Nutrient Solution from Aqueous Extracts as an Alternative to Fertigation in Hydroponic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Establishment and Experiment Description
2.2. Characterization of the Nutrient Solution
2.3. Nutritional Characteristics of the Crop: Analysis of the Cell Petiole Extract of or Sap
2.4. Yield and Leaf Nitrate Content
2.5. Statistical Analysis of the Results
3. Results and Discussion
3.1. Nutrient Solution for Lettuce Cultivation in an NFT System
3.2. Nutritional Status of the Crop: Petiole Cellular Extract Analysis (ECP)
3.3. Generation of the Aerial Part and Root Part Biomasses
3.4. Yield and Leaf Nitrate Content
3.5. Nitrate Content in Leaves
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Preciado, P.; Fortis, H.M.; García-Hernández, J.L.; Rueda, E.O.; Esparza, J.R.; Lara, A.; Segura, M.A.; Orozco, J.A. Evaluación de soluciones nutritivas orgánicas en la producción de tomate en invernadero. Interciencia 2011, 36, 689–693. [Google Scholar]
- Shinohara, M.; Aoyama, C.; Fujiwara, K.; Watanabe, A.; Ohmori, H.; Uehara, Y.; Takano, M. Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Sci. Plant Nutr. 2011, 57, 190–203. [Google Scholar] [CrossRef]
- Pardossi, A.; Incrocci, L.; Salas, M.C.; Gianquinto, G. Managing Mineral Nutrition in Soilless Culture. In Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., de Zeeuw, H., Gianquinto, G., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Jensen, M.H. Principales sistemas hidropónicos: Principios, ventajas y desventajas. En: Hidroponía comercial. In Proceedings of the Conferencia Internacional, 6–8 August 1997; Universidad Agraria La Molina y Hidroponic Society of America: Lima, Perú, 1997; pp. 35–48. [Google Scholar]
- Reglamento (UE) 2019/1009 del Parlamento Europeo y del Consejo de 5 de junio de 2019, por el que se establecen disposiciones relativas a la puesta a disposición en el mercado de los productos fertilizantes UE. Available online: https://www.boe.es/doue/2019/170/L00001-00114.pdf (accessed on 22 November 2023).
- Carricondo-Martínez, I.; Berti, F.; Salas-Sanjuán, M.d.C. Different Organic Fertilisation Systems Modify Tomato Quality: An Opportunity for Circular Fertilisation in Intensive Horticulture. Agronomy 2022, 12, 174. [Google Scholar] [CrossRef]
- Pavlou, C.G.; Constantinos, D.; Ehaliotis, V.; Kavvadias, A. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci. Hortic. 2007, 111, 319–325. [Google Scholar] [CrossRef]
- Mejia, P.A.; Salas, M.C.; López, M.J. Evaluation of physicochemical properties and enzymatic activity of organic substrates during four crop cycles in soilless containers. Food Sci. Nutr. 2018, 6, 2066–2078. [Google Scholar] [CrossRef]
- Ruiz, J.; Salas, M.C. The use of plant growth promoting bacteria for biofertigation; effects on concentrations of nutrients in the inoculated aqueous vermicompost extract and on the yield and quality of tomatoes. Biol. Agric. Hortic. 2022, 38, 145–161. [Google Scholar] [CrossRef]
- Ingham, E.R. The Compost Tea Brewing Manual: Latest Methods and Research. Soil Food Web 2005, 13–86. [Google Scholar]
- Atiyeh, R.M.; Subler, S.; Edwards, C.A.; Bachman, G.; Metzger, J.D.; Shuster, W. Effects of vermicompost and composts on plant growth in horticultural container media and soil. Pedo Biol. 2000, 44, 579–590. [Google Scholar] [CrossRef]
- Mejía, P.A.; Ruíz-Zubiate, J.L.; Correa-Bustos, A.; López-López, M.J.; Salas-Sanjuán, M.d.C. Effects of Vermicompost Substrates and Coconut Fibers Used against the Background of Various Biofertilizers on the Yields of Cucumis melo L. and Solanum lycopersicum L. Horticulturae 2022, 8, 445. [Google Scholar] [CrossRef]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. Are compost teas an effective nutrient amendment in the cultivation of strawberries? Soil and plant tissue effects. J. Sci. Food Agric. 2009, 89, 390–397. [Google Scholar] [CrossRef]
- Pant, A.P.; Radovich, T.J.K.; Hue, N.V.; Paull, R.E. Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Sci. Hortic. 2012, 148, 138–146. [Google Scholar] [CrossRef]
- González, S.K.; Rodríguez, M.M.; Trejo, T.L.; Sánchez, E.J.; García, C.J. Propiedades químicas del té de vermicompost. Cienc. Agrícolas 2013, 5, 901–911. [Google Scholar]
- Ruiz, J.; Salas, M.C. Evaluation of organic substrates and microorganisms as bio-fertilisation tool in container crop production. Agronomy 2019, 9, 705. [Google Scholar] [CrossRef]
- Cooper, A. The ABC of NFT; Casper Publications Pty Ltd.: Narrabeen, Australia, 1996; pp. 145–196. [Google Scholar]
- Williams, K.A.; Nelson, J.S. Challenges of using organic fertilizers in hydroponic production systems. Acta Hortic. 2016, 1112, 365–370. [Google Scholar] [CrossRef]
- Steiner, A.A. A universal method for preparing nutrient solutions of certain desired composition. Plant Soil 1961, 15, 134–154. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Guzmán, M. Equilibrios Nutricionales en Condiciones de Invernadero: Corrección, y Mejora de la Cosecha. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 1987. [Google Scholar]
- Cadahía, C. La Savia Como Índice de Fertilización. Cultivos Agroenergéticos, Hortícolas, Frutales y Ornamentales; Mundi-Prensa: Madrid, Spain, 2008; pp. 35–68. [Google Scholar]
- Cataldo, M.; Schrader, L.E.; Youngs, V.L. Rapid Colorimetric Determination of Nitrate in Plant Tissue by Nitration of Salicylic Acid. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- St. Martín, C.C.G.; Brathwaite, R.A.I. Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biol. Agric. Hortic. 2012, 28, 1–33. [Google Scholar] [CrossRef]
- Kannangara, T.; Forget, B.; Dang, B. Effects of aeration, molasses, kelp, compost type, and carrot juice on the growth of Escherichia coli in compost teas. Compost Sci. Util. 2006, 14, 40–47. [Google Scholar] [CrossRef]
- Sánchez, M.M.; Roig, C.; Bernal, M.P. Nitrogen transformation during organic waste composting by the Rutgers system and and it effects on pH, EC, and maturity of the composting mixtures. Bioresour. Technol. 2001, 78, 301–308. [Google Scholar] [CrossRef]
- Goto, E.; Both, A.J.; Albright, L.D.; Langhans, R.W.; Leed, A.R. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Hortic. 1996, 440, 205–210. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, K.P. Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresour. Technol. 2001, 76, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Valverde, K.; Chang, M.; Rodríguez, D.A. Effect of the Light Quality on the Nitrate Reductase Activity in Lettuce Plants Grown in NFT. Acta Hortic. 2009, 843, 89–96. [Google Scholar] [CrossRef]
- Afzal, I.; Hussain, B.; Ahzmed, S.M.; Ullah, S.H.; Shakeel, Q.; Kamran, M. Foliar application of potassium improves fruit quality and yield of tomato plants. Acta Sci. Pol. Hortorum Cultus 2015, 14, 3–13. [Google Scholar]
- Monge, E.; Val, J.; Sanz, M.; Blanco, A.; Montañés, L. El calcio nutriente para las plantas. Bitter pit en manzano. An. Estac. Exp. Aula Dei 1994, 21, 189–201. [Google Scholar]
- Mengel, K. Potassium. In Handbook of Plant Nutrition; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 91–120. [Google Scholar]
- Wu, S.C.; Cao, Z.H.; Li, Z.G.; Cheung, K.C.; Wong, M.H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005, 125, 155–166. [Google Scholar] [CrossRef]
- Numan, M.; Bashir, S.; Khan, Y.; Mumtaz, R.; Shinwari, Z.K.; Khan, A.L. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol. Res. 2018, 209, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, T.S. Interaction between Plant Nutrients: IV. Interaction between Calcium and Phosphate. Acta Agric. Scand. Sect. B Soil Plant Sci. 1993, 43, 6–10. [Google Scholar] [CrossRef]
- Cadahía, C. (Ed.) Fertirrigación. Cultivos Hortícolas, Frutales y Ornamentales, 3rd ed.; Ediciones Mundi-Prensa: Madrid, Spain, 2008; pp. 75–76. [Google Scholar]
- Masarirambi, T.M.; Hlawe, M.M.; Oseni, T.O.; Thokozile, E. Effects of organic fertilizers on growth, yield, quality and sensory evaluation of red lettuce (Lactuca sativa L.) ‘Venezaoxa’. Agric. Biol. J. N. Am. 2010, 6, 1319–1324. [Google Scholar] [CrossRef]
- Russo, V.; Pappelis, A. Senescence in sweet corn as influenced by phosphorous nutrition. Plant Nutr. 1995, 18, 707–717. [Google Scholar] [CrossRef]
- González, S.K.; Rodríguez, M.M.; Trejo, T.L.; Sánchez, E.J.; García, C.J. Efluente y té de vermicompost en la producción de hortalizas de hoja en sistema NFT. Interciencia 2013, 28, 863–869. [Google Scholar]
- Xu, H.L.; Wang, R.; Xu, R.Y.; Mridha, M.A.U.; Goyal, S. Yield and quality of leafy vegetables grown with organic fertilizations. Acta Hortic. 2005, 627, 25–33. [Google Scholar] [CrossRef]
- Martínez, G.G.; Ortiz, H.Y.; López, P.R. Oxigenación de la solución nutritiva recirculante y su efecto en tomate y lechuga. Rev. Fitotec. Mex. 2012, 35, 49–52. [Google Scholar] [CrossRef]
- Reglamento (UE) No 1258/2011 de la Comisión. de 2 de diciembre de 2011. Modifica el Reglamento (CE) no 1881/2006 por lo que respecta al contenido máximo de nitratos en los productos alimenticios. D. Of. De La Unión Eur. 2011, L 320, 15–17.
- Magkos, F.; Arvaniti, F.; Zampelas, A. Putting the safety of organic food into perspective. Nutr. Res. Rev. 2003, 16, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Hernández, T.; Chocano, C.; Moreno, J.L.; García, C. Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Tillage Res. 2016, 160, 14–22. [Google Scholar] [CrossRef]
- López, M.J.; Masaguer, A.; Paredes, C.; Perez, L.; Muñoz, M.; Salas, M.C.; Hernandez, R. De resíduos a recursos. El camino hacia la Sostenibilidad. Red Española Compost. 2015, 91–121. [Google Scholar]
- Janssen, B.H.; Oenema, O. Global economics of nutrient cycling. Turk. J. Agric. For. 2008, 32, 165–176. [Google Scholar]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; García-Arca, D.; López-Felices, B. Identification of opportunities for applying the circular economy to intensive agriculture in Almería (South-East Spain). Agronomy 2020, 10, 1499. [Google Scholar] [CrossRef]
Treatment 1 | NO3− | H2PO4− | Cl− | NH4+ | K+ | Ca2+ | Mg2+ | Na+ | pH | EC | O2 |
---|---|---|---|---|---|---|---|---|---|---|---|
T0 | 12 | 2.0 | 6.1 | 2.1 | 5.0 | 4.8 | 2.0 | 5.0 | 6.50 | 2.5 | 6.95 |
T1/T2 | 7.9 | 0.5 | 6.7 | 0.2 | 4.2 | 3.3 | 1.2 | 6.3 | 8.25 | 2.1 | 7.67 |
Fortnight | T0 | T1 | T2 | |
---|---|---|---|---|
1 | NO3− | 11.25 ± 1.06 a | 7.10 ± 0.21 b | 6.05 ± 0.49 c |
H2PO4− | 2.60 ± 0.02 a | 0.41 ± 0.91 b | 0.21 ± 0.93 c | |
Cl− | 10.85 ± 1.63 a | 8.35 ± 2.19 a | 7.15 ± 2.19 a | |
NH4+ | 0.25 ± 0.21 a | 0.20 ± 0.14 a | 0.20 ± 0.14 a | |
K+ | 3.95 ± 1.48 a | 3.15 ± 0.07 a | 2.70 ± 0.28 a | |
Ca2+ | 4.25 ± 0.07 a | 3.20 ± 0.14 a | 3.35 ± 0.78 a | |
Mg2+ | 2.00 ± 0.57 a | 1.20 ± 0.14 b | 1.20 ± 0.14 b | |
Na+ | 9.55 ± 0.64 a | 8.95 ± 0.64 a | 7.10 ± 0.14 b | |
pH | 7.00 ± 0.47 b | 8.54 ± 0.05 a | 8.23 ± 0.16 a | |
EC | 2.63 ± 0.28 a | 2.11 ± 0.14 b | 1.91 ± 0.65 b | |
O2 | 6.89 ± 0.14 b | 7.62 ± 0.22 a | 6.91 ± 0.13 b | |
2 | NO3− | 11.03 ± 2.10 a | 7.25 ± 0.37 b | 5.38 ± 0.41 c |
H2PO4− | 2.20 ± 0.04 a | 0.38 ± 0.05 b | 0.36 ± 0.06 b | |
Cl− | 9.83 ± 1.90 a | 9.85 ± 1.98 a | 10.28 ± 1.66 a | |
NH4+ | 0.43 ± 0.10 a | 0.28 ± 0.15 a | 0.30 ± 0.13 a | |
K+ | 4.50 ± 0.90 a | 4.13 ± 0.99 a | 4.00 ± 0.72 a | |
Ca2+ | 4.45 ± 2.40 a | 3.82 ± 0.70 a | 4.05 ± 0.68 a | |
Mg2+ | 1.60 ± 0.30 a | 1.10 ± 0.30 a | 1.20 ± 0.70 a | |
Na+ | 11.30 ± 2.34 a | 9.35 ± 1.47 a | 8.75 ± 4.37 a | |
pH | 6.87 ± 0.10 b | 8.41 ± 0.30 a | 8.26 ± 0.20 a | |
EC | 2.83 ± 0.15 a | 2.36 ± 0.05 b | 2.35 ± 0.16 b | |
O2 | 6.72 ± 0.14 b | 7.36 ± 0.22 a | 6.73 ± 0.13 b | |
3 | NO3− | 9.80 ± 1.27 a | 6.92 ± 0.27 b | 5.54 ± 0.56 c |
H2PO4− | 2.10 ± 0.06 a | 0.38 ± 0.12 b | 0.32 ± 0.03 b | |
Cl− | 11.50 ± 3.54 a | 11.88 ± 4.22 a | 10.92 ± 4.05 a | |
NH4+ | 0.50 ± 0.14 a | 0.20 ± 0.09 b | 0.20 ± 0.07 b | |
K+ | 5.05 ± 0.92 a | 3.80 ± 0.93 ab | 3.08 ± 1.02 b | |
Ca2+ | 3.85 ± 0.49 a | 4.42 ± 1.15 a | 5.04 ± 1.20 a | |
Mg2+ | 1.80 ± 0.14 a | 1.98 ± 0.72 a | 1.72 ± 0.73 a | |
Na+ | 9.00 ± 0.14 a | 12.40 ± 3.81 a | 10.90 ± 3.47 a | |
pH | 7.12 ± 0.06 b | 8.30 ± 0.20 a | 8.18 ± 0.20 a | |
EC | 2.59 ± 0.27 b | 2.93 ± 0.05 a | 2.85 ± 0.05 b | |
O2 | 6.60 ± 0.14 b | 7.18 ± 0.22 a | 6.67 ± 0.13 b |
NO3− | H2PO4− | Cl− | K+ | Ca2+ | Mg2+ | Na+ | |
---|---|---|---|---|---|---|---|
T0 | 59.0 ± 3.5 a | 12.1 ± 3.0 a | 49.3 ± 3.5 b | 76.0 ± 5.0 a | 1.4 ± 0.1 a | 1.8 ± 0.4 a | 29.0 ± 5.0 a |
T1 | 53.6 ± 0.5 b | 7.9 ± 1.5 b | 69.0 ± 3.0 a | 71.3 ± 2.0 a | 0.5 ± 0.0 c | 0.5 ± 0.0 b | 26.6 ± 3.7 a |
T2 | 50.0 ± 2.6 b | 8.5 ± 1.1 b | 64.0 ± 5.0 a | 71.0 ± 3.6 a | 0.7 ± 0.0 b | 0.4 ± 0.0 b | 18.6 ± 1.5 b |
Fresh Weight (g Plant−1) | Dry Matter (%) | |||
---|---|---|---|---|
Aerial Part | Root | Aerial Part | Root | |
T0 | 159.10 ± 28.44 a | 26.67 ± 2.25 b | 11.83 ± 1.54 a | 25.97 ± 2.00 a |
T1 | 170.61 ± 16.72 a | 53.81 ± 9.20 a | 6.84 ± 0.63 b | 14.10 ± 1.17 b |
T2 | 154.98 ± 12.85 a | 42.97 ± 6.88 a | 7.11 ± 0.74 b | 15.95 ± 1.86 b |
Treatment | mg NO3 kg−1 f.m. 1 |
---|---|
T0 | 2946 ± 47 a |
T1 | 557 ± 43 b |
T2 | 509 ± 33 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas-Sanjuán, M.C.; Ruíz-Zubiate, J.L.; Valenzuela, J.L.; Campos, A.X. Nutrient Solution from Aqueous Extracts as an Alternative to Fertigation in Hydroponic. Horticulturae 2023, 9, 1281. https://doi.org/10.3390/horticulturae9121281
Salas-Sanjuán MC, Ruíz-Zubiate JL, Valenzuela JL, Campos AX. Nutrient Solution from Aqueous Extracts as an Alternative to Fertigation in Hydroponic. Horticulturae. 2023; 9(12):1281. https://doi.org/10.3390/horticulturae9121281
Chicago/Turabian StyleSalas-Sanjuán, María Carmen, José Luis Ruíz-Zubiate, Juan Luis Valenzuela, and Antonio Xavier Campos. 2023. "Nutrient Solution from Aqueous Extracts as an Alternative to Fertigation in Hydroponic" Horticulturae 9, no. 12: 1281. https://doi.org/10.3390/horticulturae9121281
APA StyleSalas-Sanjuán, M. C., Ruíz-Zubiate, J. L., Valenzuela, J. L., & Campos, A. X. (2023). Nutrient Solution from Aqueous Extracts as an Alternative to Fertigation in Hydroponic. Horticulturae, 9(12), 1281. https://doi.org/10.3390/horticulturae9121281