Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Components of Mixes
2.2. Seedling-Growth Experiments
2.2.1. Growth Conditions and Mixes
2.2.2. Measurements
- 1.
- Chl a = 16.82A665.2 − 9.28A652.4
- 2.
- Chl b = 36.92A652.4 − 16.54A665.2
- 3.
- Cc = (1000A470 − 1.91Chl-a − 95.15Chl-b)/225
2.2.3. Data Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of the Components
3.2. Experiment 1
3.2.1. Initial Physicochemical Characteristics of the Mixes
3.2.2. Seed Emergence
3.2.3. Photosynthetic Pigments and Total Phenols
3.2.4. Seedling Growth
3.3. Experiment 2
3.3.1. Initial Physicochemical Characteristics of the Mixes
3.3.2. Seed Emergence
3.3.3. Photosynthetic Pigments and Total Phenols
3.3.4. Seedling Growth
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.; Bisbis, M.B.; Tanny, J. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production—A review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Gruda, N.; Bragg, N. Developments in alternative organic materials as growing media in soilless culture systems. In Advances in Horticultural Soilless Culture; Gruda, N., Ed.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2021; ISBN 9781786764355. [Google Scholar] [CrossRef]
- Gruda, N.S. Advances in Soilless Culture and Growing Media in Today’s Horticulture—An Editorial. Agronomy 2022, 12, 2773. [Google Scholar] [CrossRef]
- Atzori, G.; Pane, C.; Zaccardelli, M.; Cacini, S.; Massa, D. The Role of Peat-Free Organic Substrates in the Sustainable Management of Soilless Cultivations. Agronomy 2021, 11, 1236. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Heiskanen, J.; Englund, K.; Tervahauta, A. Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenergy 2011, 35, 2018–2027. [Google Scholar] [CrossRef]
- Steiner, C.; Harttung, T. Biochar as a growing media additive and peat substitute. Solid Earth 2014, 5, 995–999. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.; Gruda, N.S. Coir, an Alternative to Peat—Effects on plant growth, phytochemical accumulation, and antioxidant power of spinach. Horticulturae 2021, 7, 127. [Google Scholar] [CrossRef]
- Veeken, A.; Adani, F.; Fangueiro, D.; Jensen, L.S. The Value of Recycling Organic Matter to Soils: Classification as Organic Fertiliser or Organic Soil Improver; EIP-AGRI Focus Group—Nutrient Recycling: Brussels, Belgium, 2017; pp. 8–10. Available online: https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/fg19_minipaper_5_value_of_organic_matter_en.pdf (accessed on 14 November 2022).
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.T.; Wu, J.; Rene, E.R.; Ali, Z.; Chen, Z. Reuse of agricultural wastes, manure, and biochar as an organic amendment: A review on its implications for vermicomposting technology. J. Clean. Prod. 2022, 360, 132200. [Google Scholar] [CrossRef]
- Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J.G.; Domínguez, J. Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Span. J. Agric. Res. 2009, 7, 944–951. [Google Scholar] [CrossRef] [Green Version]
- Vallance, J.; Déniel, F.; Floch, G.L.; Guérin-Dubrana, L.; Blancard, D.; Rey, P. Pathogenic and beneficial microorganisms in soilless cultures. In Sustainable Agriculture; Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P., Eds.; Springer: Dordrecht, The Netherland, 2011; Volume 2, pp. 711–726. [Google Scholar]
- Fascella, G. Growing substrates alternative to peat for ornamental plants. In Soilless Culture—Use of Substrates for the Production of Quality Horticultural Crops; Asaduzzaman, M., Ed.; Intech Publication: Rijeka, Croatia, 2015; pp. 47–67. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, S.F.; Kenar, J.A.; Thompson, A.R.; Peterson, S.C. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crops Prod. 2013, 51, 437–443. [Google Scholar] [CrossRef]
- Matt, C.P.; Keyes, C.R.; Dumroese, R.K. Biochar effects on the nursery propagation of 4 northen Rocky Mountain native plant species. Nativ. Plants J. 2018, 19, 14–26. [Google Scholar] [CrossRef]
- Gruda, N.; Rau, B.J.; Wright, R.D. Laboratory Bioassay and Greenhouse Evaluation of a Pine tree substrate used as a container Substrate. Eur. J. Hortic. Sci. 2009, 74, 73–78. [Google Scholar]
- Jackson, B.E.; Wright, R.D.; Gruda, N. Container medium pH in a pine tree substrate amended with peat moss and dolomitic limestone affects plant growth. Hortscience 2009, 44, 1983–1987. [Google Scholar] [CrossRef] [Green Version]
- Prasad, M.; Chrysargyris, A.; McDaniel, N.; Kavanagh, A.; Gruda, N.S.; Tzortzakis, N. Plant nutrient availability and pH of biochar and their fractions, with the possible use as a component in a growing media. Agronomy 2020, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.; Schnitzler, W.H. Wood fiber substrates as a peat alternative for vegetable production. Eur. J. Wood Prod. 2006, 64, 347–350. (In German) [Google Scholar] [CrossRef]
- Gruda, N. Sustainable peat alternative growing media. Acta Hortic. 2012, 927, 973–980. [Google Scholar] [CrossRef]
- Giménez, A.; Fernández, J.; Pascual, J.; Ros, M.; Saez-Tovar, J.; Martinez-Sabater, E.; Gruda, N.; Egea-Gilabert, C. Promising composts as growing media for the production of baby leaf lettuce in a floating system. Agronomy 2020, 10, 1540. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Prasad, M.; Kavanagh, A.; Tzortzakis, N. Biochar type. ratio. and nutrient levels in growing media affects seedling production and plant performance. Agronomy 2020, 10, 1421. [Google Scholar] [CrossRef]
- Lehmann, J.; Rilling, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Machado, R.; Serralheiro, R. Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Michel, J.C. The physical properties of peat: A key factor for modern growing media. Mires Peat 2010, 6, 1–90. [Google Scholar]
- Gruda, N.; Caron, J.; Prasad, M.; Maher, M. Growing media. In Encyclopedia of Soil Science; CRC Press: Boca Raton, FL, USA, 2016; pp. 1053–1058. [Google Scholar]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Huang, L.; Gu, M. Effects of biochar on container substrate properties and growth of plants—A review. Horticulturae 2019, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Graber, E.R.; Harel, Y.H.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Bui, H.H. Physicochemical characteristics of substrates of the mixture of coir with municipal solid waste compost and with biochar. Acta Hortic. 2021, 1320, 399–404. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Morais, C.; Alemão, A.; Ferreira, R. Effects of Coir-Based Growing Medium with Municipal Solid Waste Compost or Biochar on Plant Growth, Mineral Nutrition, and Accumulation of Phytochemicals in Spinach. Plants 2022, 11, 14. [Google Scholar] [CrossRef]
- Almeida, D. Manual de Culturas Hortícolas; Editorial Presença: Lisboa, Portugal, 2006; Volume 1, pp. 196–300. ISBN 9789722335515. [Google Scholar]
- Fonteno, W.C.; Harden, C.T. Procedures for Determining Physical Properties of Horticultural Substrates Using the NCSU Porometer, Horticultural Substrates Laboratory; North Carolina State University: Raleigh, NC, USA, 2003; Available online: https://www.ncsu.edu/project/hortsublab/pdf/porometermanual.pdf (accessed on 3 November 2022).
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties. Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Bilderback, T.E.; Warren, S.L.; Owen, J.S.; Albano, J.P. Healthy substrates need physicals too! HortTechnology 2005, 15, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Sonneveld, C.; Voogt, W. Plant nutrition in future greenhouse production. In Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherland, 2009; pp. 393–403. [Google Scholar]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Bures, S. National inventory of organic wastesfor use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.A.; Nelson, P.V.; Fonteno, W.C. Substrates pH and Water Quality; North Carolina State University: Raleigh, NC, USA, 2000. [Google Scholar]
- Martínez, P.F.; Roca, D. Sustratos para el cultivo sin suelo. Materiales, propiedades y manejo. In Sustratos, Manejo del Clima, Automatización y Control en Sistemas de Cultivo sin Suelo; Flórez, R.V.J., Ed.; Editorial Universidad Nacional de Colombia: Bogotá, Colombia, 2011; pp. 37–77. [Google Scholar]
- Bunt, B.R. Media and Mixes for Container-Grown Plants: A Manual on the Preparation and Use of Growing Media for Pot Plants, 2nd ed.; Springer Science & Business Media: London, UK, 2012; pp. 86–93. [Google Scholar]
- Camberato, D.M.; Lopez, R.G.; Mickelbart, M.V. pH and Electrical Conductivity Measurements in Soilless Substrates; HO-237-W; Purdue University: West Lafayette, IN, USA, 2009; pp. 1–6. [Google Scholar]
- Gruda, N.; Schnitzler, W.H. Suitability of wood fiber substrates for production of vegetable transplants. I. Physical properties of wood fiber substrates. Sci. Hortic. 2004, 100, 309–322. [Google Scholar] [CrossRef]
- Reis, M.M.F. Material Vegetal e Viveiros: Manual de Horticultura em Modo de Produção Biológico; Escola Superior Agrária Ponte de Lima/Instituto Politécnico de Viana do Castelo: Refóios do Lima, Portugal, 2007; pp. 19–52. [Google Scholar]
- Tzortzakis, N.; Gouma, S.; Paterakis, C.; Manios, T. Deployment of municipal solid wastes as a substitute growing medium component in marigold and basil seedlings production. Sci. World J. 2012, 2012, 285874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinzadeh, S.R.; Amiri, H.; Ismaili, A. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica 2016, 54, 87–92. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Jo, J.S.; Song, J.W.; Lee, J.G. Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. Horticulturae 2021, 7, 238. [Google Scholar] [CrossRef]
- Luna, M.C.; Martínez-Sánchez, A.; Selma, M.V.; Tudela, J.A.; Baixauli, C.; Gil, M.I. Influence of nutrient solutions in an open-field soilless system on the quality characteristics and shelf life of fresh-cut red and green lettuces (Lactuca sativa L.) in different seasons. J. Sci. Food Agric. 2012, 93, 415–421. [Google Scholar] [CrossRef]
- Howard, L.R.; Pandjaitan, N.; Morelock, T.; Gill, M.I. Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J. Agric. Food Chem. 2002, 50, 5891–5896. [Google Scholar] [CrossRef]
- Blok, C.; Van der Salm, C.; Hofland-Ziljstra, J.; Streminska, M.; Eveleens, B.; Regelink, I.; Fryda, L.; Visser, R. Biochar for horticultural rooting media improvement: Evaluation of biochar from gasification and slow pyrolysis. Agronomy 2017, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Tang, C.; Antonietti, M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef]
- Zandonadi, D.B.; Canellas, L.P.; Façanha, A.R. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ -pumps activation. Planta 2007, 225, 1583–1595. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Pérez, M.; Camacho-Ferre, F. Effect of composts in substrates on the growth of tomato transplants. HortTechnology 2010, 20, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Sani, M.N.H.; Yong, J.W. Harnessing Synergistic Biostimulatory Processes: A Plausible Approach for Enhanced Crop Growth and Resilience in Organic Farming. Biology 2021, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Arias, D.; García-Machado, F.J.; Morales-Sierra, S.; García-García, A.L.; Herrera, A.J.; Valdés, F.; Luis, J.C.; Borges, A.A. A beginner’s guide to osmoprotection by biostimulants. Plants 2021, 10, 363. [Google Scholar] [CrossRef] [PubMed]
- Mašková, T.; Herben, T. Root: Shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecol. Evol. 2018, 8, 7143–7150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, M.; Maher, M.J. The use of composted green waste (CGW) as a growing medium component. Acta Hortic. 2001, 549, 107–114. [Google Scholar] [CrossRef]
- Gruda, N. Current and Future Perspective of Growing Media in Europe. Acta Hortic. 2012, 960, 37–43. [Google Scholar] [CrossRef]
- Gruda, N.; Schnitzler, W.H. Alternative raising systems by head lettuce. Rep. Agric./Ber. Über Landwirtsch. 2006, 84, 469–484. (In German) [Google Scholar]
- Gruda, N.; Schnitzler, W.H. The effect of water supply on bio-morphological and plant-physiological parameters of tomato transplants cultivated in wood fiber substrate. J. Appl. Bot. 2000, 74, 233–239. (In German) [Google Scholar]
- Gruda, N.; Schnitzler, W.H. The effect of water supply of seedlings, cultivated in different substrates and raising systems on the bio-morphological and plant-physiological parameters of lettuce. J. Appl. Bot. 2000, 74, 240–247. (In German) [Google Scholar]
Mixes (%, v/v) | ||||||
---|---|---|---|---|---|---|
Mixes 1 (Treatments) | C | B | MSW | P | Pi | BP |
C + B + P | 84 | 14 | - | 2 | - | - |
C + B + Pi | 70 | 20 | - | - | 10 | - |
C + B + Pi + BP | 65 | 20 | - | - | 5 | 10 |
C + MSW + P | 84 | - | 14 | 2 | - | - |
C + MSW + Pi | 70 | - | 20 | - | 10 | - |
C + MSW + Pi + BP | 65 | - | 20 | - | 5 | 10 |
Mixes (%, v/v) | ||||||
---|---|---|---|---|---|---|
Mixes 1 (Treatments) | C | MSW | B | P | Pi | BP |
C + MSW + P | 85 | 13 | - | 2 | - | - |
C + MSW + BP | 80 | 12 | - | - | - | 8 |
C + MSW + Pi | 80 | 12 | - | - | 8 | - |
C + MSW + Pi + BP | 73 | 12 | - | - | 5 | 10 |
C + MSW + B + BP | 73 | 12 | 10 | - | - | 5 |
Components | pH | EC (dS m−1) | Bulk Density (g cm−3) | Nitrate (NO3−) (ppm) |
---|---|---|---|---|
Coir | 5.66 | 1.5 | 0.12 | - |
MSW 1 | 7.91 | 8.62 | 0.23 | 91.1 |
Biochar 2 | 8.76 | 0.22 | 0.36 | 4.45 |
Pine bark | 4.84 | 0.13 | 0.18 | 12.1 |
Perlite | 7.06 | 0.04 | 0.14 | - |
Blonde peat | 5.5 | 0.11 | 0.12 | - |
Mixes 1 | pH | EC (dS m−1) | Bulk Density (g cm−3) | Mass Wetness 3 (g Water/g Substrate) | Total Porosity (%) | Moisture Content (%, w/w) |
---|---|---|---|---|---|---|
C + B + P | 7.51 c 2 | 1.60 c | 0.18 bc | 5.39 ab | 97.95 a | 81.06 ab |
C + B + Pi | 7.77 b | 1.14 d | 0.18 c | 4.96 bc | 98.75 a | 79.56 bc |
C + B + Pi + BP | 7.14 d | 0.98 d | 0.18 c | 5.03 bc | 99.22 a | 78.17 c |
C + MSW + P | 7.81 b | 2.80 b | 0.18 c | 5.71 a | 98.90 a | 82.88 a |
C + MSW + Pi | 8.09 a | 3.42 a | 0.21 a | 4.92 bc | 99.28 a | 81.73 ab |
C + MSW + Pi + BP | 7.95 ab | 3.25 a | 0.19 b | 4.69 c | 98.66 a | 82.11 ab |
Significance | *** | *** | *** | *** | NS | *** |
Mixes 1 | Chl a | Chl b | Chl Total | Cc | TPC |
---|---|---|---|---|---|
(mg 100 g−1 FW) | (mg GAE 100 g−1 FW) | ||||
Unfertilized | |||||
C + B + P | 7.90 def 2 | 9.69 d | 17.59 e | 5.22 d | 68.16 fg |
C + B + Pi | 8.49 cde | 8.82 d | 17.32 e | 6.98 c | 149.37 a |
C + B + Pi + BP | 7.64 def | 9.50 d | 17.14 | 7.82 c | 122.70 b |
C + MSW + P | 6.37 fg | 9.57 d | 15.94 ef | 7.13 c | 104.05 cd |
C + MSW + Pi | 7.40 efg | 8.34 d | 15.74 ef | 5.50 d | 67.58 fg |
C + MSW + Pi + BP | 5.83 g | 7.98 d | 13.81 f | 4.84 d | 115.88 bc |
Fertilized | |||||
C + B + P | 14.73 a | 19.18 a | 33.91 a | 10.40 b | 68.27 fg |
C + B + Pi | 12.80 b | 17.9 ab | 30.71 b | 12.88 a | 62.67 fg |
C + B + Pi + BP | 9.28 cd | 12.06 c | 21.34 d | 12.80 a | 107.01 bcd |
C + MSW + P | 9.3 cd | 13.49 c | 22.80 d | 9.18 b | 77.26 ef |
C + MSW + Pi | 9.64 c | 16.13 b | 25.77 c | 12.72 a | 54.43 g |
C + MSW + Pi + BP | 10.16 c | 16.29 b | 26.44 c | 13.40 a | 93.42 de |
Significance | |||||
Fertilizer | *** | *** | *** | *** | *** |
Mixes | *** | *** | *** | *** | *** |
Interaction | *** | *** | *** | *** | *** |
Mixes | Shoot Fresh Weight | Shoot Dry Weight | Seedling Total Dry Weight | Seedling Dry Weight | Leaf Area | Leaves |
---|---|---|---|---|---|---|
(g/Plant) | (%) | (cm2) | (Nº) | |||
Unfertilized | ||||||
C + B + P 1 | 0.89 def 2 | 0.09 ef | 0.14 e | 8.21 a | 21.6 def | 6.00 fg |
C + B + Pi | 0.67 f | 0.06 f | 0.09 f | 6.24 b | 16.75 f | 5.92 fg |
C + B + T + Pi | 0.72 ef | 0.07 f | 0.09 f | 6.40 b | 19.02 ef | 5.58 g |
C + MSW + P | 1.08 cde | 0.10 de | 0.14 de | 6.03 b | 28.37 cde | 6.67 def |
C + MSW + Pi | 1.73 b | 0.14 c | 0.20 c | 5.94 b | 46.33 b | 7.08 cde |
C + MSW + Pi + BP | 2.05 b | 0.18 b | 0.25 b | 6.44 b | 54.02 ab | 7.75 bc |
Fertilized | ||||||
C + B + P | 1.19 cd | 0.12 cde | 0.18 cd | 6.44 b | 31.08 cd | 7.58 bcd |
C + B + Pi | 1.21 cd | 0.12 cde | 0.17 cde | 6.84 b | 31.28 cd | 7.33 cde |
C + B + Pi + BP | 1.22 cd | 0.13 cd | 0.18 cde | 6.50 b | 31.88 cd | 6.50 efg |
C + MSW + P | 1.35 c | 0.13 cd | 0.19 c | 6.48 b | 35.62 c | 7.33 cde |
C + MSW + Pi | 1.84 b | 0.17 b | 0.23 b | 6.13 b | 49.90 b | 8.50 b |
C + MSW + Pi + BP | 2.57 a | 0.22 a | 0.29 a | 5.97 b | 66.11 a | 9.50 a |
Significance | ||||||
Fertilizer | *** | *** | *** | NS | *** | *** |
Mixe | *** | *** | *** | * | *** | *** |
Interaction | NS | NS | NS | * | NS | NS |
Mixes 1 | pH | EC | Bulk Density | Mass Wetness 3 | Total Porosity | Moisture |
---|---|---|---|---|---|---|
(dS m−1) | (g/cm3) | (g Water/g Substrate) | (%) | (% w/w) | ||
C + MSW + P | 7.25 a 2 | 2.79 a | 0.12 c | 7.38 a | 98.58 a | 75.03 b |
C + MSW + BP | 6.56 b | 2.56 bc | 0.12 c | 7.18 a | 98.67 a | 75.12 b |
C + MSW + Pi | 7.17 a | 2.73 b | 0.13 b | 6.82 b | 98.52 a | 77.64 a |
C + MSW + Pi + BP | 6.56 b | 2.44 c | 0.13 b | 6.67 b | 98.62 a | 74.74 b |
C + MSW + B + BP | 7.16 a | 2.53 bc | 0.14 a | 6.32 c | 98.45 a | 76.23 ab |
Significance | *** | *** | *** | *** | NS | * |
Mixes 1 | Chl a | Chl b | Chl Total | Cc | TPC |
---|---|---|---|---|---|
(mg.100 g−1 FW) | (mg GAE 100 g−1 FW) | ||||
C + MSW + P | 11.92 ab 2 | 15.54 ab | 27.46 ab | 13.37 b | 69.63 a |
C + MSW + BP | 13.15 a | 16.50 a | 29.65 a | 15.28 a | 62.20 a |
C + MSW + Pi | 11.79 ab | 15.45 ab | 27.23 ab | 11.60 c | 49.05 b |
C + MSW + Pi + BP | 10.10 b | 13.85 b | 24.84 b | 9.80 d | 70.04 a |
C + MSW + B + BP | 12.55 ab | 13.53 b | 26.08 ab | 10.42 d | 45.79 b |
Significance | ** | ** | ** | ** | * |
Fresh Weight | Dry Weight | |||||
---|---|---|---|---|---|---|
Mixes1 | Shoot | Shoot | Seedling | Seedling Dry Weight | Leaf Area | Leaves |
(g/Plant) | (%) | (cm2) | (Nº) | |||
C + MSW + P | 1.96 b 2 | 0.13 b | 0.18 b | 4.65 a | 67.86 b | 6.25 a |
C + MSW + BP | 2.12 b | 0.15 b | 0.20 b | 4.75 a | 68.83 b | 6.15 a |
C + MSW + Pi | 2.38 ab | 0.15 b | 0.20 b | 4.44 a | 76.27 ab | 6.25 a |
C + MSW + Pi + BP | 2.92 a | 0.20 a | 0.27 a | 4.80 a | 92.99 a | 6.69 a |
C + MSW + B + BP | 2.49 ab | 0.16 b | 0.22 ab | 4.61 a | 81.04 ab | 6.73 a |
Significance | * | * | * | NS | * | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, T.C.; Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.; Gruda, N.S. Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings. Horticulturae 2023, 9, 105. https://doi.org/10.3390/horticulturae9010105
Martins TC, Machado RMA, Alves-Pereira I, Ferreira R, Gruda NS. Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings. Horticulturae. 2023; 9(1):105. https://doi.org/10.3390/horticulturae9010105
Chicago/Turabian StyleMartins, Tiago Carreira, Rui M. A. Machado, Isabel Alves-Pereira, Rui Ferreira, and Nazim S. Gruda. 2023. "Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings" Horticulturae 9, no. 1: 105. https://doi.org/10.3390/horticulturae9010105
APA StyleMartins, T. C., Machado, R. M. A., Alves-Pereira, I., Ferreira, R., & Gruda, N. S. (2023). Coir-Based Growing Media with Municipal Compost and Biochar and Their Impacts on Growth and Some Quality Parameters in Lettuce Seedlings. Horticulturae, 9(1), 105. https://doi.org/10.3390/horticulturae9010105