Comparative Assessment of Treatment of Mushroom Farm Wastewater Using Plant (Ceratophyllum demersum L.) and Algae (Chlorella vulgaris): Experimental and Kinetic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater, Plant, and Algae Collection
2.2. Experimental Design and Reactor Operation
2.3. Chemical and Analytical Methods
2.4. Data Analysis and Software
3. Results and Discussion
3.1. Physicochemical and Pollutant Load of MFW
3.2. Removal of Wastewater Pollutants by C. demersum and C. vulgaris
3.3. Kinetics of Pollutant Removal by C. demersum and C. vulgaris
3.4. Effect of MFW on Plant and Algae Biomass
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elbagory, M.; El-Nahrawy, S.; Omara, A.E.D.; Eid, E.M.; Bachheti, A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Bachheti, R.K.; Kumar, P.; et al. Sustainable Bioconversion of Wetland Plant Biomass for Pleurotus ostreatus var. florida Cultivation: Studies on Proximate and Biochemical Characterization. Agriculture 2022, 12, 2095. [Google Scholar] [CrossRef]
- Werghemmi, W.; Abou Fayssal, S.; Mazouz, H.; Hajjaj, H.; Hajji, L. Olive and Green Tea Leaves Extract in Pleurotus ostreatus var. florida Culture Media: Effect on Mycelial Linear Growth Rate, Diameter and Growth Induction Index. IOP Conf. Ser. Earth Environ. Sci. 2022, 1090, 012020. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Impact of Spent Mushroom Substrates on the Fate of Pesticides in Soil, and Their Use for Preventing and/or Controlling Soil and Water Contamination: A Review. Toxics 2016, 4, 17. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Natasha; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef]
- Kumar, P.; Eid, E.M.; Taher, M.A.; El-Morsy, M.H.E.; Osman, H.E.M.; Al-Bakre, D.A.; Adelodun, B.; Abou Fayssal, S.; Andabaka, Ž.; Goala, M.; et al. Sustainable Upcycling of Mushroom Farm Wastewater through Cultivation of Two Water Ferns (Azolla spp.) in Stagnant and Flowing Tank Reactors. Horticulturae 2022, 8, 506. [Google Scholar] [CrossRef]
- EPA: United States Environmental Protection Agency. EPA Indicators: Phosphorus. 2023. Available online: https://www.epa.gov/national-aquatic-resource-surveys/indicators-phosphorus (accessed on 5 June 2023).
- Vigiak, O.; Grizzetti, B.; Udias-Moinelo, A.; Zanni, M.; Dorati, C.; Bouraoui, F.; Pistocchi, A. Predicting Biochemical Oxygen Demand in European Freshwater Bodies. Sci. Total Environ. 2019, 666, 1089–1105. [Google Scholar] [CrossRef]
- Soler, P.; Faria, M.; Barata, C.; Garcia-Galea, E.; Lorente, B.; Vinyoles, D. Improving Water Quality Does Not Guarantee Fish Health: Effects of Ammonia Pollution on the Behaviour of Wild-Caught Pre-Exposed Fish. PLoS ONE 2021, 16, e0243404. [Google Scholar] [CrossRef]
- EPA: United States Environmental Protection Agency. EPA Dissolved Oxygen and Biochemical Oxygen Demand. Available online: https://archive.epa.gov/water/archive/web/html/vms52.html (accessed on 5 May 2023).
- Rodríguez Pérez, S.; García Oduardo, N.; Bermúdez Savón, R.C.; Fernández Boizán, M.; Augur, C. Decolourisation of Mushroom Farm Wastewater by Pleurotus ostreatus. Biodegradation 2008, 19, 519–526. [Google Scholar] [CrossRef]
- Chong, C.; Purvis, P.; Lumis, G.; Holbein, B.E.; Voroney, R.P.; Zhou, H.; Liu, H.W.; Alam, M.Z. Using Mushroom Farm and Anaerobic Digestion Wastewaters as Supplemental Fertilizer Sources for Growing Container Nursery Stock in a Closed System. Bioresour. Technol. 2008, 99, 2050–2060. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, Plant Selection and Enhancement by Natural and Synthetic Agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Dai, Y.; Jia, C.; Liang, W.; Hu, S.; Wu, Z. Effects of the Submerged Macrophyte Ceratophyllum demersum L. on Restoration of a Eutrophic Waterbody and Its Optimal Coverage. Ecol. Eng. 2012, 40, 113–116. [Google Scholar] [CrossRef]
- Parnian, A.; Chorom, M.; Jaafarzadeh, N.; Dinarvand, M. Use of Two Aquatic Macrophytes for the Removal of Heavy Metals from Synthetic Medium. Ecohydrol. Hydrobiol. 2016, 16, 194–200. [Google Scholar] [CrossRef]
- Mahdi Al-Nabhan, E.A.; Al-Abbawy, D.A.H. Improving Wastewater Quality by Using Ceratophyllum demersum L. IOP Conf. Ser. Earth Environ. Sci. 2021, 910, 012086. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Badr, N.E.S.; El-Khatib, A.; Abo-El-Kassem, A. Heavy Metal Biomonitoring and Phytoremediation Potentialities of Aquatic Macrophytes in River Nile. Environ. Monit. Assess. 2012, 184, 1753–1771. [Google Scholar] [CrossRef] [PubMed]
- Khang, H.V.; Hatayama, M.; Inoue, C. Arsenic Accumulation by Aquatic Macrophyte Coontail (Ceratophyllum demersum L.) Exposed to Arsenite, and the Effect of Iron on the Uptake of Arsenite and Arsenate. Environ. Exp. Bot. 2012, 83, 47–52. [Google Scholar] [CrossRef]
- Narala, R.R.; Garg, S.; Sharma, K.K.; Thomas-Hall, S.R.; Deme, M.; Li, Y.; Schenk, P.M. Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System. Front. Energy Res. 2016, 4, 29. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Escapa, C.; Vázquez, N.C.; Noriega-Hevia, G.; Otero, M. Utilization of Non-Living Microalgae Biomass from Two Different Strains for the Adsorptive Removal of Diclofenac from Water. Water 2018, 10, 1401. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and Wastewater Treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Manickam, P. Phycoremediation of Industrial Wastewater: Challenges and Prospects. In Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and Greener Society; Elsevier: Amsterdam, The Netherlands, 2020; pp. 99–123. ISBN 9780128203187. [Google Scholar]
- Širić, I.; Abou Fayssal, S.; Adelodun, B.; Mioč, B.; Andabaka, Ž.; Bachheti, A.; Goala, M.; Kumar, P.; AL-Huqail, A.A.; Taher, M.A.; et al. Sustainable Use of CO2 and Wastewater from Mushroom Farm for Chlorella vulgaris Cultivation: Experimental and Kinetic Studies on Algal Growth and Pollutant Removal. Horticulturae 2023, 9, 308. [Google Scholar] [CrossRef]
- Emiliani, J.; Oyarce, W.G.L.; Bergara, C.D.; Salvatierra, L.M.; Novo, L.A.B.; Pérez, L.M. Variations in the Phytoremediation Efficiency of Metal-Pollutedwater with Salvinia biloba: Prospects and Toxicological Impacts. Water 2020, 12, 1737. [Google Scholar] [CrossRef]
- Mahajan, P.; Kaushal, J. Phytoremediation of Azo Dye Methyl Red by Macroalgae Chara vulgaris L.: Kinetic and Equilibrium Studies. Environ. Sci. Pollut. Res. 2020, 27, 26406–26418. [Google Scholar] [CrossRef] [PubMed]
- Latimer, G.W. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Adelodun, A.A.; Olajire, T.; Afolabi, N.O.; Akinwumiju, A.S.; Akinbobola, E.; Hassan, U.O. Phytoremediation Potentials of Eichhornia crassipes for Nutrients and Organic Pollutants from Textile Wastewater. Int. J. Phytoremediation 2021, 23, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Chromý, V.; Vinklárková, B.; Šprongl, L.; Bittová, M. The Kjeldahl Method as a Primary Reference Procedure for Total Protein in Certified Reference Materials Used in Clinical Chemistry—I—A Review of Kjeldahl Methods Adopted by Laboratory Medicine. Crit. Rev. Anal. Chem. 2015, 45, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Ajala, S.O.; Alexander, M.L. Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for Removal of Sulfate, Nitrate, and Phosphate in Wastewater. Int. J. Energy Environ. Eng. 2020, 11, 311–326. [Google Scholar] [CrossRef]
- Pathak, V.V.; Kothari, R.; Chopra, A.K.; Singh, D.P. Experimental and Kinetic Studies for Phycoremediation and Dye Removal by Chlorella pyrenoidosa from Textile Wastewater. J. Environ. Manag. 2015, 163, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Chanda, S.; Hossain, M.; Uddin, M.; Islam, M.; Sarwar, A.G. Fiber Yield, Physical and Biochemical Properties of Three Species of Sesbania. Bangladesh Agron. J. 2019, 21, 79–85. [Google Scholar] [CrossRef]
- Mansfield, S.D. Determination of Total Carbohydrates. In Methods to Study Litter Decomposition; Springer: Berlin/Heidelberg, Germany, 2005; pp. 75–83. ISBN 9781402034664. [Google Scholar]
- Sarkar, S.; Mondal, M.; Ghosh, P.; Saha, M.; Chatterjee, S. Quantification of Total Protein Content from Some Traditionally Used Edible Plant Leaves: A Comparative Study. J. Med. Plants Stud. 2020, 8, 166–170. [Google Scholar] [CrossRef]
- Parwin, R.; Karar Paul, K. Phytoremediation of Kitchen Wastewater Using Eichhornia crassipes. J. Environ. Eng. 2019, 145, 04019023. [Google Scholar] [CrossRef]
- Kumar, P.; Eid, E.M.; Al-Huqail, A.A.; Širić, I.; Adelodun, B.; Abou Fayssal, S.; Valadez-Blanco, R.; Goala, M.; Ajibade, F.O.; Choi, K.S.; et al. Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes. Horticulturae 2022, 8, 316. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Wang, Q.; Wei, P. Effect of PH on Growth and Lipid Content of Chlorella vulgaris Cultured in Biogas Slurry. Chin. J. Biotechnol. 2010, 26, 1074–1079. [Google Scholar]
- Dawson, H. Ceratophyllum demersum (Coontail). CABI Compend. 2022. [Google Scholar] [CrossRef]
- Barahoei, M.; Hatamipour, M.S.; Afsharzadeh, S. Direct Brackish Water Desalination Using Chlorella vulgaris Microalgae. Process Saf. Environ. Prot. 2021, 148, 237–248. [Google Scholar] [CrossRef]
- Brix, K.V.; Gerdes, R.; Curry, N.; Kasper, A.; Grosell, M. The Effects of Total Dissolved Solids on Egg Fertilization and Water Hardening in Two Salmonids—Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma). Aquat. Toxicol. 2010, 97, 109–115. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Zhu, J.; Li, C.; Chen, G. A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes. Int. J. Env. Res. Public Health 2023, 20, 3429. [Google Scholar] [CrossRef]
- Department of Natural Resources. Chapter NR 217 Effluent Standards and Limitations for Phosphorus. Available online: http://water.epa.gov/scitech/swguidance/standards/wqslibrary/upload/wiwqs_nr217.pdf%5Cnhttp://nlquery.epa.gov/epasearch/epasearch?querytext=Chapter+NR+217&typeofsearch=area&cluster=no&areaname=WQS+Repository&filter=sample4filt.hts&fld=%7Cwater.epa.gov/sci (accessed on 10 June 2023).
- Swistock, B. Coontail—The Pennsylvania State University. Available online: https://extension.psu.edu/coontail (accessed on 10 June 2023).
- Szymańska-Pulikowska, A.; Wdowczyk, A. Changes of a Landfill Leachate Toxicity as a Result of Treatment with Phragmites australis and Ceratophyllum demersum–A Case Study. Front. Environ. Sci. 2021, 9, 739562. [Google Scholar] [CrossRef]
- Wdowczyk, A.; Szymańska-Pulikowska, A. Micro- and Macroelements Content of Plants Used for Landfill Leachate Treatment Based on Phragmites australis and Ceratophyllum demersum. Int. J. Environ. Res. Public Health 2022, 19, 6035. [Google Scholar] [CrossRef] [PubMed]
- Petrů, A.; Vymazal, J. Potential of Submerged Vegetation to Remove Nutrients from Eutrophic Fishponds. Sci. Agric. Bohem. 2018, 49, 313–324. [Google Scholar] [CrossRef]
- Bai, J.; Sun, X.; Xu, C.; Ma, X.; Huang, Y.; Fan, Z.; Cao, X. Effects of Sewage Sludge Application on Plant Growth and Soil Characteristics at a Pinus sylvestris var. mongolica Plantation in Horqin Sandy Land. Forests 2022, 13, 984. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Y.-P.; Zhang, T.-T.; Zhao, Y.; Shen, Y.; Huang, L.; Gao, X.; Guo, J.-S. The Logistic Growth of Duckweed (Lemna Minor) and Kinetics of Ammonium Uptake. Environ. Technol. 2014, 35, 562–567. [Google Scholar] [CrossRef]
- Ntakiyiruta, P.; Briton, B.G.H.; Nsavyimana, G.; Adouby, K.; Nahimana, D.; Ntakimazi, G.; Reinert, L. Optimization of the Phytoremediation Conditions of Wastewater in Post-Treatment by Eichhornia crassipes and Pistia stratiotes: Kinetic Model for Pollutants Removal. Environ. Technol. 2022, 43, 1805–1818. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, V.; Kumar, P.; Kumar, P. Kinetics and Prediction Modeling of Heavy Metal Phytoremediation from Glass Industry Effluent by Water Hyacinth (Eichhornia crassipes). Int. J. Environ. Sci. Technol. 2022, 19, 5481–5492. [Google Scholar] [CrossRef]
- Park, J.; Kumar, G.; Bakonyi, P.; Peter, J.; Nemestóthy, N.; Koter, S.; Kujawski, W.; Bélafi-Bakó, K.; Pientka, Z.; Muñoz, R.; et al. Comparative Evaluation of CO2 Fixation of Microalgae Strains at Various CO2 Aeration Conditions. Waste Biomass Valorization 2021, 12, 2999–3007. [Google Scholar] [CrossRef]
- Baviskar, W.J.; Lawar, V.V.; Khandelwal, R.S. Dual Process of Bio-Phytoremediation of Arsenic from Contaminated Industrial Samples: An Alternative to Traditional Methods. J. Bioremediat. Biodegrad. 2016, 7, 1–5. [Google Scholar] [CrossRef]
- Wei, S.; Pan, S. Phytoremediation for Soils Contaminated by Phenanthrene and Pyrene with Multiple Plant Species. J. Soils Sediments 2010, 10, 886–894. [Google Scholar] [CrossRef]
- Huang, X.D.; El-Alawi, Y.; Gurska, J.; Glick, B.R.; Greenberg, B.M. A Multi-Process Phytoremediation System for Decontamination of Persistent Total Petroleum Hydrocarbons (TPHs) from Soils. Microchem. J. 2005, 81, 139–147. [Google Scholar] [CrossRef]
Properties | Borewell Water | Mushroom Farm Wastewater | Student’s t-Test * | Standard Limits (BIS) ^ | |
---|---|---|---|---|---|
p-Value | t-Statistics | ||||
pH | 7.20 ± 0.05 | 8.25 ± 0.13 | <0.01 | 13.05 | 5.50–9.00 |
EC (dS/m) | 0.18 ± 0.03 | 3.80 ± 0.09 | <0.01 | 66.09 | - |
TDS (mg/L) | 86.08 ± 1.52 | 1503.60 ± 21.38 | <0.01 | 114.54 | 1900 |
BOD (mg/L) | 3.15 ± 0.10 | 1240.26 ± 18.70 | <0.01 | 114.58 | 100 |
COD (mg/L) | 9.32 ± 0.26 | 2813.05 ± 45.64 | <0.01 | 106.40 | 250 |
TN (mg/L) | 1.12 ± 0.02 | 355.86 ± 4.89 | <0.01 | 125.64 | 100 |
TP (mg/L) | 2.07 ± 0.05 | 160.18 ± 8.12 | <0.01 | 33.72 | - |
Properties | Variable | Treatments | |||
---|---|---|---|---|---|
Control: CD | Control: CV | T1: CD | T2: CV | ||
pH | Initial | 7.20 ± 0.05 a | 8.25 ± 0.13 a | ||
Final | 6.16 ± 0.08 c | 6.34 ± 0.06 b | 6.30 ± 0.07 c | 6.65 ± 0.04 b | |
EC (dS/m) | Initial | 0.18 ± 0.03 a | 3.80 ± 0.09 a | ||
Final | 0.11 ± 0.02 ab | 0.13 ± 0.05 a | 1.05 ± 0.06 c | 1.30 ± 0.04 b | |
TDS (mg/L) | Initial | 86.08 ± 1.52 a | 1503.60 ± 21.38 a | ||
Final | 30.80 ± 0.94 c | 38.83 ± 0.66 b | 210.60 ± 7.81 c | 397.02 ± 14.04 b | |
BOD (mg/L) | Initial | 3.15 ± 0.10 a | 1240.26 ± 18.70 a | ||
Final | 1.30 ± 0.06 c | 1.50 ± 0.08 b | 210.14 ± 7.81 c | 387.02 ± 10.30 b | |
COD (mg/L) | Initial | 9.32 ± 0.26 a | 2813.05 ± 45.64 a | ||
Final | 3.71 ± 0.10 c | 4.10 ± 0.17 b | 376.30 ± 10.79 c | 502.90 ± 25.11 b | |
TN (mg/L) | Initial | 1.12 ± 0.02 a | 355.86 ± 4.89 a | ||
Final | 0.68 ± 0.05 b | 0.72 ± 0.03 b | 55.70 ± 5.53 c | 68.10 ± 6.07 b | |
TP (mg/L) | Initial | 2.07 ± 0.05 a | 160.18 ± 8.12 a | ||
Final | 0.94 ± 0.04 bc | 1.04 ± 0.07 b | 39.08 ± 3.94 c | 54.17 ± 4.33 b |
Properties | Variable | Treatments | |||
---|---|---|---|---|---|
Control: CD | Control: CV | T1: CD | T2: CV | ||
pH | y | −0.0048x + 0.8583 | −0.0039x + 0.8557 | −0.0085x + 0.9259 | −0.0068x + 0.924 |
R2 | 0.9297 | 0.8317 | 0.9297 | 0.9275 | |
k | 0.0048 | 0.0039 | 0.0085 | 0.0068 | |
EC (dS/m) | y | −0.0124x − 0.7739 | −0.0092x − 0.7422 | −0.0411x + 0.6474 | −0.0339x + 0.6334 |
R2 | 0.9199 | 0.9872 | 0.9016 | 0.9173 | |
k (dS/m/day) | 0.0124 | 0.0092 | 0.0411 | 0.0339 | |
TDS (mg/L) | y | −0.0314x + 1.9793 | −0.0248x + 1.9685 | −0.0604x + 3.2505 | −0.0432x + 3.2143 |
R2 | 0.9418 | 0.9280 | 0.9334 | 0.8846 | |
k (mg/L/day) | 0.0314 | 0.0248 | 0.0604 | 0.0432 | |
BOD (mg/L) | y | −0.0279x + 0.5488 | −0.0235x + 0.5491 | −0.0564x + 3.1630 | −0.0371x + 3.1292 |
R2 | 0.9015 | 0.8647 | 0.9208 | 0.9059 | |
k (mg/L/day) | 0.0279 | 0.0235 | 0.0564 | 0.0371 | |
COD (mg/L) | y | −0.0292x + 0.9919 | −0.0261x + 1.0027 | −0.0622x + 3.5108 | −0.0519x + 3.5144 |
R2 | 0.8997 | 0.9212 | 0.9354 | 0.9452 | |
k (mg/L/day) | 0.0292 | 0.0261 | 0.0622 | 0.0519 | |
TN (mg/L) | y | −0.0154x + 0.0692 | −0.0133x + 0.0692 | −0.0589x + 2.6234 | −0.0530x + 2.6367 |
R2 | 0.9364 | 0.9512 | 0.9215 | 0.9090 | |
k (mg/L/day) | 0.0154 | 0.0133 | 0.0589 | 0.0530 | |
TP (mg/L) | y | −0.0231x + 0.3366 | −0.0200x + 0.3329 | −0.0438x + 2.2708 | −0.0318x + 2.2649 |
R2 | 0.9752 | 0.9804 | 0.9304 | 0.9456 | |
k (mg/L/day) | 0.0231 | 0.0200 | 0.0438 | 0.0318 |
Parameters | Control: CD | Control: CV | T1: CD | T2: CV |
---|---|---|---|---|
Fresh Weight (g) | 92.50 ± 2.25 c | 13.38 ± 0.40 a | 120.28 ± 6.46 d | 18.45 ± 1.02 b |
Dry Weight (g) | 14.87 ± 0.31 c | 2.01 ± 0.05 a | 19.04 ± 0.74 d | 2.66 ± 0.12 b |
Chlorophyll content (mg/g) | 3.50 ± 0.07 a | 5.10 ± 0.06 b | 5.82 ± 0.12 c | 6.40 ± 0.14 d |
Carotenoids (mg/g) | 0.21 ± 0.01 a | 1.90 ± 0.03 b | 0.24 ± 0.03 a | 2.14 ± 0.07 c |
Carbohydrates (%) | 35.50 ± 1.13 b | 28.47 ± 2.16 a | 39.17 ± 2.68 c | 31.61 ± 1.97 ab |
Proteins (%) | 9.70 ± 0.48 a | 34.10 ± 0.29 c | 13.84 ± 1.63 b | 37.49 ± 1.02 d |
Lipid (%) | 1.10 ± 0.08 a | 13.92 ± 1.03 c | 2.67 ± 0.11 b | 14.91 ± 0.59 c |
Total ash (%) | 7.06 ± 0.12 c | 6.16 ± 0.07 a | 8.25 ± 0.09 d | 6.70 ± 0.14 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Širić, I.; Taher, M.A.; Kumar, P.; Abou Fayssal, S.; Bachheti, R.K.; Mioč, B.; Andabaka, Ž.; Singh, J.; Eid, E.M. Comparative Assessment of Treatment of Mushroom Farm Wastewater Using Plant (Ceratophyllum demersum L.) and Algae (Chlorella vulgaris): Experimental and Kinetic Studies. Horticulturae 2023, 9, 1081. https://doi.org/10.3390/horticulturae9101081
Širić I, Taher MA, Kumar P, Abou Fayssal S, Bachheti RK, Mioč B, Andabaka Ž, Singh J, Eid EM. Comparative Assessment of Treatment of Mushroom Farm Wastewater Using Plant (Ceratophyllum demersum L.) and Algae (Chlorella vulgaris): Experimental and Kinetic Studies. Horticulturae. 2023; 9(10):1081. https://doi.org/10.3390/horticulturae9101081
Chicago/Turabian StyleŠirić, Ivan, Mostafa A. Taher, Pankaj Kumar, Sami Abou Fayssal, Rakesh Kumar Bachheti, Boro Mioč, Željko Andabaka, Jogendra Singh, and Ebrahem M. Eid. 2023. "Comparative Assessment of Treatment of Mushroom Farm Wastewater Using Plant (Ceratophyllum demersum L.) and Algae (Chlorella vulgaris): Experimental and Kinetic Studies" Horticulturae 9, no. 10: 1081. https://doi.org/10.3390/horticulturae9101081
APA StyleŠirić, I., Taher, M. A., Kumar, P., Abou Fayssal, S., Bachheti, R. K., Mioč, B., Andabaka, Ž., Singh, J., & Eid, E. M. (2023). Comparative Assessment of Treatment of Mushroom Farm Wastewater Using Plant (Ceratophyllum demersum L.) and Algae (Chlorella vulgaris): Experimental and Kinetic Studies. Horticulturae, 9(10), 1081. https://doi.org/10.3390/horticulturae9101081