Sustainable Use of CO2 and Wastewater from Mushroom Farm for Chlorella vulgaris Cultivation: Experimental and Kinetic Studies on Algal Growth and Pollutant Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design and Operation
2.3. Analytical Methods
2.4. Data Analysis
3. Results and Discussion
3.1. CO2 Generation, Fixation and Biomass Productivity of C. vulgaris
3.2. Results for Growth Kinetics of C. vulgaris
3.3. Proximate and Lipid Profile of Cultivated C. vulgaris
3.4. Removal of Pollutants from Mushroom Farm Wastewater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Easterbrook, D.J. Greenhouse Gases. In Evidence-Based Climate Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 163–173. [Google Scholar]
- Kweku, D.; Bismark, O.; Maxwell, A.; Desmond, K.; Danso, K.; Oti-Mensah, E.; Quachie, A.; Adormaa, B. Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. J. Sci. Res. Rep. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Aghion, P. Path Dependence, Innovation and the Economics of Climate Change. In Handbook on Green Growth; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 67–83. ISBN 978-1-78811-068-6. [Google Scholar]
- EPA. Sources of Greenhouse Gas Emissions; U.S. Environmental Protection Agency, EPA Headquarter: Washington, DC, USA, 2022. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 28 January 2023).
- Waheed, R.; Chang, D.; Sarwar, S.; Chen, W. Forest, Agriculture, Renewable Energy, and CO2 Emission. J. Clean. Prod. 2018, 172, 4231–4238. [Google Scholar] [CrossRef]
- Kapitonov, I.A. Low-Carbon Economy as the Main Factor of Sustainable Development of Energy Security. Ind. Eng. Manag. Syst. 2020, 19, 3–13. [Google Scholar] [CrossRef]
- Robinson, B.; Winans, K.; Kendall, A.; Dlott, J.; Dlott, F. A Life Cycle Assessment of Agaricus bisporus Mushroom Production in the USA. Int. J. Life Cycle Assess 2019, 24, 456–467. [Google Scholar] [CrossRef] [Green Version]
- SureHarvest. The Mushroom Sustainability Story: Water, Energy, and Climate Environmental Metrics. 2017. Available online: https://www.mushroomcouncil.com/wp-content/uploads/2017/12/Mushroom-Sustainability-Story-2017.pdf (accessed on 28 January 2023).
- Ahlawat, O.P. Crop Management of White Button Mushroom (Agaricus bisporus). In Mushrooms Cultivation, Marketing and Consumption; Directorate of Mushroom Research (ICAR): Chambaghat, India, 2019; pp. 67–85. [Google Scholar]
- Kumar, P.; Eid, E.M.; Taher, M.A.; El-Morsy, M.H.E.; Osman, H.E.M.; Al-Bakre, D.A.; Adelodun, B.; Abou Fayssal, S.; Andabaka, Ž.; Goala, M.; et al. Sustainable Upcycling of Mushroom Farm Wastewater through Cultivation of Two Water Ferns (Azolla spp.) in Stagnant and Flowing Tank Reactors. Horticulturae 2022, 8, 506. [Google Scholar] [CrossRef]
- Rodríguez Pérez, S.; García Oduardo, N.; Bermúdez Savón, R.C.; Fernández Boizán, M.; Augur, C. Decolourisation of Mushroom Farm Wastewater by Pleurotus ostreatus. Biodegradation 2008, 19, 519–526. [Google Scholar] [CrossRef]
- Woertz, I.; Fulton, L.; Lundquist, T. Nutrient Removal & Greenhouse Gas Abatement with CO2 Supplemented Algal High Rate Ponds. Proc. Water Environ. Fed. 2009, 2009, 5469–5481. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.N.; Fayyaz, A.; Sohail, N.F.; Khokhar, M.F.; Baqar, M.; Yasar, A.; Rasool, K.; Nazir, A.; Raja, M.U.F.; Rehan, M.; et al. CO2 Utilization: Turning Greenhouse Gas into Fuels and Valuable Products. J. Environ. Manag. 2020, 260, 110059. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural Opportunities to Mitigate Greenhouse Gas Emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Arora, K.; Kaur, P.; Kumar, P.; Singh, A.; Patel, S.K.S.; Li, X.; Yang, Y.H.; Bhatia, S.K.; Kulshrestha, S. Valorization of Wastewater Resources into Biofuel and Value-Added Products Using Microalgal System. Front. Energy Res. 2021, 9, 646571. [Google Scholar] [CrossRef]
- Ryu, H.J.; Oh, K.K.; Kim, Y.S. Optimization of the Influential Factors for the Improvement of CO2 Utilization Efficiency and CO2 Mass Transfer Rate. J. Ind. Eng. Chem. 2009, 15, 471–475. [Google Scholar] [CrossRef]
- Shanthakumar, J.U.S.; Nhat, P.V.H.; Ngo, H.H.; Guo, W.S.; Chang, S.W.; Nguyen, D.D.; Nguyen, P.D.; Bui, X.T.; Zhang, X.B.; Guo, J.B.; et al. Perspectives on the Feasibility of Using Microalgae for Industrial Wastewater Treatment. Bioresour. Technol. 2018, 217, 265–284. [Google Scholar]
- De-Bashan, L.E.; Trejo, A.; Huss, V.A.R.; Hernandez, J.P.; Bashan, Y. Chlorella sorokiniana UTEX 2805, a Heat and Intense, Sunlight-Tolerant Microalga with Potential for Removing Ammonium from Wastewater. Bioresour. Technol. 2008, 99, 4980–4989. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Oh, H.S.; Oh, H.M.; Kim, H.S.; Ahn, C.Y. Two-Phase Photoperiodic Cultivation of Algal-Bacterial Consortia for High Biomass Production and Efficient Nutrient Removal from Municipal Wastewater. Bioresour. Technol. 2016, 200, 867–875. [Google Scholar] [CrossRef]
- Asadi, P.; Rad, H.A.; Qaderi, F. Comparison of Chlorella vulgaris and Chlorella sorokiniana Pa.91 in Post Treatment of Dairy Wastewater Treatment Plant Effluents. Environ. Sci. Pollut. Res. 2019, 26, 29473–29489. [Google Scholar] [CrossRef]
- Qu, W.; Loke Show, P.; Hasunuma, T.; Ho, S.H. Optimizing Real Swine Wastewater Treatment Efficiency and Carbohydrate Productivity of Newly Microalga Chlamydomonas sp. QWY37 Used for Cell-Displayed Bioethanol Production. Bioresour. Technol. 2020, 305, 123072. [Google Scholar] [CrossRef]
- Yazdi, M.; Sayadi, M.H.; Farsad, F. Removal of Penicillin in Aqueous Solution Using Chlorella vulgaris and Spirulina plantensis from Hospital Wastewater. Desalination Water Treat. 2018, 123, 315–320. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, V.; Kothari, R.; Kumar, P. Experimental and Optimization Studies on Phycoremediation of Dairy Wastewater and Biomass Production Efficiency of Chlorella vulgaris Isolated from Ganga River, Haridwar, India. Environ. Sci. Pollut. Res. 2022, 29, 74643–74654. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Goala, M.; Singh, J.; Kumar, P. Integrated Use of Treated Dairy Wastewater and Agro-Residue for Agaricus bisporus Mushroom Cultivation: Experimental and Kinetics Studies. Biocatal. Agric. Biotechnol. 2021, 32, 101940. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- AL-Huqail, A.A.; Kumar, P.; Eid, E.M.; Taher, M.A.; Kumar, P.; Adelodun, B.; Andabaka, Ž.; Mioč, B.; Držaić, V.; Bachheti, A.; et al. Phytoremediation of Composite Industrial Effluent Using Sacred Lotus (Nelumbo nucifera Gaertn): A Lab-Scale Experimental Investigation. Sustainability 2022, 14, 9500. [Google Scholar] [CrossRef]
- Pathak, V.V.; Kothari, R.; Chopra, A.K.; Singh, D.P. Experimental and Kinetic Studies for Phycoremediation and Dye Removal by Chlorella pyrenoidosa from Textile Wastewater. J. Environ. Manag. 2015, 163, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kumar, G.; Bakonyi, P.; Peter, J.; Nemestóthy, N.; Koter, S.; Kujawski, W.; Bélafi-Bakó, K.; Pientka, Z.; Muñoz, R.; et al. Comparative Evaluation of CO2 Fixation of Microalgae Strains at Various CO2 Aeration Conditions. Waste Biomass Valorization 2021, 12, 2999–3007. [Google Scholar] [CrossRef]
- Rana, M.S.; Bhushan, S.; Prajapati, S.K. New Insights on Improved Growth and Biogas Production Potential of Chlorella pyrenoidosa through Intermittent Iron Oxide Nanoparticle Supplementation. Sci. Rep. 2020, 10, 14119. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Shaltout, K.H.; Alamri, S.A.M.; Alrumman, S.A.; Hussain, A.A.; Sewelam, N.; El-Bebany, A.F.; Alfarhan, A.H.; Picó, Y.; Barcelo, D. Prediction Models Based on Soil Properties for Evaluating the Uptake of Eight Heavy Metals by Tomato Plant (Lycopersicon esculentum Mill.) Grown in Agricultural Soils Amended with Sewage Sludge. J. Environ. Chem. Eng. 2021, 9, 105977. [Google Scholar] [CrossRef]
- Jang, M.J.; Ha, T.M.; Lee, Y.H.; Ju, Y.C. Growth Characteristics of Variety of Oyster Mushroom (Pleurotus ostreatus) as Affected by Number of Air Exchanges. J. Bio-Environ. Control 2009, 18, 208–214. [Google Scholar]
- Jung, D.H.; Son, J.E. CO2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces. Sustainability 2021, 13, 5434. [Google Scholar] [CrossRef]
- Lam, M.K.; Yusoff, M.I.; Uemura, Y.; Lim, J.W.; Khoo, C.G.; Lee, K.T.; Ong, H.C. Cultivation of Chlorella vulgaris Using Nutrients Source from Domestic Wastewater for Biodiesel Production: Growth Condition and Kinetic Studies. Renew. Energy 2017, 103, 197–207. [Google Scholar] [CrossRef]
- Ajala, S.O.; Alexander, M.L. Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for Removal of Sulfate, Nitrate, and Phosphate in Wastewater. Int. J. Energy Environ. Eng. 2020, 11, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Chetpattananondh, P.; Cheng, C.-K.; Sami, S.K.; Khan, M.N. Drying Characteristics and Impacts on Quality of Marine Chlorella sp. Biomass and Extracts for Fuel Applications. J. Environ. Chem. Eng. 2021, 9, 106386. [Google Scholar] [CrossRef]
- De Melo, R.G.; De Andrade, A.F.; Bezerra, R.P.; Correia, D.S.; De Souza, V.C.; Brasileiro-Vidal, A.C.; Viana Marques, D.d.A.; Porto, A.L.F. Chlorella vulgaris Mixotrophic Growth Enhanced Biomass Productivity and Reduced Toxicity from Agro-Industrial by-Products. Chemosphere 2018, 204, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, S.; Gao, X.; Altarawneh, M.; Hayashi, J.; Zhang, M.; Dlugogorski, B.Z. Analytical Procedure for Proximate Analysis of Algal Biomass: Case Study for Spirulina platensis and Chlorella vulgaris. Energy Fuels 2020, 34, 474–482. [Google Scholar] [CrossRef]
- De Francisci, D.; Su, Y.; Iital, A.; Angelidaki, I. Evaluation of Microalgae Production Coupled with Wastewater Treatment. Environ. Technol. 2018, 39, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Li, H.; Wang, Q. A Novel One-Step Method for Oil-Rich Biomass Production and Harvesting by Co-Cultivating Microalgae with Filamentous Fungi in Molasses Wastewater. Bioresour. Technol. 2019, 275, 35–43. [Google Scholar] [CrossRef]
- Silva, D.A.; Cardoso, L.G.; De Jesus Silva, J.S.; De Souza, C.O.; Lemos, P.V.F.; De Almeida, P.F.; Ferreira, E.d.S.; Lombardi, A.T.; Druzian, J.I. Strategy for the Cultivation of Chlorella vulgaris with High Biomass Production and Biofuel Potential in Wastewater from the Oil Industry. Environ. Technol. Innov. 2022, 25, 102204. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Pang, H.; Yu, C.; Li, C.; Wang, J.-H.; Chi, Z.-Y.; Xu, Y.-P.; Li, S.-Y.; Zhang, Q.; Che, J. Growth and Nutrients Removal Characteristics of Attached Chlorella sp. Using Synthetic Municipal Secondary Effluent with Varied Hydraulic Retention Times and Biomass Harvest Intervals. Algal Res. 2022, 61, 102600. [Google Scholar] [CrossRef]
- Josephine, A.; Kumar, T.S.; Surendran, B.; Rajakumar, S.; Kirubagaran, R.; Dharani, G. Evaluating the Effect of Various Environmental Factors on the Growth of the Marine Microalgae, Chlorella vulgaris. Front. Mar. Sci. 2022, 9, 954622. [Google Scholar] [CrossRef]
- Li, F.; Amenorfenyo, D.K.; Zhang, Y.; Zhang, N.; Li, C.; Huang, X. Cultivation of Chlorella vulgaris in Membrane-Treated Industrial Distillery Wastewater: Growth and Wastewater Treatment. Front. Environ. Sci. 2021, 9, 770633. [Google Scholar] [CrossRef]
- Shrestha, N.; Dandinpet, K.K.; Schneegurt, M.A. Effects of Nitrogen and Phosphorus Limitation on Lipid Accumulation by Chlorella kessleri Str. UTEX 263 Grown in Darkness. J. Appl. Phycol. 2020, 32, 2795–2805. [Google Scholar] [CrossRef]
- Belaiba, A.; Bouharat, D.; Malvis, A.; Hodaifa, G. Feasibility of the Hybrid Use of Chlorella vulgaris Culture with the Conventional Biological Treatment in Urban Wastewater Treatment Plants. Processes 2021, 9, 1640. [Google Scholar] [CrossRef]
- Adamczyk, M.; Lasek, J.; Skawińska, A. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Appl. Biochem. Biotechnol. 2016, 179, 1248–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Chen, Z.; Xiao, Y.; Yuan, M.; Zhou, C.; Liu, G.; Fang, J.; Yang, B. Biochemical and Morphological Changes Triggered by Nitrogen Stress in the Oleaginous Microalga Chlorella vulgaris. Microorganisms 2022, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Širić, I.; Eid, E.M.; Taher, M.A.; El-Morsy, M.H.E.; Osman, H.E.M.; Kumar, P.; Adelodun, B.; Abou Fayssal, S.; Mioč, B.; Andabaka, Ž.; et al. Combined Use of Spent Mushroom Substrate Biochar and PGPR Improves Growth, Yield, and Biochemical Response of Cauliflower (Brassica oleracea var. botrytis): A Preliminary Study on Greenhouse Cultivation. Horticulturae 2022, 8, 830. [Google Scholar] [CrossRef]
- Tan, Y.H.; Davis, J.A.; Fujikawa, K.; Ganesh, N.V.; Demchenko, A.V.; Stine, K.J. Surface Area and Pore Size Characteristics of Nanoporous Gold Subjected to Thermal, Mechanical, or Surface Modification Studied Using Gas Adsorption Isotherms, Cyclic Voltammetry, Thermogravimetric Analysis, and Scanning Electron Microscopy. J. Mater. Chem. 2012, 22, 6733–6745. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Ur Rehman, I. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Kumar, P.; Eid, E.M.; Al-Huqail, A.A.; Širić, I.; Adelodun, B.; Abou Fayssal, S.; Valadez-Blanco, R.; Goala, M.; Ajibade, F.O.; Choi, K.S.; et al. Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes. Horticulturae 2022, 8, 316. [Google Scholar] [CrossRef]
- Alalawy, A.I.A.; Sh Alabdraba, W.M.; Omer, E.A. Nutrients and Organic Matters Removal of Hospitals Wastewater by Microalgae. J. Phys. Conf. Ser. 2019, 1294, 072002. [Google Scholar] [CrossRef] [Green Version]
- Toyama, T.; Kasuya, M.; Hanaoka, T.; Kobayashi, N.; Tanaka, Y.; Inoue, D.; Sei, K.; Morikawa, M.; Mori, K. Growth Promotion of Three Microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in Situ Indigenous Bacteria in Wastewater Effluent. Biotechnol. Biofuels 2018, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-A.; Lee, N.; Oh, H.-M.; Ahn, C.-Y. Stepwise Treatment of Undiluted Raw Piggery Wastewater, Using Three Microalgal Species Adapted to High Ammonia. Chemosphere 2021, 263, 127934. [Google Scholar] [CrossRef]
- Lim, S.-L.; Chu, W.-L.; Phang, S.-M. Use of Chlorella vulgaris for Bioremediation of Textile Wastewater. Bioresour. Technol. 2010, 101, 7314–7322. [Google Scholar] [CrossRef] [PubMed]
- Malla, F.A.; Khan, S.A.; Rashmi; Sharma, G.K.; Gupta, N.; Abraham, G. Phycoremediation Potential of Chlorella minutissima on Primary and Tertiary Treated Wastewater for Nutrient Removal and Biodiesel Production. Ecol. Eng. 2015, 75, 343–349. [Google Scholar] [CrossRef]
Model | Variable | Experimental Treatments | ||
---|---|---|---|---|
Control | 50% | 100% | ||
Experimental | Y | 0.972 ± 0.025 | 2.550 ± 0.073 * | 2.340 ± 0.104 * |
Logistic | y | 1.002 | 2.580 | 2.247 |
P | 1.126 ± 0.045 | 2.646 ± 0.021 | 2.297 ± 0.034 | |
R2 | 0.9938 | 0.9992 | 0.9959 | |
xc | 8.96 ± 0.36 | 7.67 ± 0.06 | 6.48 ± 0.12 | |
x | 0.29 ± 0.01 | 0.43 ± 0.01 | 0.48 ± 0.02 | |
ME | 0.97 | 0.97 | 0.99 | |
RMSE | 0.03 | 0.03 | 0.06 | |
Modified Gompertz | y | 1.026 | 2.645 | 2.349 |
P | 1.499 ± 0.189 | 2.906 ± 0.081 | 2.445 ± 0.051 | |
R2 | 0.9876 | 0.9964 | 0.9920 | |
xc | 8.81 ± 1.08 | 6.56 ± 0.16 | 5.36 ± 0.12 | |
x | 0.13 ± 0.01 | 0.25 ± 0.01 | 0.29 ± 0.01 | |
ME | 0.95 | 0.91 | 0.99 | |
RMSE | 0.05 | 0.09 | 0.07 |
Parameters | Experimental Treatments | ||
---|---|---|---|
Control | 50% | 100% | |
Moisture content (%) | 72.08 ± 1.85 | 73.16 ± 0.71 ns | 72.53 ± 0.46 ns |
Dry Weight (g) | 0.27 ± 0.03 | 0.68 ± 0.02 * | 0.64 ± 0.03 * |
Ash (%) | 2.25 ± 0.06 | 2.31 ± 0.05 ns | 2.28 ± 0.04 ns |
Protein (%) | 43.98 ± 0.32 | 48.71 ± 0.62 * | 46.09 ± 0.75 * |
Carbohydrate (%) | 17.10 ± 0.09 | 18.05 ± 0.12 * | 17.68 ± 0.24 * |
Lipid (%) | 6.85 ± 0.14 | 8.61 ± 0.28 * | 7.34 ± 0.19 * |
Carbon (%) | 51.40 ± 0.91 | 61.84 ± 1.40 * | 55.39 ± 0.82 * |
Oxygen (%) | 21.87 ± 0.15 | 28.82 ± 0.70 * | 25.87 ± 0.51 * |
Nitrogen (%) | 6.40 ± 0.07 | 7.06 ± 0.05 * | 6.93 ± 0.09 * |
Parameters | Variable | Experimental Treatments | ||
---|---|---|---|---|
Control | 50% | 100% | ||
Total Dissolved Solids (TDS: mg/L) | Initial | 98.28 ± 1.63 | 982.02 ± 8.09 | 2108.72 ± 24.05 |
Final | 23.45 ± 0.70 * | 157.08 ± 12.42 * | 486.08 ± 19.62 * | |
Removal Efficiency | 76.14 ± 0.13 | 84.00 ± 1.37 | 76.95 ± 2.03 | |
Equation | y = −0.0437x + 2.013 | y = −0.0559x + 3.0717 | y = −0.0464x + 3.3745 | |
R2 | 0.9439 | 0.9288 | 0.9263 | |
Biochemical Oxygen Demand (BOD: mg/L) | Initial | 3.10 ± 0.09 | 623.08 ± 20.40 | 1138.05 ± 14.50 |
Final | 1.45 ± 0.13 * | 61.24 ± 7.28 * | 240.25 ± 11.36 * | |
Removal Efficiency | 53.23 ± 1.67 | 90.17 ± 2.42 | 78.89 ± 0.95 | |
Equation | y = −0.0240x + 0.534 | y = −0.0694x + 2.9222 | y = −0.0461x + 3.09 | |
R2 | 0.8869 | 0.9426 | 0.9731 | |
Chemical Oxygen Demand (mg/L) | Initial | 12.27 ± 0.10 | 1270.25 ± 45.09 | 2608.56 ± 81.45 |
Final | 4.90 ± 0.23 * | 107.57 ± 8.12 * | 355.00 ± 19.04 * | |
Removal Efficiency | 60.07 ± 1.08 | 91.53 ± 0.97 | 86.39 ± 1.30 | |
Equation | y = −0.0273x + 1.0929 | y = −0.0777x + 3.2178 | y = −0.0606x + 3.5061 | |
R2 | 0.9647 | 0.9247 | 0.9482 | |
Total Nitrogen (TN: mg/L) | Initial | 1.09 ± 0.02 | 168.80 ± 5.14 | 310.42 ± 9.11 |
Final | 0.25 ± 0.04 * | 23.18 ± 3.67 * | 60.28 ± 6.84 * | |
Removal Efficiency | 77.06 ± 0.05 | 86.27 ± 1.60 | 80.58 ± 2.09 | |
Equation | y = −0.0457x + 0.0929 | y = −0.0612x + 2.297 | y = −0.0512x + 2.5844 | |
R2 | 0.9391 | 0.9409 | 0.9137 | |
Total Phosphorus (TP: mg/L) | Initial | 2.80 ± 0.08 | 67.24 ± 2.58 | 141.56 ± 5.64 |
Final | 0.82 ± 0.10 * | 3.91 ± 1.02 * | 12.44 ± 2.31 * | |
Removal Efficiency | 70.71 ± 1.27 | 94.19 ± 2.33 | 91.21 ± 0.97 | |
Equation | y = −0.0383x + 0.491 | y = −0.0815x + 1.9904 | y = −0.0731x + 2.2742 | |
R2 | 0.9367 | 0.9358 | 0.9440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Širić, I.; Abou Fayssal, S.; Adelodun, B.; Mioč, B.; Andabaka, Ž.; Bachheti, A.; Goala, M.; Kumar, P.; AL-Huqail, A.A.; Taher, M.A.; et al. Sustainable Use of CO2 and Wastewater from Mushroom Farm for Chlorella vulgaris Cultivation: Experimental and Kinetic Studies on Algal Growth and Pollutant Removal. Horticulturae 2023, 9, 308. https://doi.org/10.3390/horticulturae9030308
Širić I, Abou Fayssal S, Adelodun B, Mioč B, Andabaka Ž, Bachheti A, Goala M, Kumar P, AL-Huqail AA, Taher MA, et al. Sustainable Use of CO2 and Wastewater from Mushroom Farm for Chlorella vulgaris Cultivation: Experimental and Kinetic Studies on Algal Growth and Pollutant Removal. Horticulturae. 2023; 9(3):308. https://doi.org/10.3390/horticulturae9030308
Chicago/Turabian StyleŠirić, Ivan, Sami Abou Fayssal, Bashir Adelodun, Boro Mioč, Željko Andabaka, Archana Bachheti, Madhumita Goala, Pankaj Kumar, Arwa A. AL-Huqail, Mostafa A. Taher, and et al. 2023. "Sustainable Use of CO2 and Wastewater from Mushroom Farm for Chlorella vulgaris Cultivation: Experimental and Kinetic Studies on Algal Growth and Pollutant Removal" Horticulturae 9, no. 3: 308. https://doi.org/10.3390/horticulturae9030308
APA StyleŠirić, I., Abou Fayssal, S., Adelodun, B., Mioč, B., Andabaka, Ž., Bachheti, A., Goala, M., Kumar, P., AL-Huqail, A. A., Taher, M. A., & Eid, E. M. (2023). Sustainable Use of CO2 and Wastewater from Mushroom Farm for Chlorella vulgaris Cultivation: Experimental and Kinetic Studies on Algal Growth and Pollutant Removal. Horticulturae, 9(3), 308. https://doi.org/10.3390/horticulturae9030308