Using Optimized Three-Band Spectral Indices and a Machine Learning Model to Assess Squash Characteristics under Moisture and Potassium Deficiency Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Description
2.2. Solar–Powered Pumping and Drip Irrigation Systems
2.3. Calculation of Irrigation Water Requirements
2.4. Determination of Squash Seed Yield and Chlorophyll Meter
2.5. Water-Use Efficiency
2.6. Potassium-Use Efficiency (KUE)
2.7. Reflectance Measurement Acquisition and Selection of Spectral Reflectance Indices
2.8. Decision Tree (DT)
2.9. Datasets and Software for Data Analysis
2.10. Model Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effects of Irrigation Treatments and Potassium Fertilization
3.2. Effects of Irrigation Treatments and Potassium Fertilization on Published and Newly Spectral Reflectance Indices
3.3. Assessment of the Measured Parameters via Comparison of Previously Published and Newly Developed Three-Band SRIs
3.4. Differentiating Moisture and Potassium Deficiency Spectrally
3.5. Performance of Decision Tree Model for Predicting Four Squash Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rouphael, Y.; Colla, G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hortic. 2005, 105, 177–195. [Google Scholar] [CrossRef]
- Qamar, R.; Khan, S.; Safdar, M.E.; Atique-ur-Rehman, R.A.; Abdul, R.A.; Javeed, H.M.R.; Nadeem, M.A.; Al-Yahyai, R.; Alkahtani, J. Seed priming with growth regulators modulates production, physiology and antioxidant defense of Indian squash (Praecitrullus fistulosus) under semi-arid conditions. PLoS ONE 2022, 17, e0265694. [Google Scholar] [CrossRef] [PubMed]
- Farah, A.H.; Al-Ghobari, H.M.; Zin El-Abedin, T.K.; Alrasasimah, M.S.; El-Shafei, A.A. Impact of partial root drying and soil mulching on squash yield and water use efficiency in arid. Agronomy 2021, 11, 706. [Google Scholar] [CrossRef]
- Bannayan, M.; Rezaei, E.E.; Alizadeh, A. Climatic suitability of growing summer squash (Cucurbita pepo L.) as a medicinal plant in Iran. Not. Sci. Biol. 2011, 3, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Bose, T.K.; Kabir, J.; Das, P.; Joy, P.P. Tropical Horticulture, 1st ed.; Naya Prakash: Calcutta, India, 2001; Volume 2, 771p. [Google Scholar]
- Al-Omran, A.M.; Sheta, A.S.; Falatah, A.M.; Al-Harbi, A.R. Effect of drip irrigation on squash (Cucurbita pepo) yield and water-useefficiency in sandy calcareous soils amended with clay deposits. Agric. Water Manag. 2005, 73, 43–55. [Google Scholar] [CrossRef]
- Hao, B.; Xue, Q.; Marek, T.H.; Jessup, K.E.; Hou, X.; Xu, W.; Bynum, E.D.; Bean, B.W. Radiation—Use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance. J. Agron. Crop Sci. 2016, 202, 269–280. [Google Scholar] [CrossRef]
- Lin, K.H.; Kuo, W.S.; Chiang, C.M.; Hsiung, T.C.; Chiang, M.C.; Lo, H.F. Study of sponge gourd ascorbate peroxidase and winter squash superoxide dismutase under respective flooding and chilling stresses. Sci. Hortic. 2013, 162, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Ors, S.; Ekinci, M.; Yildirim, E.; Sahin, U. Changes in gas exchange capacity and selected physiological properties of squash seedlings (Cucurbita pepo L.) under well-watered and drought stress conditions. Arch. Agron. Soil Sci. 2016, 62, 1700–1710. [Google Scholar] [CrossRef]
- Yildirim, E.; Ekinci, M.; Sahin, U.; Ors, S.; Turan, M.; Demir, I.; Dursun, A.; Kotan, R. Improved water productivity in summer squash under water deficit with PGPR and synthetic methyl amine applications. Rhizosphere 2021, 20, 100446. [Google Scholar] [CrossRef]
- Ashraf, M. Inducing drought tolerance in plants: Some recent advances. Biotechnol. Adv. 2010, 28, 169–183. [Google Scholar] [CrossRef]
- Kuslu, Y.; Sahin, U.; Kiziloglu, F.M.; Memis, S. Fruit yield and quality, and irrigation water use efficiency of summer squash drip-irrigated with different irrigation quantities in a semi-arid agricultural area. J. Integrat. Agric. 2014, 13, 2518–2526. [Google Scholar] [CrossRef] [Green Version]
- Amer, K.H. Effect of irrigation method and quantity on squash yield and quality. Agric. Water Manag. 2011, 98, 1197–1206. [Google Scholar] [CrossRef]
- Martinetti, L.; Paganini, F. Effect of organic and mineral fertilisation on yield and quality of zucchini. Acta Hortic. 2006, 700, 125–128. [Google Scholar] [CrossRef]
- Alves, J.; Lima, A.; Suassuna, C.; Figueiredo, F.; da Silva, T.; Mesquita, E.; Cavalcante, L.; Mesquita, F. Growth and gas exchange of Cucurbita pepo L. under nitrogen and silicon fertilization. J. Agric. Sci. 2019, 11, 83. [Google Scholar] [CrossRef]
- Bello, S.K.; AL-Solaimani, S.G.; Abo-Elyousr, K.A.M. Squash yield, water-use efficiency and nitrate accumulation as influenced by the application of humic acid, geobacillus stearothermophilus SSK-2018 and wheat straw in an arid land condition. Horticulturae 2022, 8, 588. [Google Scholar] [CrossRef]
- Ajdary, K.; Singh, D.K.; Singh, A.K.; Khanna, M. Modelling of nitrogen leaching from experimental onion field under drip fertigation. Agric. Water Manag. 2007, 89, 15–28. [Google Scholar] [CrossRef]
- Kalaivanan, D.; Selvakumar, G.; Hebbar, S.S. Effects of varying N, P and K concentrations on growth, biomass, yield and nutritional quality of zucchini squash grown under open and polyhouse soilless culture. Indian J. Hortic. 2020, 77, 100–106. [Google Scholar] [CrossRef]
- Elsayed, S.; Barmeier, G.; Schmidhalter, U. Passive reflectance sensing and digital image analysis allows for assessing the biomass and nitrogen status of wheat in early and late tillering stages. Front. Plant Sci. 2018, 9, 1478. [Google Scholar] [CrossRef]
- Elsayed, S.; El-Hendawy, S.; Khadr, M.; Elsherbiny, O.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Darwish, W. Combining thermal and RGB imaging indices with multivariate and data-driven modeling to estimate the growth, water status, and yield of potato under different drip irrigation regimes. Remote Sens. 2021, 13, 1679. [Google Scholar] [CrossRef]
- Elsayed, S.; El-Hendawy, S.; Khadr, M.; Elsherbiny, O.; Al-Suhaibani, N.; Dewir, Y.H.; Tahir, M.U.; Mubushar, M.; Darwish, W. Integration of spectral reflectance indices and adaptive Neuro-Fuzzy Inference System for assessing the growth performance and yield of potato under different drip irrigation regimes. Chemosensors 2021, 9, 55. [Google Scholar] [CrossRef]
- Lu, S.; Lu, F.; You, W.; Wang, Z.; Liu, Y.; Omasa, K. A robust vegetation index for remotely assessing chlorophyll content of dorsiventral leaves across several species in different seasons. Plant Methods 2018, 14, 2–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Y.X.; Zhang, L.Y.; Zhang, H.H.; Han, W.T.; Peng, X.S. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery. Remote Sens. 2019, 11, 1261. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Lin, K.; Huang, M.; Su, Y. Use of non-destructive measurements to identify cucurbit species (Cucurbita maxima and Cucurbita moschata) tolerant to Waterlogged conditions. Plants 2020, 9, 1226. [Google Scholar] [CrossRef] [PubMed]
- Abdulridha, J.; Ampatzidis, Y.; Roberts, P.; Kakarla, S.C. Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence. Biosyst. Eng. 2020, 197, 135–148. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; El-Hendawy, S.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Mubushar, M.; Hassan, W.M.; Elsayed, S. Potential of hyperspectral and thermal proximal sensing for estimating growth performance and yield of soybean exposed to different drip irrigation regimes under arid conditions. Sensors 2020, 22, 6569. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Elsayed, S.; Hanssan, W.M.; Dewir, Y.H. Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates. Agric. Water Manag. 2019, 217, 356–373. [Google Scholar] [CrossRef]
- Lobos, G.A.; Romero, S.; Escobar, A.; Estrada, F.; Caligari, P.D.S.; Poblete-Echeverria, C.; Ahumada, L.; Zuniga, M. Fast and non-distructive prediction of gas exchange in olive orchardes (Olea europaea L.) under different soil conditions. Acta Hortic. 2014, 1057, 329–334. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Zhang, G. Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection. Int. J. Spectrosc. 2012, 27, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, S.; Rischbeck, P.; Schmidhalter, U. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars. Field Crops Res. 2015, 177, 148–160. [Google Scholar] [CrossRef]
- Elsayed, S.; Elhoweity, M.; Ibrahim, H.H.; Dewir, Y.H.; Migdadic, H.M.; Schmidhalter, U. Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes. Agric. Water Manag. 2017, 189, 98–110. [Google Scholar] [CrossRef]
- Elsayed, S.; El-Hendawy, S.; Dewir, Y.H.; Schmidhalter, U.; Ibrahim, H.H.; Ibrahim, M.M.; Elsherbiny, O.; Farouk, M. Estimating the leaf water status and grain yield of wheat under different irrigation regimes using optimized two- and three-band hyperspectral indices and multivariate regression models. Water 2021, 13, 2666. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Dewir, Y.H.; Elsayed, S.; Schmidhalter, U.; Al-Gaadi, K.; Tola, E.; Refay, Y.; Tahir, M.U.; Hassan, W.M. Combining hyperspectral reflectance indices and multivariate analysis to estimate different units of chlorophyll content of spring wheat under salinity conditions. Plants 2022, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Elmetwalli, A.H. Remote Sensing as a Precision Farming Tool in the Nile Valley, Egypt. Ph.D. Thesis, School of Biological and Environmental Sciences, University of Stirling, Stirling, UK, 2008. [Google Scholar]
- Gnyp, M.L.; Miao, Y.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.; Huang, S.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubana, B.; Dalen, M.; Harrell, D. Evaluation of red and red edge reflectance based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; Tyler, A.N. Estimation of maize properties and differentiating moisture and nitrogen deficiency stress via ground-based remotely sensed data. Agric. Water Manag. 2020, 242, 106413. [Google Scholar] [CrossRef]
- Jin, X.; Wang, K.; Xiao, C.; Diao, W.; Wang, F. Comparison of two methods for estimation of leaf total chlorophyll content using remote sensing in wheat. Field Crops Res. 2012, 135, 24–29. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; Tyler, A.N.; Hunter, P.D.; Salt, C.A. Detecting and distinguishing moisture and salinity induced stress in wheat and maize through in situ spectroradiometry measurements. Remote Sens. Lett. 2012, 5, 363–372. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; Mazrou, Y.S.A.; Tyler, A.N.; Hunter, P.D.; Esherbiny, O.; Yassen, Z.M.; Elsayed, S. Assessing the efficiency of remote sensing and machine learning algorithms to quantify wheat characteristics in the Nile Delta Region of Egypt. Agriculture 2022, 12, 332. [Google Scholar] [CrossRef]
- Martinez, M.; Ramos, A. Estimation of chlorophyll concentration in maize using spectral reflectance. In Proceedings of the 36th International Symposium on Remote Sensing of Environment, Berlin, Germany, 11–15 May 2015; Volume XL-7/W3, pp. 65–71. [Google Scholar]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll content in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Ikeura, H.; Phongchanmaixay, S.; Khanthavong, P. Canopy hyperspectral sensing of paddy fields at the booting stage and PLS regression can assess grain yield. Remote Sens. 2018, 10, 1249. [Google Scholar] [CrossRef]
- Weber, V.S.; Araus, J.L.; Cairns, J.E.; Sanchez, C.; Melchinger, A.E.; Orsini, E. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Res. 2012, 128, 82–90. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Vina, A.; Arkebauer, T.; Rundquist, D. Green leaf area index estimation in maize andsoybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Casadesús, J.; Villegas, D. Conventional digital cameras as a tool for assessingleaf area index and biomass for cereal breeding. J. Integr. Plant Biol. 2014, 56, 7–14. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; Tyler, A.N.; Moghanm, F.S.; Alamri, S.A.; Eid, E.M.; Elsayed, S. Integration of radiometric ground-based data and high resolution QuickBird imagery with multivariate modeling to estimate maize traits in the Nile Delta of Egypt. Sensors 2021, 21, 3915. [Google Scholar] [CrossRef] [PubMed]
- Thorp, K.R.; Wang, G.; Bronson, K.F.; Badaruddin, M.; Mon, J. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status and grain yield. Comput. Electron. Agric. 2017, 136, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Wang, S.; Song, Y.; Liu, Y.; Gong, Z. Estimating nitrogen status of rice canopy using hyperspectral reflectance combined with BPSO-SVR in cold region. Chemom. Intell. Lab. Syst. 2018, 172, 68–79. [Google Scholar] [CrossRef]
- Dejonge, K.C.; Mefford, B.S.; Chavez, J.L. Assessing corn water stress using spectral reflectance. Int. J. Remote Sens. 2016, 10, 2294–2312. [Google Scholar] [CrossRef]
- Genc, H.; Genc, L.; Turhan, H.; Smith, S.E.; Nation, J.L. Vegetation indices as indicators of damage by the sunn pest (Hemiptera: Scutelleridae) to field grown wheat. Afr. J. Biotech. 2008, 7, 173–180. [Google Scholar]
- Ashourloo, D.; Mobasheri, M.R.; Huete, A. Developing two spectral disease indices for detection of wheat leaf rust (Pucciniatriticina). Remote Sens. 2014, 6, 4723–4740. [Google Scholar] [CrossRef] [Green Version]
- Beltrán, N.H.; Duarte-Mermoud, M.A.; Salah, S.A.; Bustos, M.A.; Peña-Neira, A.I.; Loyola, E.A.; Jalocha, J.W. Feature selection algorithms using Chilean wine chromatograms as examples. J. Food Eng. 2005, 67, 483–490. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Schuize, F.H.; Wolf, H.; Jansen, H.; Vander, V.P. Applications of artificial neural networks in integrated water management: Fiction or future? Water Sci. Technol. 2005, 52, 21–31. [Google Scholar] [CrossRef]
- EIMasry, G.; Sun, D.W.; Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. J. Food Eng. 2012, 110, 127–140. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glorfeld, L.W. A methodology for simplification and interpretation of backpropagation-based neural network models. Expert Syst. Appl. 1996, 10, 37–54. [Google Scholar] [CrossRef]
- Melis, G.; Dyer, C.; Blunsom, P. On the state of the art of evaluation in neural language models. arXiv 2017, arXiv:1707.05589. [Google Scholar]
- Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. ICML 2013, 2013, 115–123. [Google Scholar]
- Wu, J.; Chen, X.-Y.; Zhang, H.; Xiong, L.-D.; Lei, H.; Deng, S.-H. Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar]
- Doorenbos, J.; Kassam, A. Yield Response to Water; Irrigation and Drainage Paper No. 33; FAO: Rome, Italy, 1986. [Google Scholar]
- Vermeiren, L.; Jopling, G.A. Localized Irrigation; Irrigation and Drainage Paper No. 36; FAO: Rome, Italy, 1984. [Google Scholar]
- James, L.G. Principles of Farm Irrigation System Design; John Wiley and Sons, Inc.: Hoboken, NY, USA, 1988. [Google Scholar]
- Ismail, S.M. Design and Management of Field Irrigation System, 1st ed.; Monshaet El-Maaref: Alexandria, Egypt, 2002; p. 367. (In Arabic) [Google Scholar]
- Elsayed, S.; El-Gozayer, K.; Allam, A.; Schmidhalter, U. Passive reflectance sensing using regression and multivariate analysis to estimate biochemical parameters of different fruits kinds. Sci. Hortic. 2019, 243, 21–33. [Google Scholar] [CrossRef]
- Gutierrez, M.; Reynolds, M.P.; Raun, W.R.; Stone, M.L.; Klatt, A.R. Spectral water indices for assessing yield in elite bread wheat genotypes in well irrigated, water stressed, and high temperature conditions. Crop Sci. 2010, 50, 197–214. [Google Scholar] [CrossRef]
- Nagy, A.; Riczu, P.; Tamás, J. Spectral evaluation of apple fruit ripening and pigment content alteration. Sci. Hortic. 2016, 201, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.; Carver, B.F.; Stone, M.L.; Babar, M.A.; Raun, W.R.; Klatt, A.R. Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under Great Plains conditions. Crop Sci. 2007, 47, 1426–1440. [Google Scholar] [CrossRef] [Green Version]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, S.; Darwish, W. Hyperspectral remote sensing to assess the water status, biomass, and yield of maize cultivars under salinity and water stress. Bragantia 2017, 76, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Kamber, M. Data Mining: Concepts and Techniques; Morgan Kaufmann: San Francisco, CA, USA, 2001. [Google Scholar]
- Zhu, J.; Huang, Z.H.; Sun, H.; Wang, G.X. Mapping forest ecosystem biomass density for Xiangjiang river basin by combining plot and remote sensing data and comparing spatial extrapolation methods. Remote Sens. 2017, 9, 241. [Google Scholar] [CrossRef]
- Malone, B.P.; Styc, Q.; Minasny, B.; McBratney, A.B. Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma. 2017, 290, 91–99. [Google Scholar] [CrossRef]
- Saggi, M.K.; Jain, S. Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Comput. Electron. Agric. 2019, 156, 387–398. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plant, 3rd ed.; Academic Press: London, UK, 2012; pp. 178–189. [Google Scholar]
- Jin, S.H.; Huang, J.Q.; Li, X.Q.; Zheng, B.S.; Wu, J.S.; Wang, Z.J.; Liu, G.H.; Chen, M. Effects of potassium supply on limitation of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol. 2011, 31, 1142–1151. [Google Scholar] [CrossRef]
- Tomemori, H.; Hamamura, K.; Tanabe, K. Interactive effects of sodium and potassium on the growth and photosynthesis of spinach and komatsuna. Plant Prod. Sci. 2022, 5, 281–285. [Google Scholar] [CrossRef]
- Topcu, S.; Kirda, C.; Dasgan, Y.; Kaman, H.; Cetin, M.; Yazici, A.; Bacon, M.A. Yield response and N-fertilizer recovery of tomato grown under deficit irrigation. Eur. J. Agron. 2007, 26, 64–70. [Google Scholar] [CrossRef]
- Anjum, S.A.; Wang, L.; Farooq, M.; Xue, L.; Ali, S. Fulvic acid application improves the maize performance under well-watered and drought conditions. J. Agron. Crop Sci. 2011, 197, 409–417. [Google Scholar] [CrossRef]
- Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Austlian J. Crop Sci. 2010, 8, 580–585. [Google Scholar]
- El-Hendawy, S.E.; Alotaibi, M.; Al-Suhaibani, N.; Al-Gaadi, K.; Hassan, W.; Dewir, Y.H.; Emam, M.A.E.-G.; Elsayed, S.; Schmidhalter, U. Comparative performance of spectral reflectance indices and multivariate modeling for assessing agronomic parameters in advanced spring wheat lines under two contrasting irrigation regimes. Front. Plant Sci. 2019, 10, 1537. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Sahoo, R.; Chopra, U.; Pramanik, M.; Singh, A.; Pradhan, S. Assessment of water status in wheat (Triticum aestivum L.) using ground based hyperspectral reflectance. Proc. Natl. Acad. Sci. USA 2015, 87, 377–388. [Google Scholar] [CrossRef]
- Garriga, M.; Romero-Bravo, S.; Estrada, F.; Méndez-Espinoza, A.M.; González-Martínez, L.; Matus, I.A.; Castillo, D.; Lobos, G.A.; Del Pozo, A. Estimating carbon isotope discrimination and grain yield of bread wheat grown under water-limited and full irrigation conditions by hyperspectral canopy reflectance and multilinear regression analysis. Int. J. Remote Sens. 2021, 42, 2848–2871. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Z.; Zhang, G.; Meng, Y.; Chen, B.; Wang, Y. Monitoring the leaf water content and specific leaf weight of cotton (Gossypium hirsutum L.) in saline soil using leaf spectral reflectance. Eur. J. Agron. 2012, 41, 103–117. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Mackay, A.D.; Tuohy, M.P.; Betteridge, K.; Sanches, I.D.; Inoue, Y. Potential for spectral indices to remotely sense phosphorus and potassium content of legume-based pasture as a means of assessing soil phosphorus and potassium fertility status. Int. J. Remote Sens. 2011, 32, 103–124. [Google Scholar] [CrossRef]
- Lu, J.; Eitel, J.U.H.; Engels, M.; Zhu, J.; Ma, Y.; Liao, F.; Zheng, H.; Wang, X.; Yao, X.; Cheng, T.; et al. Improving Unmanned Aerial Vehicle (UAV) Remote sensing of rice plant potassium accumulation by fusing spectral and textural information. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102592. [Google Scholar] [CrossRef]
- Pimstein, A.; Karnieli, A.; Bansal, S.K.; Bonfil, D.J. Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field Crops Res. 2011, 121, 125–135. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gamon, J.A. Remote sensing of plant functional types. New Phytol. 2010, 186, 795–816. [Google Scholar] [CrossRef] [PubMed]
- El-Hendawy, S.; Elsayed, S.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Mubushar, M.; Attia, A.; Hassan, W.M. Use of hyperspectral reflectance sensing for assessing growth and chlorophyll content of spring wheat grown under simulated saline field conditions. Plants 2021, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Elsherbiny, O.; Zhou, L.; Feng, L.; Qiu, Z. Integration of visible and thermal imagery with an artificial neural network approach for robust forecasting of canopy water content in rice. Remote Sens. 2021, 13, 1785. [Google Scholar] [CrossRef]
- Elsherbiny, O.; Fan, Y.; Zhou, L.; Qiu, Z. Fusion of feature selection methods and regression algorithms for predicting the canopy water content of rice based on hyperspectral data. Agriculture 2021, 11, 51. [Google Scholar] [CrossRef]
Soil Depth, cm | EC, dS/m−1 | pH | Cations, Meq/L | Anions, Meq/L | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mg++ | Ca++ | K+ | Na+ | Co3−−− | HCo3−− | Cl− | So4−− | |||
0–30 | 1.32 | 7.39 | 3.2 | 3.21 | 1.28 | 4.77 | 0.0 | 2.71 | 7.18 | 2.54 |
30–60 | 1.17 | 7.21 | 3.33 | 3.34 | 1.37 | 4.61 | 0.0 | 2.77 | 7.36 | 2.51 |
Depth, cm | ρb, g cm−3 | FC, % | WP, % | AW, % | Particle Size Distribution, % | Texture | ||
---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||||
0–30 | 1.40 | 16.9 | 9.34 | 7.56 | 87.3 | 6.36 | 6.34 | Loamy sand |
30–60 | 1.56 | 15.13 | 8.35 | 6.78 | 86.3 | 7.52 | 6.18 | Loamy sand |
SRIs | Formula | References |
---|---|---|
Published SRIs | ||
NDI780,550 | (R780 − R550)/(R780 + R550) | [67] |
Normalized chlorophyll index (NCI) | (R750 − R678)/(R750 + R678) | [68] |
Normalized difference index (NDI970,670) | (R970 − R670)/(R970 + R670) | [66] |
Normalized water index 1 (NWI-1) | (R970 − R900)/(R970 + R900) | [69] |
Normalized water index 3 (NWI-3) | (R970 − R880/(R970 + R880) | [70] |
Normalized water index 41 (NWI-4) | (R970 − R920/(R970 + R920) | [71] |
Newly three-band SRIs | ||
Normalized difference index (NDI) | ||
NDI558,646,708 | (R558 − R646 − R708)/(R558 + R646 + R708) | This work |
NDI538,708,648 | (R538 − R708 − R648)/(R538 + R708 + R648) | |
NDI558,644,708 | (R558 − R644 − R708)/(R558 + R644 + R708) | |
NDI744,746,738 | (R744 − R746 − R738)/(R744 + R746 + R738) | |
NDI704,580,712 | (R704 − R580 − R712)/(R704 + R580 + R712) | |
NDI704,712,582 | (R704 − R712 − R582)/(R704 + R712 + R582) | |
NDI602,598,600 | (R602 − R598 − R600)/(R602 + R598 + R600) | |
NDI644,630,652 | (R644 − R630 − R652)/(R644 + R630 + R652) | |
NDI648,662,624 | (R648 − R662 − R624)/(R648 + R662 + R624) | |
NDI670,628,392 | (R670 − R628 − R392)/(R670 + R628 + R392) | |
NDI572,558,602 | (R572 − R5508 − R602)/(R572 + R558 + R602) | |
NDI670,630,392 | (R670 − R630 − R392)/(R670 + R630 + R392) |
Season | Irrigation Treatment | K Fertilization, kg ha−1 | Mean | ||
---|---|---|---|---|---|
150 | 200 | 250 | |||
SY | 1.00 ETc | 811.5 ± 18.55 c | 979.1 ± 16.77 b | 1093.7 ± 24.12 a | 961.4 ± 119.4 A |
0.75 ETc | 466.3 ± 30.99 g | 629.4 ± 140.87 e | 960.3 ± 19.85 b | 685.3 ± 223.5 B | |
0.50 ETc | 518.8 ± 15.99 f | 544.6 ± 27.53 f | 691.8 ± 96.55 d | 585.1 ± 98.8 C | |
Mean | 598.9 ± 158.1 c | 717.7 ± 209.9 b | 915.3 ± 181.1 a | ||
Chlm | 1.00 ETc | 32.1 ± 1.90 d | 39.4 ± 1.73 b | 42.1 ± 3.08 a | 37.8 ± 4.59 A |
0.75 ETc | 29.5 ± 1.69 e | 31.9 ± 3.19 d | 39.0 ± 2.91 b | 33.5 ± 5.00 B | |
0.50 ETc | 28.4 ± 1.22 e | 18.9 ± 0.83 f | 34.8 ± 4.45 c | 27.3 ± 7.39 C | |
Mean | 29.9 ± 6.3 c | 30.0 ± 8.9 b | 38.6 ± 4.0 a | ||
WUE | 1.00 ETc | 0.241 ± 0.02 e | 0.290 ± 0.03 c | 0.325 ± 0.03 b | 0.285 ± 0.04 C |
0.75 ETc | 0.176 ± 0.02 f | 0.233 ± 0.03 e | 0.362 ± 0.03 a | 0.257 ± 0.08 B | |
0.50 ETc | 0.269 ± 0.03 d | 0.281 ± 0.02 c | 0.354 ± 0.02 a | 0.301 ± 0.05 A | |
Mean | 0.228 ± 0.05 c | 0.268 ± 0.04 b | 0.347± 0.03 a | ||
KUE | 1.00 ETc | 5.4 ± 0.12 a | 4.9 ± 0.08 b | 4.4 ± 0.10 c | 4.893 ± 0.44 A |
0.75 ETc | 3.1 ± 0.21 f | 3.2 ± 0.70 f | 3.8 ± 0.08 d | 3.365± 0.54 B | |
0.50 ETc | 3.5 ± 0.11 e | 2.7 ± 14 g | 2.8 ± 0.39 g | 2.982 ± 0.40 C | |
Mean | 4.0 ± 1.05 a | 3.6 ± 1.05 c | 3.7 ± 0.72 b |
Treatments | NDI780,550 | NCI | NDI970,670 | NWI-1 | NWI-3 | NWI-4 | NDI558,646,708 | NDI538,708,648 | NDI558,644,708 |
1.00 ETc, 150K | 0.645 ± 0.017 a | 0.856 ± 0.010 a | 0.859 ± 0.008 a | −0.020 ± 0.011 b | −0.022 ± 0.012 b,c | −0.018 ± 0.007 b | −0.337 ± 0.009 f | −0.357 ± 0.012 g | −0.339 ± 0.010 e |
1.00 ETc, 200K | 0.601 ± 0.024 b | 0.809 ± 0.047 b | 0.807 ± 0.055 b | −0.022 ± 0.017 b | −0.023 ± 0.018 b,c | −0.018 ± 0.012 b | −0.328 ± 0.006 e | −0.347 ± 0.006 f | −0.331 ± 0.007 d |
1.00 ETc, 250K | 0.560 ± 0.044 c | 0.809 ± 0.066 b | 0.805 ± 0.074 b | −0.022 ± 0.016 b | −0.024 ± 0.018 c | −0.019 ± 0.012 b | −0.324 ± 0.009 e | −0.346 ± 0.008 f | −0.327 ± 0.009 d |
0.75 ETc, 150K | 0.532 ± 0.025 c | 0.812 ± 0.039 b | 0.805 ± 0.048 b | −0.031 ± 0.020 c | −0.03 ± 0.022 d | −0.027 ± 0.015 b | −0.307 ± 0.005 d | −0.329 ± 0.007 e | −0.311 ± 0.005 c |
0.75 ETc, 200K | 0.349 ± 0.069 e | 0.735 ± 0.018 c,d | 0.720 ± 0.021 c,d | −0.022 ± 0.012 b | −0.023 ± 0.014 c | −0.019 ± 0.007 b | −0.293 ± 0.005 b,c | −0.318 ± 0.007 d | −0.298 ± 0.004 b |
0.75 ETc, 250K | 0.215 ± 0.045 g | 0.606 ± 0.063 e | 0.576 ± 0.066 e | −0.022 ± 0.013 b | −0.024 ± 0.014 c | −0.019 ± 0.009 b | −0.294 ± 0.012 c | −0.316 ± 0.019 c,d | −0.300 ± 0.012 b |
0.50 ETc, 150K | 0.302 ± 0.035 f | 0.709 ± 0.059 d | 0.690 ± 0.067 d | −0.021 ± 0.010 b | −0.022 ± 0.010 b,c | −0.019 ± 0.006 b | −0.287 ± 0.008 b | −0.310 ± 0.009 b,c | −0.293 ± 0.009 b |
0.50 ETc, 200K | 0.340 ± 0.138 e | 0.747 ± 0.048 c | 0.735 ± 0.056 c | −0.016 ± 0.010 a | −0.018 ± 0.012 a | −0.017 ± 0.005 a | −0.286 ± 0.013 a | −0.299 ± 0.015 a | −0.288 ± 0.012 a |
0.50 ETc, 250K | 0.467 ± 0.047 d | 0.811 ± 0.018 b | 0.808 ± 0.020 b | −0.019 ± 0.010 b | −0.020 ± 0.012 a,b | −0.017 ± 0.006 b | −0.287 ± 0.018 a,b,c | −0.303 ± 0.016 a,b | −0.291 ± 0.017 a |
NDI744,746,738 | NDI704,580,712 | NDI704,712,582 | NDI602,598,600 | NDI644,630,652 | NDI648,662,624 | NDI670,628,392 | NDI572,558,602 | NDI670,630,392 | |
1.00 ETc, 150K | −0.326 ± 0.000 a | −0.366 ± 0.005 f | −0.363 ± 0.005 f | −0.341 ± 0.003 e | −0.346 ± 0.003 c | −0.365 ± 0.014 b,c | −0.417 ± 0.018 ab | −0.317 ± 0.001 c,d | −0.410 ± 0.016 a,b |
1.00 ETc, 200K | −0.327 ± 0.001 a | −0.361 ± 0.008 e | −0.358 ± 0.007 e | −0.339 ± 0.001 c | −0.344 ± 0.004 c | −0.361 ± 0.009 ab | −0.410 ± 0.012 a,b | −0.319 ± 0.002 d | −0.402 ± 0.011 a,b |
1.00 ETc, 250K | −0.328 ± 0.001 b | −0.347 ± 0.018 d | −0.343 ± 0.017 d | −0.339 ± 0.001 c | −0.340 ± 0.003 b | −0.361 ± 0.004 b | −0.402 ± 0.026 a | −0.318 ± 0.002 d | −0.395 ± 0.028 a |
0.75 ETc, 150K | −0.328 ± 0.001 b | −0.344 ± 0.004 d | −0.341 ± 0.004 d | −0.341 ± 0.001 de | −0.340 ± 0.002 b | −0.365 ± 0.004 b | −0.432 ± 0.027 b,c | −0.314 ± 0.002 b | −0.425 ± 0.032 b,c |
0.75 ETc, 200K | −0.331 ± 0.000 d | −0.316 ± 0.004 b | −0.313 ± 0.004 b | −0.339 ± 0.001 b,c | −0.340 ± 0.003 b | −0.357 ± 0.003 b | −0.461 ± 0.023 d | −0.312 ± 0.001 a,b | −0.454 ± 0.028 d |
0.75 ETc, 250K | −0.333 ± 0.001 f | −0.309 ± 0.007 a | −0.307 ± 0.007 a | −0.336 ± 0.001 a | −0.340 ± 0.002 b | −0.348 ± 0.012 c | −0.417 ± 0.023 b | −0.316 ± 0.002 c | −0.408 ± 0.044 a,b |
0.50 ETc, 150K | −0.332 ± 0.000 e | −0.308 ± 0.005 a | −0.305 ± 0.005 a | −0.338 ± 0.001 b | −0.339 ± 0.002 b | −0.372 ± 0.003 d | −0.481 ± 0.022 d | −0.311 ± 0.002 a | −0.474 ± 0.025 d |
0.50 ETc, 200K | −0.331 ± 0.001 d | −0.319 ± 0.008 b | −0.316 ± 0.008 b | −0.339 ± 0.002 c | −0.339 ± 0.005 ab | −0.356 ± 0.015 e | −0.475 ± 0.018 d | −0.313 ± 0.001 b | −0.471 ± 0.022 d |
0.50 ETc, 250K | −0.330 ± 0.000 c | −0.335 ± 0.004 c | −0.332 ± 0.003 c | −0.340 ± 0.001 c,d | −0.335 ± 0.004 a | −0.361 ± 0.012 f | −0.456 ± 0.027 d | −0.314 ± 0.003 b | −0.450 ± 0.028 c,d |
Spring | Fall | Both Seasons | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SRIs | KUE | Chlm | WUE | SY | KUE | Chlm | WUE | SY | KUE | Chlm | WUE | SY |
NDI780,550 | 0.42 *** | 0.54 *** | 0.03 | 0.16 | 0.73 *** | 0.66 *** | 0.09 | 0.08 | 0.53 | 0.55 *** | 0.06 | 0.14 |
NCI | 0.13 | 0.35 ** | 0.06 | 0.02 | 0.44 *** | 0.55 *** | 0.10 | 0.00 | 0.21 | 0.42 *** | 0.05 | 0.00 |
NDI970,670 | 0.14 | 0.37 ** | 0.06 | 0.03 | 0.46 *** | 0.54 *** | 0.08 | 0.00 | 0.23 | 0.43 *** | 0.04 | 0.00 |
NWI-1 | 0.04 | 0.02 | 0.14 | 0.24 | 0.00 | 0.10 | 0.22 * | 0.51 *** | 0.03 | 0.00 | 0.12 | 0.08 |
NWI-3 | 0.02 | 0.02 | 0.13 | 0.20 | 0.00 | 0.11 | 0.22 * | 0.59 *** | 0.03 | 0.00 | 0.11 | 0.08 |
NWI-4 | 0.08 | 0.01 | 0.14 | 0.30 | 0.01 | 0.12 | 0.22 * | 0.51 *** | 0.04 | 0.00 | 0.14 | 0.07 |
NDI558,646,708 | 0.78 *** | 0.36 ** | 0.03 | 0.27 * | 0.80 *** | 0.28 * | 0.00 | 0.58 *** | 0.75 *** | 0.31 * | 0.02 | 0.36 ** |
NDI538,708,648 | 0.71 *** | 0.37 ** | 0.07 | 0.19 * | 0.85 *** | 0.15 | 0.00 | 0.70 *** | 0.75 *** | 0.27 * | 0.03 | 0.33 ** |
NDI558,644,708 | 0.77 *** | 0.34 ** | 0.03 | 0.25 * | 0.80 *** | 0.26 * | 0.00 | 0.59 *** | 0.75 *** | 0.30 * | 0.01 | 0.35 ** |
NDI744,746,738 | 0.52 *** | 0.57 *** | 0.01 | 0.24 * | 0.77 *** | 0.77 *** | 0.14 | 0.09 | 0.61 *** | 0.65 *** | 0.04 | 0.13 |
NDI704,580,712 | 0.50 *** | 0.52 *** | 0.00 | 0.35 ** | 0.69 *** | 0.86 *** | 0.19 * | 0.05 | 0.55 *** | 0.64 *** | 0.02 | 0.16 |
NDI704,712,582 | 0.51 *** | 0.52 *** | 0.00 | 0.36 ** | 0.70 *** | 0.87 *** | 0.18 * | 0.05 | 0.56 *** | 0.64 *** | 0.02 | 0.18 * |
NDI602,598,600 | 0.02 | 0.10 | 0.26 * | 0.11 | 0.18 | 0.58 *** | 0.23 * | 0.02 | 0.04 | 0.20 | 0.25 * | 0.01 |
NDI644,630,652 | 0.02 | 0.00 | 0.27 * | 0.21 | 0.02 | 0.18 * | 0.15 | 0.16 | 0.00 | 0.02 | 0.24 * | 0.11 |
NDI648,662,624 | 0.00 | 0.03 | 0.22 * | 0.08 | 0.01 | 0.33 * | 0.10 | 0.17 | 0.00 | 0.04 | 0.19 * | 0.01 |
NDI670,628,392 | 0.60 *** | 0.25 * | 0.05 | 0.53 *** | 0.47 *** | 0.01 | 0.02 | 0.80 *** | 0.50 *** | 0.09 | 0.01 | 0.64 *** |
NDI572,558,602 | 0.54 *** | 0.13 | 0.10 | 0.61 *** | 0.67 *** | 0.10 | 0.06 | 0.66 *** | 0.56 *** | 0.09 | 0.04 | 0.64 *** |
NDI670,630,392 | 0.60 *** | 0.26 * | 0.05 | 0.53 *** | 0.46 *** | 0.01 | 0.01 | 0.79 *** | 0.50 *** | 0.08 | 0.01 | 0.64 *** |
Variable | Spectral Features | Optimal Parameters | Training | Validation | ||
---|---|---|---|---|---|---|
(Md, Ms, Mln) | R2 | RMSE | R2 | RMSE | ||
KUE | a | (5, 2, 10) | 0.97 *** | 0.175 | 0.82 *** | 0.284 |
b | (3, 6, none) | 0.84 *** | 0.386 | 0.74 *** | 0.372 | |
c | (5, 4, none) | 0.96 *** | 0.201 | 0.76 *** | 0.330 | |
Chlm | a | (5, 2, none) | 0.99 *** | 0.522 | 0.69 *** | 2.321 |
b | (7, 2, 30) | 0.91 *** | 1.840 | 0.60 *** | 2.781 | |
c | (5, 2, none) | 0.99 *** | 0.555 | 0.52 *** | 2.864 | |
WUE | a | (7, 2, 10) | 0.87 *** | 0.021 | 0.35 ** | 0.037 |
b | (3, 10, none) | 0.58 *** | 0.039 | 0.45 ** | 0.035 | |
c | (3, 10, none) | 0.58 *** | 0.039 | 0.41 ** | 0.039 | |
Yield | a | (10, 8, none) | 0.65 *** | 129.480 | 0.19 * | 148.946 |
b | (3, 6, none) | 0.80 *** | 97.473 | 0.70 *** | 87.656 | |
c | (3, 10, none) | 0.80 *** | 98.500 | 0.69 *** | 90.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharaf-Eldin, M.A.; Elsayed, S.; Elmetwalli, A.H.; Yaseen, Z.M.; Moghanm, F.S.; Elbagory, M.; El-Nahrawy, S.; Omara, A.E.-D.; Tyler, A.N.; Elsherbiny, O. Using Optimized Three-Band Spectral Indices and a Machine Learning Model to Assess Squash Characteristics under Moisture and Potassium Deficiency Stress. Horticulturae 2023, 9, 79. https://doi.org/10.3390/horticulturae9010079
Sharaf-Eldin MA, Elsayed S, Elmetwalli AH, Yaseen ZM, Moghanm FS, Elbagory M, El-Nahrawy S, Omara AE-D, Tyler AN, Elsherbiny O. Using Optimized Three-Band Spectral Indices and a Machine Learning Model to Assess Squash Characteristics under Moisture and Potassium Deficiency Stress. Horticulturae. 2023; 9(1):79. https://doi.org/10.3390/horticulturae9010079
Chicago/Turabian StyleSharaf-Eldin, Mohamed A., Salah Elsayed, Adel H. Elmetwalli, Zaher Mundher Yaseen, Farahat S. Moghanm, Mohssen Elbagory, Sahar El-Nahrawy, Alaa El-Dein Omara, Andrew N. Tyler, and Osama Elsherbiny. 2023. "Using Optimized Three-Band Spectral Indices and a Machine Learning Model to Assess Squash Characteristics under Moisture and Potassium Deficiency Stress" Horticulturae 9, no. 1: 79. https://doi.org/10.3390/horticulturae9010079
APA StyleSharaf-Eldin, M. A., Elsayed, S., Elmetwalli, A. H., Yaseen, Z. M., Moghanm, F. S., Elbagory, M., El-Nahrawy, S., Omara, A. E. -D., Tyler, A. N., & Elsherbiny, O. (2023). Using Optimized Three-Band Spectral Indices and a Machine Learning Model to Assess Squash Characteristics under Moisture and Potassium Deficiency Stress. Horticulturae, 9(1), 79. https://doi.org/10.3390/horticulturae9010079