Effects of Mixes of Peat with Different Rates of Spruce, Pine Fibers, or Perlite on the Growth of Blueberry Saplings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Substrate Composition
2.2. Content of Extractable Macronutrients and Organic Carbon and Peat Decomposition in Substrates
2.3. Growth of Blueberry Saplings and Content of Extractable Macronutrients in the Leaves
2.4. Determination of Chlorophyll Fluorescence
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Different Substrate Mixess on the Growth of Blueberry Saplings
3.2. Effect of Different Substrate Mixes on the Chlorophyll Fluorescence in the Leaves of Blueberry Saplings
3.3. Effect of Different Substrate Mixes on the Content of Extractable Macronutrients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, M.; Chrysargyris, A.; McDaniel, N.; Kavanagh, A.; Gruda, N.S.; Tzortzakis, N. Plant Nutrient Availability and pH of Biochars and Their Fractions, with the Possible Use as a Component in a Growing Media. Agronomy 2020, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.S.; Fernández, J.A. Optimising Soilless Culture Systems and Alternative Growing Media to Current Used Materials. Horticulturae 2022, 8, 292. [Google Scholar] [CrossRef]
- Bohlin, C.; Holmberg, P. Peat: Dominating growing medium in Swedish horticulture. Acta Hortic. 2004, 644, 177–181. [Google Scholar] [CrossRef]
- Kern, J.; Tammeorg, P.; Shanskiy, M.; Sakrabani, R.; Knicker, H.; Kammann, C.; Tuhkanen, E.M.; Smidt, G.; Prasad, M.; Tiilikkala, K.; et al. Synergistic use of peat and charred material in growing media—An option to reduce the pressure on peatlands? J. Environ. Eng. Landsc. 2017, 25, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Woolf, D.; Amonette, J.; Street-Perrott, A.; Lehman, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fryda, L.; Visser, R.; Schmidt, J. Biochar replaces peat in horticulture: Environmental impact assessment of combined biochar & bioenergy. Detritus 2019, 5, 132–149. [Google Scholar]
- Jackson, B.E.; Wright, R.D.; Seiler, J.R. Changes in Chemical and Physical Properties of Pine Tree Substrate and Pine Bark during Long-term Nursery Crop Production. Hortscience 2009, 44, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Schmilewski, G. Growing medium constituents used in the EU. Acta Hortic. 2009, 819, 33–46. [Google Scholar] [CrossRef]
- Wang, D.; Gabriel, M.Z.; Legard, D.; Sjulin, T. Characteristics of growing media mixes and application for open-field production of strawberry (Fragaria ananassa). Sci. Hortic. 2016, 198, 294–303. [Google Scholar] [CrossRef]
- Trehane, J. Blueberries, Cranberries and Other Vacciniums; Timber Press: London, UK, 2004; pp. 121–126. [Google Scholar]
- Hoover, B.; Fuglie, D.; Miller, R. Optimal soil conditions for organic highbush blueberry growth: Assessment of early results. J. Appl. Hortic. 2014, 16, 32–39. [Google Scholar]
- Xie, Z.S.; Wu, X.C. Studies on substrates for blueberry cultivation. Acta Hortic. 2009, 810, 513–520. [Google Scholar] [CrossRef]
- Retamales, J.B.; Hancock, J.F. Blueberries; CABI: Wallingford, UK, 2012; pp. 115–121. [Google Scholar]
- Nieto, A.; Gascó, G.; Paz-Ferreiro, J.; Fernández, J.; Plaza, M.C. The effect of pruning waste and biochar addition on brown peat based growing media properties. Sci. Hortic. 2016, 199, 142–148. [Google Scholar] [CrossRef]
- Durand, S.; Jackson, B.E.; Fonteno, W.C.; Michel, J.-C. The use of wood fiber for reducing risks of hydrophobicity in peat-based substrates. Agronomy 2021, 11, 907. [Google Scholar] [CrossRef]
- Dittrich, C.; Pecenka, R.; Løes, A.K.; Cáceres, R.; Conroy, J.; Rayns, F.; Schmutz, U.; Kir, A.; Kruggel-Emden, H. Extrusion of Different Plants into Fiber for Peat Replacement in Growing Media: Adjustment of Parameters to Achieve Satisfactory Physical Fiber-Properties. Agronomy 2021, 11, 1185. [Google Scholar] [CrossRef]
- Mohareb, A.; Kherallah, I.; Badawy, M.; Salem, M.; Yousef, H. Chemical composition and activity of bark and leaf extracts of Pinus halepensis and Olea europaea grown in AL-Jabel AL-Akhdar region, Libya against some plant phytopathogens. J. Appl. Biotechnol. Bioeng. 2017, 3, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Pásztory, Z.; Mohácsiné, I.R.; Gorbacheva, G.; Börcsök, Z. The Utilization of Tree Bark. BioRes 2016, 11, 7859–7888. [Google Scholar] [CrossRef]
- Kemppainen, K.; Siika, M.; Pattathil, S.; Giovando, S.; Kruus, K. Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Ind. Crop. Prod. 2014, 52, 158–168. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Muylle, H.; De Windt, I.; Van Acker, J.; Ameloot, N.; Moreaux, K.; Coucke, P.; Debode, J. Plant fibers for renewable growing media: Potential of defibration, acidification or inoculation with biocontrol fungi to reduce the N drawdown and plant pathogens. J. Clean. Prod. 2018, 203, 1143–1154. [Google Scholar] [CrossRef]
- Samar, S.; Saxena, S. Study of chemical and physical properties of perlite and its application in India. Int. J. Sci. Technol. Manag. 2016, 5, 70–80. [Google Scholar]
- LST 1957:2022; Peats for Horticulture and Landscape Gardening—Properties, Test Methods, Specifications (in Lithuanian). Available online: https://lsd.lrv.lt/uploads/lsd/documents/files/Darbo_programa_1-dalis_2022-12-15.pdf (accessed on 5 May 2022).
- LST EN 13037:1999; Soil Improvers and Growing Media—Determination of pH. Available online: https://standards.iteh.ai/catalog/standards/cen/a127e814-60b7-42b0-80c7-453c28968d64/en-13037-2011 (accessed on 5 May 2022).
- LST EN 13652:2001; Soil Improvers and Growing Media—Extraction of Water Soluble Nutrients and Elements. Available online: https://standards.iteh.ai/catalog/standards/cen/a27867c1-a6a0-426e-b4cf-e6eaea48975d/en-13652-2001 (accessed on 22 April 2022).
- ISO 10694:1995; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). Available online: https://www.iso.org/obp/ui/#iso:std:iso:10694:en (accessed on 4 May 2022).
- Third Commission Directive 72/199/EEC of 27 April 1972 establishing Community methods of analysis for the official control of feeding stuffs. Official Journal of the European Communities 1972, 123, 75–86.
- First Commission Directive 71/250/EEC of 15 June 1971 establishing Community methods of analysis for the official control of feeding stuffs. Official Journal of the European Communities 1971, 155, 484–495.
- Second Commission Directive 71/393/EEC of 18 November 1971 establishing Community methods of analysis for the official control of feeding stuffs. Off. J. Eur. Communities 1971, 279, 7–18.
- Fourth Commission Directive 73/46/EEC of 5 Dezember 1972 establishing Community methods of analysis for the official control of feeding stuffs. Off. J. Eur. Communities 1972, 83, 4–14.
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Kim, J.K.; Shawon, M.R.A.; An, J.H.; Yun, Y.J.; Park, S.J.; Na, J.K.; Choi, K.Y. Influence of Substrate Composition and Container Size on the Growth of Tissue Culture Propagated Apple Rootstock Plants. Agronomy 2021, 11, 2450. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [Green Version]
- Björkman, O.; Deming, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef]
- Retamal-Salgado, J.; Loor, B.; Hirzel, J.; López, M.D.; Undurraga, P.; Zapata, N.; Vergara-Retamales, R.; Olivares-Soto, H. Chlorophyll Fluorescence and Fruit Quality Response of Blueberry to Different Mulches. Agronomy 2022, 12, 1702. [Google Scholar] [CrossRef]
- Janušauskaite, D.; Feiziene, D. Chlorophyll fluorescence characteristics throughout spring triticale development stages as affected by fertilization. Acta Agr. Scan. Sect. B—Soil Plant Sci. 2012, 62, 7–15. [Google Scholar] [CrossRef]
- Klepeckas, M.; Januškaitienė, I. Changes in Triticum aestivum and Hordeum vulgare chlorophyll content and fluorescence parameters under impact of various sapropel concentrations. Biologija 2016, 62, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Gliožeris, S.; Tamošiūnas, A.; Štuopytė, L. Effect of some growth regulators on chlorophyll fluorescence in Viola × wittrockiana ‘Wesel Ice’. Biologija 2007, 53, 24–27. [Google Scholar]
- Jiang, Y.; Zeng, Q.; Wei, J.; Jiang, J.; Li, Y.; Chen, J.; Yu, H. Growth, Fruit Yield, Photosynthetic Characteristics, and Leaf Microelement Concentration of Two Blueberry Cultivars under different Long-Term Soil pH Treatments. Agronomy 2019, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Ochmian, I.; Grajkowski, J.; Mikiciuk, K.G.; Ostrowska, P. Chelpinski Mineral composition of high blueberry leaves and fruits depending on substrate type used for cultivation. J. Elementol. 2009, 14, 509–516. [Google Scholar] [CrossRef]
- Hanson, E.J.; Hancock, F.J. Managing the Nutrition of Highbush Blueberries. Bulletin E-2011; Michigan State University Extention: East Lansing, MI, USA, 1996. [Google Scholar]
- Hart, J.; Strik, B.; White, L.; Yang, W. Nutrient Management for Blueberries in Oregon; Publication No. EM 8918; Oregon State University Extension Service: Corvallis, OR, USA, 2006. [Google Scholar]
- Fuqua, B.; Byers, P.; Kaps, M.; Kovacs, L.; Wadstein, D. Growing Blueberries in Missouri. Bulletin No. 44; State Fruit Experiment Station, Missouri State University Missouri: Mountain Grove, MO, USA, 2005. [Google Scholar]
- Glonek, J.; Komosa, A. The effect of fertigation on the nutrient status and yield of highbush blueberry cv. “Bluecrop”. Acta Hortic. 2006, 715, 371–374. [Google Scholar] [CrossRef]
- Gruda, N.; Tucher, S.V.; Schnitzler, W.H. N-immobilization of wood fiber substrates in the production of tomato transplants (Lycopersicon lycopersicum (L.) Karst. Ex. Farw.). J. Appl. Bot. 2000, 74, 32–37. [Google Scholar]
- Dibar, D.T.; Zhang, K.; Yuan, S.; Zhang, J.; Zhou, Z.; Ye, X. Ecological stoichiometric characteristics of Carbon (C), Nitrogen (N) and Phosphorus (P) in leaf, root, stem, and soil in four wetland plants communities in Shengjin Lake, China. PLoS ONE 2020, 15, e0230089. [Google Scholar] [CrossRef]
- Xia, C.X.; Yu, D.; Wang, Z.; Xie, D. Stoichiometry patterns of leaf carbon, nitrogen, and phosphorous in aquatic macrophytes in eastern China. Ecol. Eng. 2014, 70, 406–413. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–223. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.; Rau, B.J.; Wright, R.D. Laboratory Bioassay and Greenhouse Evaluation of a Pine Tree Substrate Used as a Container Substrate. Eur. J. Hortic. Sci. 2009, 74, 73–78. [Google Scholar]
- Wrigth, R.D.; Rowder, R.F. Chipped pine logs: A potential substrate for greenhouse and nursery crops. HortScience 2005, 40, 1513–1515. [Google Scholar]
- Gruda, N. Do soilless culture systems have an influence on product quality of vegetables? J. Appl. Bot. 2009, 82, 141–147. [Google Scholar]
- Gruda, N.S. Advances in Soilless Culture and Growing Media in Today’s Horticulture—An Editorial. Agronomy 2022, 12, 2773. [Google Scholar] [CrossRef]
Substrate | Substrate Variant | Perlite (%, v/v) | Peat (%, v/v) | Fiber (%, v/v) |
---|---|---|---|---|
Peat + fiber of pine wood | 1 | 0 | 85 | 15 |
2 | 0 | 70 | 30 | |
3 | 0 | 55 | 45 | |
Peat + fiber of spruce wood | 1 | 0 | 85 | 15 |
2 | 0 | 70 | 30 | |
3 | 0 | 55 | 45 | |
Peat + fiber of pine bark | 1 | 0 | 85 | 15 |
2 | 0 | 70 | 30 | |
3 | 0 | 55 | 45 | |
Peat + fiber of spruce bark | 1 | 0 | 85 | 15 |
2 | 0 | 70 | 30 | |
3 | 0 | 55 | 45 | |
Peat + perlite | 1 | 15 | 85 | 0 |
2 | 30 | 70 | 0 | |
3 | 45 | 55 | 0 |
Substrate | Substrate Variant | * pH | ** N-NO3 +N-NH4, mg L−1 | ** P, mg L−1 | *** K, mg L−1 | ** Ca, mg L−1 | Organic carbon, % | Degree of Peat Decomposition, % |
---|---|---|---|---|---|---|---|---|
Peat + fiber of pine wood | 1 | 4.9 | 2.4 | 0.45 | 4.0 | 15.2 | 39.27 | 33.1 |
2 | 4.5 | 1.2 | 0.4 | 5.2 | 11.3 | 37.83 | 32.3 | |
3 | 4.9 | 0.6 | 0.48 | 6,2 | 11.0 | 38.17 | 29.1 | |
Peat + fiber of spruce wood | 1 | 4.5 | 3.9 | 0.48 | 3.0 | 9.1 | 37.76 | 34.7 |
2 | 4.7 | 1.3 | 0.52 | 4,0 | 9.3 | 40.39 | 34.4 | |
3 | 4.9 | 0.7 | 0.39 | 6,0 | 10.0 | 39.89 | 29.3 | |
Peat + fiber of pine bark | 1 | 4.5 | 1.0 | 0.61 | 8.3 | 12.1 | 37.30 | 35.4 |
2 | 4.9 | 0.7 | 0.51 | 13.2 | 13.3 | 41.66 | 36.5 | |
3 | 4.6 | 0.8 | 0.64 | 19.5 | 19.3 | 38.64 | 34.2 | |
Peat + fiber of spruce bark | 1 | 4.5 | 1.5 | 0.23 | 9.2 | 9.0 | 39.50 | 34.5 |
2 | 4.7 | 0.9 | 0.31 | 21.6 | 21.5 | 38.71 | 32.8 | |
3 | 4.9 | 0.7 | 0.4 | 38.1 | 38.3 | 38.86 | 34.7 | |
Peat + perlite | 1 | 4.9 | 3.3 | 0.15 | 2.0 | 22.2 | 37.30 | 35.4 |
2 | 5.1 | 2.0 | 0.41 | 2.1 | 2.1 | 29.89 | 37.4 | |
3 | 5.4 | 1.7 | 0.16 | 2.0 | 2.4 | 27.54 | 38.8 |
Substrates | Height, cm | ||
---|---|---|---|
1 * | 2 * | 3 * | |
Peat + fiber of pine wood | 44.26 ± 10.45 ab | 48.09 ± 7.69 a | 47.41 ± 8.50 a |
Peat + fiber of spruce wood | 52.59 ± 8.28 a | 44.02 ± 8.29 b | 40.57 ± 5.52 b |
Peat + fiber of pine bark | 44.31 ± 6.95 a | 31.48 ± 9.41 b | 27.74 ± 5.32 c |
Peat + fiber of spruce bark | 38.51 ± 4.59 a | 26.97 ± 7.98 b | 19.90 ± 3.28 c |
Peat + perlite | 44.95 ± 9.54 ab | 46.51 ± 7.62 ab | 50.41 ± 8.41 a |
Substrates | Leaf Weight, g/Plant | ||
---|---|---|---|
1 * | 2 * | 3 * | |
Peat + fiber of pine wood | 14.55 ± 2.29 ab | 13.26 ± 2.67 a | 13.08 ± 2.55 a |
Peat + fiber of spruce wood | 16.41 ± 3.14 a | 13.70 ± 1.71 a | 9.31 ± 2.89 b |
Peat + fiber of pine bark | 13.43 ± 2.00 a | 4.17 ± 1.93 b | 3.03 ± 1.45 b |
Peat + fiber of spruce bark | 7.05 ± 3.11 a | 3.33 ± 1.44 b | 1.07 ± 0.35 cd |
Peat + perlite | 13.78 ± 3.09 ab | 13.50 ± 2.25 ab | 14.63 ± 2.52 a |
Substrates | Fv/Fm | ||
---|---|---|---|
1 * | 2 * | 3 * | |
Peat + fiber of pine wood | 0.784 ± 0.020 a | 0.779 ± 0.021 a | 0.759 ± 0.035 ab |
Peat + fiber of spruce wood | 0.778 ± 0.024 a | 0.797 ± 0.010 a | 0.791 ± 0.022 a |
Peat + fiber of pine bark | 0.774 ± 0.033 a | 0.771 ± 0.018 a | 0.711 ± 0.085 ab |
Peat + fiber of spruce bark | 0.689 ± 0.090 ab | 0.738 ± 0.014 a | 0.711 ± 0.039 ab |
Peat + perlite | 0.760 ± 0.044 ab | 0.773 ± 0.018 a | 0.758 ± 0.032 ab |
Substrates | Substrate Variant | N, % | P % | K, % | Ca, % | Mg, % | Organic C, % | N:P |
---|---|---|---|---|---|---|---|---|
Peat + fiber of pine wood | 1 | 1.98 ± 0.11 a | 0.16 ± 0.02 b | 0.65 ± 0.02 b | 0.98 ± 0.01 b | 0.25 ± 0.01 cd | 39.01 ± 2.03 c | 12.37 |
2 | 1.64 ± 0.10 c | 0.14 ± 0.02 c | 0.55 ± 0.03 c | 1.01 ± 0.04 a | 0.26 ± 0.01 c | 36.59 ± 3.02 cd | 11.71 | |
3 | 1.49 ± 0.11 cd | 0.14 ± 0.02 c | 0.58 ± 0.03 c | 1.00 ± 0.09 a | 0.25 ± 0.01 cd | 39.07 ± 3.56 c | 10.64 | |
Peat + fiber of spruce wood | 1 | 1.92 ± 0.09 a | 0.17 ± 0.02 b | 0.59 ± 0.01 c | 0.91± 0.05 bc | 0.25 ± 0.02 cd | 41.44 ± 3.11 b | 11.29 |
2 | 1.56 ± 0.10 c | 0.15 ± 0.01 bc | 0.58 ± 0.04 c | 1.00 ± 0.03 a | 0.26 ± 0.03 c | 28.41 ± 1.25 e | 10.44 | |
3 | 1.3 ± 0.06 d | 0.12 ± 0.02 d | 0.56 ± 0.03 c | 0.95 ± 0.01 b | 0.25 ± 0.02 cd | 40.22 ± 2.96 b | 10.8 | |
Peat + fiber of pine bark | 1 | 1.43 ± 0.04 cd | 0.12 ± 0.02 d | 0.58 ± 0.02 c | 0.88 ± 0.01 d | 0.25 ± 0.01 cd | 36.0 ± 2.35 cd | 12.03 |
2 | 1.15 ± 0.05 e | 0.12 ± 0.01 d | 0.72 ± 0.03 b | 0.91 ± 0.05 bc | 0.31± 0.02 b | 35.81 ± 3.08 cd | 11.07 | |
3 | 1.13 ± 0.04 e | 0.11 ± 0.01 d | 0.61 ± 0.03 bc | 0.93 ± 0.03 bc | 0.28 ± 0.01 c | 33.04 ± 2.85 d | 10.27 | |
Peat + fiber of spruce bark | 1 | 1.21 ± 0.02 d | 0.12 ± 0.03 d | 0.64 ± 0.02 b | 0.88 ± 0.01 d | 0.25 ± 0.01 cd | 41.40 ± 3.74 b | 10.08 |
2 | 1.09 ± 0.02 e | 0.14 ± 0.02 c | 0.88 ± 0.02 b | 0.90 ± 0.01 bc | 0.28 ± 0.03 c | 41.06 ± 3.96 b | 7.79 | |
3 | 0.78 ± 0.01 f | 0.22 ± 0.03 a | 1.75 ± 0.03 a | 0.84 ± 0.02 d | 0.37 ± 0.02 a | 46.83 ± 2.87 a | 3.55 | |
Peat + perlite | 1 | 1.82 ± 0.11 b | 0.16 ± 0.01 b | 0.57 ± 0.01 c | 0.84 ± 0.01 d | 0.24 ± 0.01 d | 38.38 ± 3.01 cd | 11.38 |
2 | 1.98 ± 0.09 a | 0.16 ± 0.01 b | 0.50 ± 0.02 d | 0.83 ± 0.01 d | 0.22 ± 0.01 e | 37.74 ± 3.25 cd | 12.38 | |
3 | 1.64 ± 0.09 c | 0.12 ± 0.02 d | 0.49 ± 0.01 d | 0.83 ± 0.02 d | 0.22 ± 0.02 e | 39.07 ± 2.56 c | 13.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Česonienė, L.; Krikštolaitis, R.; Daubaras, R.; Mažeika, R. Effects of Mixes of Peat with Different Rates of Spruce, Pine Fibers, or Perlite on the Growth of Blueberry Saplings. Horticulturae 2023, 9, 151. https://doi.org/10.3390/horticulturae9020151
Česonienė L, Krikštolaitis R, Daubaras R, Mažeika R. Effects of Mixes of Peat with Different Rates of Spruce, Pine Fibers, or Perlite on the Growth of Blueberry Saplings. Horticulturae. 2023; 9(2):151. https://doi.org/10.3390/horticulturae9020151
Chicago/Turabian StyleČesonienė, Laima, Ričardas Krikštolaitis, Remigijus Daubaras, and Romas Mažeika. 2023. "Effects of Mixes of Peat with Different Rates of Spruce, Pine Fibers, or Perlite on the Growth of Blueberry Saplings" Horticulturae 9, no. 2: 151. https://doi.org/10.3390/horticulturae9020151
APA StyleČesonienė, L., Krikštolaitis, R., Daubaras, R., & Mažeika, R. (2023). Effects of Mixes of Peat with Different Rates of Spruce, Pine Fibers, or Perlite on the Growth of Blueberry Saplings. Horticulturae, 9(2), 151. https://doi.org/10.3390/horticulturae9020151