Modifying Walk-In Tunnels through Solar Energy, Fogging, and Evaporative Cooling to Mitigate Heat Stress on Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimental Description
2.2. Treatments
- I.
- Open-field planting (OF).
- II.
- Net house (NH).
- III.
- Fogging under the net house (NF). The system was adjusted to work from 10 p.m. to 4 p.m. for 10 min/h at a rate of 6 S/36 S to lower the energy consumption.
- IV.
- Evaporative cooling system under the plastic house (EP).
2.3. Microclimate Data
2.4. Physiological and Biochemical Measurements
2.4.1. Plant Leaf Area
2.4.2. The Relative Water Content (RWC)
2.4.3. Membrane Permeability (MP)
2.4.4. Relative Chlorophyll Content
2.4.5. Proline Content
2.4.6. Flowering and Fruit Set
2.5. Fruit Yield and Quality Parameters
- Cracking: radial or concentric cracking.
- Sunscald: yellow, sunken areas.
- Blossom-end rot (BER): water-soaked areas at or near the blossom end.
- Puffiness: flat-sided, puffy and/or inside cavities lacking seed gel.
- Internal white tissue (IWT): internal white, hard areas in the outer walls and/or in the cross-wall, without outer symptoms.
- Blotchy ripening: outer uneven ripening or yellow shoulders.
- Cat face shape: brown deep cavities at the blossom end.
2.6. Statistical Analyses
3. Results
3.1. Microclimate Data
3.2. Physiological and Biochemical Characteristics
3.3. Flowering and Fruit Yield
3.4. Fruit Yield
4. Discussion
5. Conclusions
- -
- A solar energy system, which can be used in arid dry regions, successfully operated the cooling systems under the modified walk-in tunnels via fogging and evaporative cooling.
- -
- The studied cooling techniques effectively improved the microclimate conditions by significantly reducing the average monthly maximum temperatures by 2.5 °C with the uncooled net tunnel, 5.6 °C with fogging under the net tunnel and 9.4 °C with evaporative cooling under the plastic tunnel. Moreover, evaporative cooling kept the temperature around 25 °C.
- -
- The tunnels with evaporative cooling and fogging systems significantly improved plant leaf area, water relative content, chlorophyll, membrane functions and proline content compared to the uncooled net tunnel. Moreover, better pollination and fertilisation functions with high fruit set were gained. In constrast, unprotected cultivation had the worst values.
- -
- The percentage of marketable fruit yield increased by around 31.5% with evaporative cooling, 28.8% with the fogging system and 17% with the shaded net tunnel with no positive cooling as compared to an open field. Moreover, the physiological disease percentage decreased by 19.4, 17.3 and 12.4%, respectively.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassanien, R.H.E.; Li, M.; Dong Lin, W. Advanced applications of solar energy in agricultural greenhouses. Renew. Sustain. Energy Rev. 2016, 54, 989–1001. [Google Scholar] [CrossRef]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.K.; Rogelj, J. Climate Change 2021: The Physical science basis contribution of working group14 I to the sixth assessment report of the intergovernmental panel on climate change; technical summary. Tech. Summ. 2021, 33–144. [Google Scholar] [CrossRef]
- Al-Ghussain, L. Global warming: Review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2018, 38, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Alessandri, A.; De Felice, M.; Zeng, N.; Mariotti, A.; Pan, Y.; Cherchi, A.; Lee, J.-Y.; Wang, B.; Ha, K.-J.; Ruti, P. Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci. Rep. 2014, 4, 7211. [Google Scholar] [CrossRef] [Green Version]
- Mahato, A. Climate change and its impact on agriculture. Int. J. Sci. Res. Publ. 2014, 4, 1–6. [Google Scholar]
- Islam, M.T. Effect of temperature on photosynthesis, yield attributes and yield of tomato genotypes. Int. J. Expt. Agric. 2011, 2, 8–11. [Google Scholar]
- Harel, D.; Fadida, H.; Slepoy, A.; Gantz, S.; Shilo, K. The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy 2014, 4, 167–177. [Google Scholar] [CrossRef]
- El-Aidy, F.A.; Sharaf-Eldin, M.A. Modifying microclimatic conditions in plastic walk-in tunnels through solar energy system for improving yield and quality of four sweet pepper hybrids. Plasticulture 2015, 134, 6–22. [Google Scholar]
- El-Tantawy, E.M.; El-Shatoury, R.S. Improving Tomato Productivity under High Temperature Conditions. Hortscience J. Suez Canal Univ. 2017, 6, 15–29. [Google Scholar]
- Kafizadeh, N.; Carapetian, J.; Khosrow, K. Effects of heat stress on pollen viability and pollen tube growth in pepper. Res. J. Biol. Sci. 2008, 3, 1159–1162. [Google Scholar]
- Hu, W.H.; Xiao, Y.A.; Zeng, J.J.; Hu, X.H. Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. Biol. Plant. 2010, 54, 761–765. [Google Scholar] [CrossRef]
- Zhou, R.; Kjaer, K.H.; Rosenqvist, E.; Yu, X.; Wu, Z.; Ottosen, C.-O. Physiological Response to Heat Stress During Seedling and Anthesis Stage in Tomato Genotypes Differing in Heat Tolerance. J. Agron. Crop Sci. 2016, 203, 68–80. [Google Scholar] [CrossRef]
- Milenkovic, L.; Ilic, Z.S.; Sunic, L.; Trajkovic, R.; Kapoulas, N.; Durovka, M. Reducing of tomato physiological disorders by photoselective shade nets. In Proceedings of the 47th Croatian and 7th International Symposium on Agriculture, Opatija, Croatia, 13–17 February 2012; Volume 419, p. 423. [Google Scholar]
- Shehata, S.; Elsagheer, A.A.; El-Helaly, M.A.; Saleh, S.A.; Abdallah, A.M. Shading effect on vegetative and fruit characters of tomato plant. J. Appl. Sci. Res. 2013, 9, 1434–1437. [Google Scholar]
- Yohannes, H. A Review on Relationship between Climate Change and Agriculture. J. Earth Sci. Clim. Chang. 2015, 7, 335. [Google Scholar]
- Liao, P.A.; Liu, J.Y.; Sun, L.C.; Chang, H.H. Can the Adoption of Protected Cultivation Facilities Affect Farm Sustainability? Sustainability 2020, 12, 9970. [Google Scholar] [CrossRef]
- Magray, M.M.; Wani, K.P.; Chatto, M.A.; Ummyiah, H.M. Synthetic Seed Technology. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 662–674. [Google Scholar] [CrossRef]
- Rahman, M.S.; Acharjee, D.C. Impact of off-season summer tomato cultivation on income and food security of the growers. In Agricultural Economics; IntechOpen: London, UK, 2020; pp. 1–11. [Google Scholar]
- KC, D.; Jamarkattel, D.; Maraseni, T.; Nandwani, D.; Karki, P. The Effects of tunnel technology on crop productivity and livelihood of smallholder farmers in Nepal. Sustainability 2021, 13, 7935. [Google Scholar] [CrossRef]
- Janke, R.R.; Altamimi, M.E.; Khan, M. The use of high tunnels to produce fruit and vegetable crops in North America. Agric. Sci. 2017, 8, 692–715. [Google Scholar] [CrossRef] [Green Version]
- Zaki, M.S.; AboaSedera, F.A.; Badr, L.A.; Sadek, I.I.; El-Sawy, A.M. Effect of some climatic factors and irrigation regimes on tomato growth and chemical constituents. Ann. Agric. Sci. Moshtohor 2014, 52, 1–9. [Google Scholar]
- Statuto, D.; Abdel-Ghany, A.M.; Starace, G.; Arrigoni, P.; Picuno, P. Comparison of the efficiency of plastic nets for shading greenhouse in different climates. In Proceedings of the International Mid-Term Conference of the Italian Association of Agricultural Engineering, 12–13 September 2019; Springer: Cham, Switzerland, 2019; pp. 287–294. [Google Scholar]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Alzahrani, S.M.; Alsadon, A.A.; Ali, I.M.; Elleithy, R.M. Covering materials incorporating radiation-preventing techniques to meet greenhouse cooling challenges in arid regions: A review. Sci. World J. 2012, 2012, 906360. [Google Scholar] [CrossRef]
- Puglisi, R.; Statuto, D.; Picuno, P. Effects of greenhouse lime shading on filtering the solar radiation. In Proceedings of the 48th Symposium “Actual Tasks on Agricultural Engineering”, Zagreb, Croatia, 2–4 March 2021. [Google Scholar]
- Kittas, C.; Karamanis, M.; Katsoulas, N. Air temperature regime in a forced ventilated greenhouse with rose crop. Energy Build. 2005, 37, 807–812. [Google Scholar] [CrossRef]
- Al-Helal, I.M. Effects of ventilation rate on the environment of a fan-pad evaporatively cooled, shaded greenhouse in extreme arid climates. Appl. Eng. Agric. 2007, 23, 221–230. [Google Scholar] [CrossRef]
- Arbel, A.; Barak, M.; Shklyar, A. Combination of forced ventilation and fogging systems for cooling greenhouses. Biosyst. Eng. 2003, 84, 45–55. [Google Scholar] [CrossRef]
- El-Bassiony, A.M.; Ghoname, A.A.; El-Awadi, M.E.; Fawzy, Z.F.; Gruda, N. Ameliorative effects of brassinosteroids on growth and productivity of snap beans grown under high temperature. Gesunde Pflanz. 2012, 64, 175–182. [Google Scholar] [CrossRef]
- Formisano, L.; Ciriello, M.; El-Nakhel, C.; Poledica, M.; Starace, G.; Graziani, G.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Pearl grey shading net boosts the accumulation of total carotenoids and phenolic compounds that Accentuate the antioxidant activity of processing tomato. Antioxidants 2021, 10, 1999. [Google Scholar] [CrossRef]
- Merabti, L.; Abbas, M.; Taane, W. Applicability of Solar Evaporative Cooling in Greenhouses productivity Improvement. In Proceedings of the 7th International Renewable and Sustainable Energy Conference (IRSEC), Agadir, Morocco, 27–30 November 2019. [Google Scholar]
- Montero, J.I. Evaporative cooling greenhouse: Effect on microclimate, water use efficiency and plant respons. Acta Hortic. 2006, 719, 373–384. [Google Scholar] [CrossRef]
- Baudoin, W.; Nono-Womdim, R.; Lutaladio, N.; Hodder, A.; Castilla, N.; Leonardi, C.; De Pascale, S.; Qaryouti, M.; Duffy, R. Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; FAO: Rome, Italy, 2013; ISBN 9251076499. [Google Scholar]
- Leyva, R.; Constán-Aguilar, C.; Blasco, B.; Sánchez-Rodríguez, E.; Romero, L.; Soriano, T.; Ruíz, J.M. Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse. J. Sci. Food Agric. 2013, 94, 63–70. [Google Scholar] [CrossRef]
- Anjum, S.A.; Farooq, M.; Xie, X.; Liu, X.; Ijaz, M.F. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci. Hortic. 2012, 140, 66–73. [Google Scholar] [CrossRef]
- Valentovič, P.; Luxová, M.; Kolarovič, L.; Gašparíková, O. Effect of osmotic stress on compatible solutes content, membrane stability and water relationsin two maize cultivars. Plant Soil Environ. 2011, 52, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Coste, S.; Baraloto, C.; Leroy, C.; Marcon, É.; Renaud, A.; Richardson, A.D.; Roggy, J.-C.; Schimann, H.; Uddling, J.; Hérault, B. Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: A calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann. For. Sci. 2010, 67, 607. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Sethi, V.P.; Sharma, S.K. Survey of cooling technologies for worldwide agricultural greenhouse applications. Sol. Energy 2007, 81, 1447–1459. [Google Scholar] [CrossRef]
- Ganguly, A.; Ghosh, S. Modeling and analysis of a fan–pad ventilated floricultural greenhouse. Energy Build. 2007, 39, 1092–1097. [Google Scholar] [CrossRef]
- Al-Helal, I.M.; Abdel-Ghany, A.M. Energy partition and conversion of solar and thermal radiation into sensible and latent heat in a greenhouse under arid conditions. Energy Build. 2011, 43, 1740–1747. [Google Scholar] [CrossRef]
- Handarto, H.; Hayashi, M.; Kozai, T. Air and leaf temperatures and relative humidity in a naturally ventilated single-span greenhouse with a fogging system for cooling and its evaporative cooling efficiency. Environ. Control Biol. 2005, 43, 3–11. [Google Scholar] [CrossRef]
- Ayenan, M.A.T.; Danquah, A.; Hanson, P.; Ampomah-Dwamena, C.; Sodedji, F.A.K.; Asante, I.K.; Danquah, E.Y. Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy 2019, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Gull, S.; Ali, M.M.; Yousef, A.F.; Ercisli, S.; Kalaji, H.M.; Telesiński, A.; Auriga, A.; Wróbel, J.; Radwan, N.S.; et al. Heat stress mitigation in tomato (Solanum lycopersicum L.) through foliar application of gibberellic acid. Sci. Rep. 2022, 12, 11324. [Google Scholar] [CrossRef]
- Gent, M.P.N.; Seginer, I.D.O. A carbohydrate supply and demand model of vegetative growth: Response to temperature and light. Plant Cell Environ. 2012, 35, 1274–1286. [Google Scholar] [CrossRef]
- Masabni, J.; Sun, Y.; Niu, G.; Del Valle, P. Shade effect on growth and productivity of tomato and chili pepper. Horttechnology 2016, 26, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Hlaváčová, M.; Klem, K.; Rapantová, B.; Novotná, K.; Urban, O.; Hlavinka, P.; Smutná, P.; Horáková, V.; Škarpa, P.; Pohanková, E.; et al. Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field Crop. Res. 2018, 221, 182–195. [Google Scholar] [CrossRef]
- Zhang, J.H.; Huang, W.-D.; Liu, Y.P.; Pan, Q.H. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J. Integr. Plant Biol. 2005, 47, 959–970. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavi Kishor, P.B.; Sangam, S.; Amrutha, R.N.; Sri Laxmi, P.; Naidu, K.R.; Rao, K.R.S.S.; Rao, S.; Reddy, K.J.; Theriappan, P.; Sreenivasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 2005, 88, 424–438. [Google Scholar]
- Desoky, E.-S.M.; Mansour, E.; Yasin, M.A.T.; El-Sobky, E.-S.E.A.; Rady, M.M. Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span. J. Agric. Res. 2020, 18, e0802. [Google Scholar] [CrossRef]
- Sharaf-Eldin, M.A. Mitigation heat stress on tomato plant by shading and fogging system: Influence microclimate, fruit set, yield and physiological disorders. Egypt. J. Hortic. 2015, 42, 865–881. [Google Scholar]
- Romero-Aranda, R.; Soria, T.; Cuartero, J. Greenhouse mist improves yield of tomato plants grown under saline conditions. J. Am. Soc. Hortic. Sci. 2002, 127, 644–648. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.H.; Xu, Q.; Zhu, X.D.; Qian, Q.; Xue, H.W. Shallot-like1 is a KanadiA transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell 2009, 21, 719–735. [Google Scholar] [CrossRef] [Green Version]
- Faisal, S.; Guo, Y.; Du, C.; Zhang, D.; Lv, J.; Channa, S.A.; Qu, G.; Hu, S. Morphological, physiological and genetic analysesof an upward-curling leaf mutant in Brassica napus L. Acta Physiol. Plant. 2020, 42, 46. [Google Scholar] [CrossRef]
- Fernández-Muñoz, R.; Cuartero, J. Effect of temperature and irradiance on stigma exsertion, ovule viability and embryo development in tomato. J. Hortic. Sci. 1991, 66, 395–401. [Google Scholar] [CrossRef]
- Sato, S.; Kamiyama, M.; Iwata, T.; Makita, N.; Furukawa, H.; Ikeda, H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot. 2006, 97, 731–738. [Google Scholar] [CrossRef]
- Farinon, B.; Picarella, M.E.; Mazzucato, A. Dynamics of fertility-related traits in tomato landraces under mild and severe heat stress. Plants 2022, 11, 881. [Google Scholar] [CrossRef] [PubMed]
- Riccini, A.; Picarella, M.E.; De Angelis, F.; Mazzucato, A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. Plant Mol. Biol. 2020, 105, 263–285. [Google Scholar] [CrossRef] [PubMed]
- Levitt, J. Responses of Plants to Environmental Stresses. In Water, Radiation, Salt, and Other Stresses; Academic Press: Cambridge, MA, USA, 1980; Volume 2, ISBN 0124455026. [Google Scholar]
- Picken, A.J.F. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). J. Hortic. Sci. 1984, 59, 1–13. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Pham, D.; Ezura, H.; Schafleitner, R.; Nakashima, K. Genetic and molecular mechanisms conferring heat stress tolerance in tomato plants. Front. Plant Sci. 2021, 12, 786688. [Google Scholar] [CrossRef] [PubMed]
- Ozores-Hampton, M.; Kiran, F.; McAvoy, G. Blossom drop, reduced fruit set, and post-pollination disorders in tomato. EDIS 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Pressman, E.; Shaked, R.; Firon, N. Tomato (Lycopersicon esculentum) response to heat stress: Focus on pollen grains. Plant Stress 2007, 1, 216–227. [Google Scholar]
- Hanson, P.M.; Chen, J.; Kuo, G. Gene action and heritability of high-temperature fruit set in tomato line CL5915. HortScience 2002, 37, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Serrani, J.C.; Ruiz-Rivero, O.; Fos, M.; García-Martínez, J.L. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J. 2008, 56, 922–934. [Google Scholar] [CrossRef] [Green Version]
- Guner, U.; Akbas, B.; Oksal, D.; Degirmenci, K. Abiotic diseases of tomato plants (Lycopersicum esculentum L.) in Ankara and Eskişehir Provinces. Acta Hortic. 2009, 808, 423–430. [Google Scholar] [CrossRef]
- Masarirambi, M.T.; Chingwara, V.; Shongwe, V.D. The effect of irrigation on synchronization of coffee (Coffea arabica L.) flowering and berry ripening at Chipinge, Zimbabwe. Phys. Chem. Earth Parts A/B/C 2009, 34, 786–789. [Google Scholar] [CrossRef]
- Gazquez, J.C.; Lopez, J.C.; Baeza, E.; Saez, M.; Sanchez-Guerrero, M.C.; Medrano, E.; Lorenzo, P. Yield response of a sweet pepper crop to different methods of greenhouse coolin. Acta Hortic. 2006, 719, 507–514. [Google Scholar] [CrossRef]
- Holder, R.; Cockshull, K.E. Effects of humidity on the growth and yield of glasshouse tomatoes. J. Hortic. Sci. 1990, 65, 31–39. [Google Scholar] [CrossRef]
- Moreno-Teruel, M.Á.; Molina-Aiz, F.D.; López-Martínez, A.; Marín-Membrive, P.; Peña-Fernández, A.; Valera-Martínez, D.L. The Influence of different cooling systems on the microclimate, photosynthetic activity and yield of a tomato crops (Lycopersicum esculentum Mill.) in Mediterranean greenhouses. Agronomy 2022, 12, 524. [Google Scholar] [CrossRef]
Treatment # | Plant Leaf Area (m2) | Relative Water Content (%) | Membrane Permeability (%) | Chlorophyll (SPAD) | Proline Content (μmol g−1) |
---|---|---|---|---|---|
2020 season | |||||
Open field (OF) | 7.02 ± 0.16 d | 41.70 ± 0.25 d | 15.62 ± 0.22 a | 45.24 ± 0.04 d | 0.72 ± 0.02 d |
Net house (NH) | 8.16 ± 0.75 c | 53.20 ± 0.47 c | 13.34 ± 0.17 b | 46.19 ± 0.08 c | 0.87 ± 0.03 c |
NF | 13.57 ± 0.43 b | 62.99 ± 0.73 b | 11.45 ± 0.06 c | 47.29 ± 0.08 b | 1.31 ± 0.05 b |
EP | 15.71 ± 0.19 a | 69.65 ± 0.17 a | 10.08 ± 0.06 d | 49.02 ± 0.43 a | 1.46 ± 0.02 a |
2021 season | |||||
Open field (OF) | 7.43 ± 0.19 d | 41.15 ± 0.42 d | 14.28 ± 0.04 a | 44.74 ± 0.07 d | 0.63 ± 0.01 d |
Net house (NH) | 8.45 ± 0.09 c | 49.94 ± 0.03 c | 13.69 ± 0.79 a | 46.66 ± 0.09 c | 0.75 ± 0.02 c |
NF | 14.20 ± 0.36 b | 56.94 ± 0.81 b | 11.41 ± 0.16 b | 47.49 ± 0.17 b | 0.85 ± 0.03 b |
EP | 15.96 ± 0.12 a | 66.25 ± 0.59 a | 10.04 ± 0.10 c | 48.43 ± 0.23 a | 1.36 ± 0.03 a |
Treatment # | Fruit Set % | Average Fruit Weight (g) | Marketable Yield | Disorder Fruits |
---|---|---|---|---|
As Percentage of the Total Yield | ||||
2020 season | ||||
Open field (OF) | 51.0 ± 0.52 d | 71.6 ± 0.94 c | 55.7 ± 1.19 c | 25.0 ± 0.82 a |
Net house (NH) | 69.2 ± 0.43 c | 77.2 ± 1.07 b | 72.7 ± 0.72 b | 12.7 ± 0.27 b |
NF | 80.7 ± 0.76 b | 84.7 ± 0.56 a | 85.0 ± 0.98 a | 8.0 ± 0.19 c |
EP | 84.9 ± 1.63 a | 87.6 ± 1.28 a | 86.9 ± 0.52 a | 6.0 ± 0.33 d |
2021 season | ||||
Open field (OF) | 51.9 ± 0.14 d | 72.3 ± 0.49 c | 55.4 ± 0.38 d | 24.7 ± 0.19 a |
Net house (NH) | 69.0 ± 0.55 c | 78.1 ± 0.49 b | 72.8 ± 0.61 c | 12.2 ± 0.32 b |
NF | 83.7 ± 1.09 b | 86.8 ± 0.86 a | 83.7 ± 1.77 b | 7.1 ± 0.26 c |
EP | 85.4 ± 1.48 a | 89.1 ± 1.19 a | 87.0 ± 0.73 a | 5.1 ± 0.06 d |
Treatment # | Cracking | Sunscald | BER * | Puffiness | IWT ^ | Blotchy | Cat Face |
---|---|---|---|---|---|---|---|
2020 season | |||||||
Open field (OF) | 3.20 ± 0.06 a | 8.47 ± 0.46 a | 6.33 ± 0.06 a | 1.58 ± 0.20 a | 3.26 ± 0.04 a | 1.17 ± 0.02 a | 1.00 ± 0.01 a |
Net house (NH) | 1.68 ± 0.13 b | 1.43 ± 0.04 b | 4.11 ± 0.05 b | 1.11 ± 0.01 b | 2.31 ± 0.01 b | 1.03 ± 0.03 b | 1.00 ± 0.01 a |
NF | 0.78 ± 0.02 c | 0.00 ± 0.00 c | 2.20 ± 0.05 c | 1.10 ± 0.01 b | 1.88 ± 0.08 c | 0.81 ± 0.03 c | 1.02 ± 0.01 a |
EP | 0.49 ± 0.15 c | 0.00 ± 0.00 c | 1.94 ± 0.03 d | 1.00 ± 0.03 b | 0.81 ± 0.09 d | 0.71 ± 0.06 d | 0.92 ± 0.03 a |
2021 season | |||||||
Open field (OF) | 2.65 ± 0.08 a | 10.96 ± 0.03 a | 3.27 ± 0.20 a | 1.78 ± 0.23 a | 2.64 ± 0.14 a | 2.99 ± 0.09 a | 1.04 ± 0.02 a |
Net house (NH) | 2.63 ± 0.02 a | 0.00 ± 0.00 b | 3.07 ± 0.04 a | 1.47 ± 0.05 a | 2.55 ± 0.06 a | 2.91 ± 0.05 a | 1.04 ± 0.02 a |
NF | 1.66 ± 0.06 b | 0.00 ± 0.00 b | 1.79 ± 0.05 b | 0.98 ± 0.02 b | 1.90 ± 0.05 b | 1.68 ± 0.10 b | 1.00 ± 0.01 a |
EP | 1.44 ± 0.06 c | 0.00 ± 0.00 b | 1.61 ± 0.05 b | 0.79 ± 0.07 b | 1.72 ± 0.03 b | 1.35 ± 0.07 c | 1.02 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharaf-Eldin, M.A.; Yaseen, Z.M.; Elmetwalli, A.H.; Elsayed, S.; Scholz, M.; Al-Khafaji, Z.; Omar, G.F. Modifying Walk-In Tunnels through Solar Energy, Fogging, and Evaporative Cooling to Mitigate Heat Stress on Tomato. Horticulturae 2023, 9, 77. https://doi.org/10.3390/horticulturae9010077
Sharaf-Eldin MA, Yaseen ZM, Elmetwalli AH, Elsayed S, Scholz M, Al-Khafaji Z, Omar GF. Modifying Walk-In Tunnels through Solar Energy, Fogging, and Evaporative Cooling to Mitigate Heat Stress on Tomato. Horticulturae. 2023; 9(1):77. https://doi.org/10.3390/horticulturae9010077
Chicago/Turabian StyleSharaf-Eldin, Mohamed A., Zaher Mundher Yaseen, Adel H. Elmetwalli, Salah Elsayed, Miklas Scholz, Zainab Al-Khafaji, and Genesia F. Omar. 2023. "Modifying Walk-In Tunnels through Solar Energy, Fogging, and Evaporative Cooling to Mitigate Heat Stress on Tomato" Horticulturae 9, no. 1: 77. https://doi.org/10.3390/horticulturae9010077
APA StyleSharaf-Eldin, M. A., Yaseen, Z. M., Elmetwalli, A. H., Elsayed, S., Scholz, M., Al-Khafaji, Z., & Omar, G. F. (2023). Modifying Walk-In Tunnels through Solar Energy, Fogging, and Evaporative Cooling to Mitigate Heat Stress on Tomato. Horticulturae, 9(1), 77. https://doi.org/10.3390/horticulturae9010077