 18, 174–180. [Google Scholar]
- Karim, H.; Boubaker, H.; Askarne, L.; Talibi, I.; Msanda, F.; Boudyach, E.H.; Saadi, B.; Ait Ben Aoumar, A. Antifungal properties of organic extracts of eight Cistus L. species against postharvest citrus sour rot. Lett. Appl. Microbiol. 2016, 62, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fozi, V.; Hosseinifarahi, M.; Bagheri, F.; Amiri, A. Extending Shelf Life of Mandarin Fruit using Pomegranate Peel Extract. Int. J. Hydrol. Sci. Technol. 2022, 9, 15–24. [Google Scholar] [CrossRef]
- Pangallo, S.; Li Destri Nicosia, M.G.; Scibetta, S.; Strano, M.C.; Cacciola, S.O.; Belgacem, I.; Agosteo, G.E.; Schena, L. Pre- and postharvest applications of a pomegranate peel extract to control citrus fruit decay during storage and shelf-life. Plant Dis. 2021, 105, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Li Destri Nicosia, M.G.; Pangallo, S.; Raphael, G.; Romeo, F.V.; Strano, M.C.; Rapisarda, P.; Droby, S.; Schena, L. Control of postharvest fungal rots on citrus fruits and sweet cherries using a pomegranate peel extract. Postharvest Biol. Technol. 2016, 114, 54–61. [Google Scholar] [CrossRef]
- Sandhya, S.; Khamrui, K.; Prasad, W.; Kumar, M.C.T. Preparation of pomegranate peel extract powder and evaluation of its effect on functional properties and shelf life of curd. LWT-Food Sci. Technol. 2018, 92, 416–421. [Google Scholar] [CrossRef]
- Ameziane, N.; Boubaker, H.; Boudyach, H.; Msanda, F.; Jilal, A.; Ait Benaoumar, A. Antifungal activity of Moroccan plants against citrus fruit pathogens. Agron. Sustain. Dev. 2007, 27, 273–277. [Google Scholar] [CrossRef]
- Pérez-Alfonso, C.O.; Martínez-Romero, D.; Zapata, P.J.; Serrano, M.; Valero, D.; Castillo, S. The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and P. italicum involved in lemon decay. Int. J. Food Microbiol. 2012, 158, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef] [PubMed]
- Meneguetti, B.T.; Machado, L.S.; Oshiro, K.G.N.; Nogueira, M.L.; Carvalho, C.M.E.; Franco, O.L. Antimicrobial peptides from fruits and their potential use as biotechnological tools—A review and outlook. Front. Microbiol. 2017, 7, 2136. [Google Scholar] [CrossRef] [Green Version]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Lafuente, M.T.; Zacarias, L.; Martínez-Téllez, M.A.; Sanchez-Ballesta, M.T.; Dupille, E. Phenylalanine ammonialyase as related to ethylene in the development of chilling symptoms during cold storage of citrus fruits. J. Agric. Food Chem. 2001, 49, 6020–6025. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.F.; Zhong, S.L.; Grierson, D. Recent advances in ethylene research. J. Exp. Bot. 2009, 60, 3311–3336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Wu, F.; Li, T.; Su, X.; Jiang, G.; Qu, H.; Jiang, Y.; Duan, X. 1-Methylcyclopropene extends the shelf-life of ‘Shatangju’ mandarin (Citrus reticulate Blanco) fruit with attached leaves. Postharvest Biol. Technol. 2012, 67, 92–95. [Google Scholar] [CrossRef]
- Watkins, C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006, 24, 389–409. [Google Scholar] [CrossRef] [PubMed]
- McCollum, G.; Maul, P. 1-Methylcyclopropene inhibits degreening but stimulates respiration and ethylene biosynthesis in grapefruit. HortScience 2007, 42, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Jones, S.; Ritenour, M. Influence of 1-MCP application and concentration on post-harvest peel disorders and incidence of decay in citrus fruit. J. Hortic. Sci. Biotechnol. 2015, 80, 786–792. [Google Scholar] [CrossRef]
- Salvador, A.; Carvalho, C.P.; Monterde, A.; Martínez-Jávega, J.M. Note. 1-MCP effect on chilling injury development in ‘Nova’and ‘Ortanique’mandarins. Food Sci. Technol. Int. 2006, 12, 165–170. [Google Scholar]
- Sellitto, V.M.; Zara, S.; Fracchetti, F.; Capozzi, V.; Nardi, T. Microbial biocontrol as an alternative to synthetic fungicides: Boundaries between pre- and postharvest applications on vegetables and fruits. Fermentation 2021, 7, 60. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Zhang, J.; He, L.; Guo, C.; Liu, Z.; Kaliaperumal, K.; Zhong, B.; Jiang, Y. Evaluation of Aspergillus aculeatus GC-09 for the biological control of citrus blue mold caused by Penicillium italicum. Fungal Biol. 2022, 126, 201–212. [Google Scholar] [CrossRef]
- Qessaoui, R.; Zanzan, M.; Ajerrar, A.; Lahmyed, H.; Boumair, A.; Tahzima, R.; Alouani, M.; Mayad, E.H.; Chebli, B.; Walters, S.A.; et al. Pseudomonas Isolates as Potential Biofungicides of Green Mold (Penicillium Digitatum) on Orange Fruit. Int. J. Fruit Sci. 2022, 22, 142–150. [Google Scholar] [CrossRef]
- Zhang, D.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Selection and evaluation of new antagonists for their efficacy against postharvest brown rot of peaches. Postharvest Biol. Technol. 2010, 55, 174–181. [Google Scholar] [CrossRef]
- Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Crit. Rev. Food Sci. Nutr. 2018, 59, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Cheng, Y.; Yang, M.; Liu, Y.; Chen, K.; Long, C. Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol. 2014, 14, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spadaro, D.; Droby, S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 2016, 47, 39–46. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, L.; Zhang, X.; Foku, J.M.; Li, J.; Hu, W.; Zhang, H. Efficacy of Yarrowia lipolytica in the biocontrol of green mold and blue mold in Citrus reticulata and the mechanisms involved. Biol. Control 2019, 139, 104096. [Google Scholar] [CrossRef]
- Talibi, I.; Boubaker, H.; Boudyach, E.H.; Ait Ben Aoumar, A. Alternative methods for the control of postharvest citrus diseases. J. Appl. Microbiol. 2014, 117, 1–17. [Google Scholar] [CrossRef]
- Zhang, H.; Mahunu, G.K.; Castoria, R.; Yang, Q.; Apaliya, M.T. Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends Food Sci. Technol. 2018, 78, 180–187. [Google Scholar] [CrossRef]
- Restuccia, C.; Lombardo, M.; Scavo, A.; Mauromicale, G.; Cirvilleri, G. Combined application of antagonistic Wickerhamomyces anomalus BS91 strain and Cynara cardunculus L. leaf extracts for the control of postharvest decay of citrus fruit. Food Microbiol. 2020, 92, 103583. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M. The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biol. Technol. 2018, 140, 107–112. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, F.; Bautista-Baños, S.; Sivakumar, D. Shelf-life extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci. Nutr. 2017, 57, 579–601. [Google Scholar] [CrossRef]
- De Leo, R.; Quartieri, A.; Haghighi, H.; Gigliano, S.; Bedin, E.; Pulvirenti, A. Application of pectin-alginate and pectin-alginate-laurolyl arginate ethyl coatings to eliminate Salmonella enteritidis cross contamination in eggshells. J. Food Saf. 2018, 38, 12567. [Google Scholar] [CrossRef]
- Yan, J.; Luo, Z.; Ban, Z.; Lu, H.; Li, D.; Yang, D.; Aghdam, M.S.; Li, L. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biol. Technol. 2019, 147, 29–38. [Google Scholar] [CrossRef]
- Salehi, F. Edible coating of fruits and vegetables using natural gums: A review. Int. J. Fruit Sci. 2020, 20, S570–S589. [Google Scholar] [CrossRef]
- Tesfay, S.Z.; Magwaza, L.S. Evaluating the efficacy of moringa leaf extract, chitosan and carboxymethyl cellulose as edible coatings for enhancing quality and extending postharvest life of avocado (Persea americana Mill.) fruit. Food Packag. Shelf Life 2017, 11, 40–48. [Google Scholar] [CrossRef]
- Saleem, M.S.; Anjum, M.A.; Naz, S.; Ali, S.; Hussain, S.; Azam, M.; Sardar, H.; Khaliq, G.; Canan, I.; Ejaz, S. Incorporation of ascorbic acid in chitosan-based edible coating improves postharvest quality and storability of strawberry fruits. Int. J. Biol. Macromol. 2021, 189, 160–169. [Google Scholar] [CrossRef]
- Khorram, F.; Ramezanian, A.; Hosseini, S.M.H. Effect of different edible coatings on postharvest quality of ‘Kinnow’ mandarin. Food Meas. 2017, 11, 1827–1833. [Google Scholar] [CrossRef]
- Palou, L.; Valencia-Chamorro, S.A.; Perez-Gago, M.B. Antifungal edible coatings for fresh Citrus fruit: A review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef] [Green Version]
- Saberi, B.; Golding, J.B.; Marques, J.R.; Pristijono, P.; Chockchaisawasdee, S.; Scarlett, C.J.; Stathopoulos, C.E. Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability, and shelf life of ‘Valencia’ oranges. Postharvest Biol. Technol. 2018, 137, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Kharchoufi, S.; Parafati, L.; Licciardello, F.; Muratore, G.; Hamdi, M.; Cirvilleri, G.; Restuccia, C. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiol. 2018, 74, 107–112. [Google Scholar] [CrossRef]
- Ali, S.; Anjum, M.A.; Ejaz, S.; Hussain, S.; Ercisli, S.; Saleem, M.S.; Sardar, H. Carboxymethyl cellulose coating delays chilling injury development and maintains eating quality of ‘Kinnow’ Mandarin fruits during low temperature storage. Int. J. Biol. Macromol. 2021, 168, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Strano, M.C.; Restuccia, C.; De Leo, R.; Mangiameli, S.; Bedin, E.; Allegra, M.; Quartieri, A.; Cirvilleri, G.; Pulvirenti, A. Efficacy of an antifungal edible coating for the quality maintenance of Tarocco orange fruit during cold storage. Crop Prot. 2021, 148, 105719. [Google Scholar] [CrossRef]
- Salem, M.F.; Abd-Elraoof, W.A.; Tayel, A.A.; Alzuaibr, F.M.; Abonama, O.M. Antifungal application of biosynthesized selenium nanoparticles with pomegranate peels and nanochitosan as edible coatings for citrus green mold protection. J. Nanobiotechnol. 2022, 20, 182. [Google Scholar] [CrossRef]
- Pallottino, F.; Menesatti, P.; Lanza, M.C.; Strano, M.C.; Antonucci, F.; Moresi, M. Assessment of quality-assured Tarocco orange fruit sorting rules by combined physicochemical and sensory testings. J. Sci. Food Agric. 2013, 93, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Cavaco, A.M.; Passos, D.; Pires, R.M.; Antunes, M.D.; Guerra, R. Non-destructive assessment of Citrus fruit quality and ripening by Visible–Near Infrared Reflectance Spectroscopy. In Citrus-Research, Development and Biotechnology; Khan, M.S., Khan, I., Eds.; IntechOpen: London, UK, 2021; p. 95970. [Google Scholar] [CrossRef]
- Matera, A.; Altieri, G.; Genovese, F.; Di Renzo, G.C. Improved spectrophotometric models and methods for the non-destructive and effective foodstuff parameters forecasting. Acta Hortic. 2021, 1311, 395–402. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Tuchin, V.V. Tissue optics and photonics: Light-tissue interaction. J. Biomed. Photonics Eng. 2015, 1, 98–135. [Google Scholar] [CrossRef]
- Sun, C.; Aernouts, B.; Van Beers, R.; Saeys, W. Simulation of light propagation in citrus fruit using monte carlo multi-layered (MCML) method. Postharvest Biol. Technol. 2021, 291, 110225. [Google Scholar] [CrossRef]
- Gómez, A.H.; He, Y.; Pereira, A.G. Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. J. Food Eng. 2006, 77, 313–319. [Google Scholar] [CrossRef]
- Wang, A.; Hu, D.; Xie, L. Comparison of detection modes in terms of the necessity of visible region (VIS) and influence of the peel on soluble solids content (SSC) determination of navel orange using VIS-SWNIR spectroscopy. J. Food Eng. 2014, 126, 126–132. [Google Scholar] [CrossRef]
- Sun, C.; Van Beers, R.; Aernouts, B.; Saeys, W. Bulk optical properties of citrus tissues and the relationship with quality properties. Postharvest Biol. Technol. 2020, 163, 111127. [Google Scholar] [CrossRef]
- Vasefi, F.; MacKinnon, N.; Farkas, D.L. Hyperspectral and Multispectral Imaging in Dermatology. In Imaging in Dermatology; Hamblin, M.R., Avci, P., Gupta, G.K., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 187–201. ISBN 9780128028384. [Google Scholar]
- Vashpanov, Y.; Heo, G.; Kim, Y.; Venkel, T.; Son, J.-Y. Detecting Green Mold Pathogens on Lemons Using Hyperspectral Images. Appl. Sci. 2020, 10, 1209. [Google Scholar] [CrossRef] [Green Version]
- Jiangbo, L.; Xiuqin, R.; Yibin, Y. Detection of common defects on oranges using hyperspectral reflectance imaging. Comput. Electron. Agric. 2011, 78, 38–48. [Google Scholar] [CrossRef]
- Bulanon, D.M.; Burks, T.F.; Kim, D.G.; Ritenour, M.A. Citrus black spot detection using hyperspectral image analysis. Agric. Eng. Int. CIGR J. 2013, 15, 171–180. [Google Scholar] [CrossRef]
- Teixeira Badaró, A.; Garcia-Martin, J.F.; López-Barrera, M.C.; Fernandes Barbin, D.; Alvarez-Mateos, P. Determination of pectin content in orange peels by near infrared hyperspectral imaging. Food Chem. 2020, 323, 126861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhan, B.; Pan, F.; Luo, W. Determination of soluble solids content in oranges using visible and near infrared full transmittance hyperspectral imaging with comparative analysis of models. Postharvest Biol. Technol. 2020, 163, 111148. [Google Scholar] [CrossRef]
- Long, X.; Jing, L.; Muhua, L. Detecting Pesticide Residue on Navel Orange Surface by Using Hyperspectral Imaging. Acta Opt. Sin. 2008, 28, 2277–2280. [Google Scholar] [CrossRef]
- Blasco, J.; Aleixos, N.; Gómez-Sanchís, J.; Moltó, E. Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosyst. Eng. 2009, 103, 137–145. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Li, Z.; Zhang, X.; Jemri’c, T.; Wang, X. Quality Monitoring and Analysis of Xinjiang ‘Korla’ Fragrant Pear in Cold Chain Logistics and Home Storage with Multi-Sensor Technology. Appl. Sci. 2019, 9, 3895. [Google Scholar] [CrossRef] [Green Version]
- Hammes, G.G. Spectroscopy for the Biological Sciences; Wiley-Interscience: Hoboken, NJ, USA, 2005; ISBN 978-0-471-73354-6. [Google Scholar]
- Moreira, L.M.; Silveira, L.; Santos, F.V.; Lyon, J.P.; Rocha, R.; Zangaro, R.A.; Balbin, V.A.; Pacheco, M.T.T. Raman Spectroscopy: A Powerful Technique for Biochemical Analysis and Diagnosis. Spectroscopy 2008, 22, 1–19. [Google Scholar] [CrossRef]
- Pappas, D.; Smith, B.W.; Winefordner, J.D. RamanSpectroscopy in Bioanalysis. Talanta 2000, 51, 131–144. [Google Scholar] [CrossRef]
- Schrader, B.; Klumb, H.H.; Schenzel, K.; Schultz, H. NonDestructive NIR FT Raman Analysis of Plants. J. Mol. Struct. 1999, 509, 201–212. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.; Hao, Y.; Ye, L.; Jiang, X.; Wang, H.; Sun, X. Diagnosis of Citrus Greening using Raman Spectroscopy-Based Pattern Recognition. J. Appl. Spectrosc. 2020, 87, 1. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Brosio, E.; Gianferri, R.; Segre, A.L. Metabolic profile of lettuce leaves by high-field NMR spectra. Magn. Reson. Chem. 2005, 43, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Mccarthy, M.J.; Kauten, R. NMR for internal quality evaluation of fruits and vegetables. Trans. ASAE 1989, 32, 1747–1753. [Google Scholar] [CrossRef]
- Butz, P.; Hofmann, C.; Tauscher, B. Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis. J. Food Sci. 2005, 70, R131–R141. [Google Scholar] [CrossRef]
- Gostan, T.; Moreau, C.; Juteau, A.; Guichard, E.; Delsuc, M.A. Measurement of aroma compound self-diffusion in food models by DOSY. Magn. Reson. Chem. 2004, 42, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Spraul, M.; Schutz, B.; Rinke, P.; Koswig, S.; Humpfer, E.; Schafer, H.; Mörtter, M.; Fang, F.; Marx, U.C.; Minoja, A. NMR-based multi parametric quality control of fruit juices: SGF profiling. Nutrients 2009, 1, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Spraul, M.; Rinke, P. Successful Application of SGF-Profiling. New Food 2008, 1244. Available online: https://www.newfoodmagazine.com/article/1244/successful-application-of-sgf-profiling/ (accessed on 5 June 2022).
- Li, J.; Huang, W.; Tian, X.; Wang, C.; Fan, S.; Zhao, C. Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 582–592. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Han, L.; Cai, Z.; Guo, Z. Two-wavelength image detection of early decayed oranges by coupling spectral classification with image processing. J. Food Compos. Anal. 2022, 111, 104642. [Google Scholar] [CrossRef]
- Tian, X.; Fan, S.; Huang, W.; Wang, Z.; Li, J. Detection of early decay on citrus using hyperspectral transmittance imaging technology coupled with principal component analysis and improved watershed segmentation algorithms. Postharvest Biol. Technol. 2020, 161, 111071. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, C.; Li, J.; Fan, S.; Yang, Y.; Huang, W. Detection of early decay on citrus using LW-NIR hyperspectral reflectance imaging coupled with two-band ratio and improved watershed segmentation algorithm. Food Chem. 2021, 360, 130077. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Bi, X.; Niu, Y.; Gu, X.; Xiao, Y. Hyperspectral classification for identifying decayed oranges infected by fungi. Emir. J. Food Agric. 2017, 29, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Moomkesh, S.; Mireei, S.A.; Sadeghi, M.; Nazeri, M. Early detection of freezing damage in sweet lemons using Vis/SWNIR spectroscopy. Biosyst. Eng. 2017, 164, 157–170. [Google Scholar] [CrossRef]
- Tian, S.; Wang, S.; Xu, H. Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN. Comput. Electron. Agric. 2022, 193, 106638. [Google Scholar] [CrossRef]
- Serrano-Pallicer, E.; Muñoz-Albero, M.; Pérez-Fuster, C.; Masot Peris, R.; Laguarda-Miró, N. Early detection of freeze damage in navelate oranges with electrochemical impedance spectroscopy. Sensors 2018, 18, 4503. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.K.; Dev, A.; Karmakar, S. Nanosensors and nanobiosensors in food and agriculture. Environ. Chem. Lett. 2018, 16, 161–182. [Google Scholar] [CrossRef]
- Wang, H.; Ramnani, P.; Pham, T.; Villarreal, C.C.; Yu, X.; Liu, G.; Mulchandani, A. Gas biosensor arrays based on single-stranded DNA-functionalized single-walled carbon nanotubes for the detection of volatile organic compound biomarkers released by huanglongbing disease-infected citrus trees. Sensors 2019, 19, 4795. [Google Scholar] [CrossRef] [Green Version]
- Saraf, N.; Barkam, S.; Peppler, M.; Metke, A.; Guardado, A.; Singh, S.; Emile, C.; Bico, A.; Rodas, C.; Seal, S. Microsensor for limonin detection: An indicator of citrus greening disease. Sens. Actuators B Chem. 2019, 283, 724–730. [Google Scholar] [CrossRef]
- Beghi, R.; Buratti, S.; Giovenzana, V.; Benedetti, S.; Guidetti, R. Electronic nose and visible-near infrared spectroscopy in fruit and vegetable monitoring. Gruyter Rev. Anal. Chem. 2017, 17, 20160016. [Google Scholar] [CrossRef]
- Pallottino, F.; Costa, C.; Antonucci, F.; Strano, M.C.; Calandra, M.; Solaini, S.; Menesatti, P. Electronic nose application for determination of Penicillium digitatum in Valencia oranges. J. Sci. Food Agric. 2012, 92, 2008–2012. [Google Scholar] [CrossRef]
- Costa, C.; Taiti, C.; Strano, M.C.; Morone, G.; Antonucci, F.; Mancuso, S.; Claps, S.; Pallottino, F.; Sepe, L.; Bazihizina, N.; et al. Multivariate approaches to electronic nose and PTR–TOF–MS technologies in agro-food products. In Electronic Noses and Tongues in Food Science; Mendez, M.L.R., Ed.; Academic Press: Oxford, UK, 2016; pp. 73–82. [Google Scholar] [CrossRef]
- Escuder-Gilabert, L.; Peris, M. Highlights in recent applications of electronic tongues in food analysis. Anal. Chim. Acta 2010, 665, 15–25. [Google Scholar] [CrossRef]
- Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; Proietti, E.; D’Amico, A. The evaluation of quality of post-harvest oranges and apples by means of an electronic nose. Sensor. Actuat. B 2001, 78, 26–31. [Google Scholar] [CrossRef]
- Gruber, J.; Nascimento, H.M.; Yamauchi, E.Y.; Li, R.W.; Esteves, C.H.; Rehder, G.P.; Shirakawa, M.A. A conductive polymer based electronic nose for early detection of Penicillium digitatum in postharvest oranges. Mater. Sci. Eng. 2013, 33, 2766–2769. [Google Scholar] [CrossRef] [PubMed]
- Pallottino, F.; Petrucci, V.; Menesatti, P.; Calandra, M.; Lanza, G. Electronic Olfactometric Discrimination of Lemon Contamination from Penicillium spp. During Storage. In Proceedings of the VI International Postharvest Symposium, Antalya, Turkey, 8–12 April 2009; Volume 877, pp. 1631–1636. [Google Scholar]
- Shanshan, Q.; Jun, W.; Chen, T.; Dongdong, D. Comparison of ELM, RF, and SVM on E-nose and E-tongue to trace the quality status of mandarin (Citrus unshiu Marc.). J. Food Eng. 2015, 166, 193–203. [Google Scholar]
- Raithore, S.; Bai, J.; Plotto, A.; Manthey, J.; Irey, M.; Baldwin, E. Electronic Tongue Response to Chemicals in Orange Juice that Change Concentration in Relation to Harvest Maturity and Citrus Greening or Huanglongbing (HLB) Disease. Sensors 2015, 12, 30062–30075. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.S.; da Silva Junior, A.G.; de Andrade, C.A.S.; Oliveira, M.D.L. Biosensors for early detection of fungi spoilage and toxigenic and mycotoxins in food. Curr. Opin. Food Sci. 2019, 29, 64–79. [Google Scholar] [CrossRef]
- Romero Fogué, D.; Masot Peris, R.; Ibáñez Civera, J.; Contat Rodrigo, L.; Laguarda-Miro, N. Monitoring Freeze-Damage in Grapefruit by Electric Bioimpedance Spectroscopy and Electric Equivalent Models. Horticulturae 2022, 8, 218. [Google Scholar] [CrossRef]
- Chalupowicz, D.; Veltman, B.; Droby, S.; Eltzov, E. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit. Sens. Actuators B Chem. 2020, 311, 127896. [Google Scholar] [CrossRef]
Citrus Species and Variety | Temperature Range (°C) | RH % | Approximate Storage Life |
---|---|---|---|
Grapefruit | 10–15 | 85–90 | 6–8 weeks |
Lemon | 10–13 | 85–90 | 1–6 months |
Limes | 9–10 | 85–90 | 6–8 weeks |
Mandarin hybrids (Fortune, Nova) | 8–9 | 85–90 | 4–6 weeks |
Mandarin, Tangelo | 5–6 | 90–95 | 2–4 weeks |
Clementine, Satsuma | 4–5 | 90–95 | 2–4 weeks |
Kumquat | 4–5 | 90–95 | 2–4 weeks |
Pigmented orange | 6–8 | 90–95 | 3–8 weeks |
Blond orange | 3–9 | 85–90 | 3–8 weeks |
Species | Temperature Range (°C) | Relative Humidity (%) | CA | |
---|---|---|---|---|
% O2 | % CO2 | |||
Lemon Lime Orange | 10–15 10–15 5–10 | 90–95 90–95 90–95 | 5–10 5–10 5–10 | 0–10 0–10 0–5 |
Physical Treatment | Target Pathogen | Significant Results | Reference |
---|---|---|---|
Heat treatments
| Postharvest pathogens, especially P. digitatum and P. italicum | Reduction of decay and chilling injury; induction of disease resistance Curing is impractical under commercial conditions because expensive | [30,32,39,41,42] |
Irradiations
| P. digitatum and P. italicum | Effective in delaying fruit senescence and increasing the production of beneficial compounds | [46,55,56,64,65] |
Precooling
| Postharvest pathogens | Improvement of citrus fruit quality by reduction of weight loss and physiological disorders | [13,100] |
Modified and controlled atmosphere storage | Postharvest pathogens | Retention of freshness and initial fruit quality during storage | [106,107,108,109,110,111,112] |
Innovative packaging | Postharvest pathogens | Preservation of fruit quality, reduction of mechanical damage to fruit during transport and storage, shelf-life increase | [131,132,135] |
Extracts | Fruit Tested | Target Pathogens | Significant Results | References |
---|---|---|---|---|
Cinnamaldehyde | Mandarins | P. digitatum, Galactomyces citri-aurantii | Strong antifungal properties; green mould and sour rot (G. citri-aurantii) reduced incidence; induced defence responses in citrus fruit | [178,179,180,181] |
Citronellal | Oranges | P. digitatum | Reduced postharvest incidence of green mould in citrus fruit | [179,182] |
Garlic | Oranges | P. digitatum, P. italicum | Higher increased activity in mixed garlic extracts with oils | [183] |
Isothiocyanates | Mandarins | G. citri-aurantii | Antifungal properties both in vitro and in vivo conditions | [177,184] |
Propolis | Mandarins | Penicillium digitatum, P. italicum. | Reduced green mould (P. digitatum) and blue mould (P. italicum) incidence in wound-inoculated fruit and naturally infected fruit | [185] |
Solanum nigrum | Lemons | P. digitatum | In vitro antifungal activity Preventive antifungal efficacy in artificially wounded fruit | [186] |
Cistus plant extracts | Mandarins | G. citri-aurantii | Antifungal properties in both in vitro and in vivo conditions | [187] |
Pomegranate (Punica granatum L.) peel extract | Lemons | Primary postharvest pathogens in citrus fruit (in vitro tests) | Strong efficacy of in vitro and in vivo treatments due to the high content of phenolic compounds | [188,189,190,191] |
T. leptobotrys, C. villosus, E. globulus and P. harmala extracts | - | P. digitatum, P. italicum, G. citri-aurantii | High antifungal activity in in vitro tests | [177,192] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strano, M.C.; Altieri, G.; Allegra, M.; Di Renzo, G.C.; Paterna, G.; Matera, A.; Genovese, F. Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. Horticulturae 2022, 8, 612. https://doi.org/10.3390/horticulturae8070612
Strano MC, Altieri G, Allegra M, Di Renzo GC, Paterna G, Matera A, Genovese F. Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. Horticulturae. 2022; 8(7):612. https://doi.org/10.3390/horticulturae8070612
Chicago/Turabian StyleStrano, Maria Concetta, Giuseppe Altieri, Maria Allegra, Giovanni Carlo Di Renzo, Giuliana Paterna, Attilio Matera, and Francesco Genovese. 2022. "Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage" Horticulturae 8, no. 7: 612. https://doi.org/10.3390/horticulturae8070612
APA StyleStrano, M. C., Altieri, G., Allegra, M., Di Renzo, G. C., Paterna, G., Matera, A., & Genovese, F. (2022). Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. Horticulturae, 8(7), 612. https://doi.org/10.3390/horticulturae8070612