Exposure to the Endophytic Fungi Regulates the Anthocyanin Profiles in the Post-Veraison Grape Berries of ‘Cabernet Sauvignon’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Grape Berries
2.2. Establishment of Berry–Fungi Co-Culture System
2.3. Measurement of Physio-Biochemical Traits
2.4. UPLC–MS Assay
2.5. Data Analysis
3. Results
3.1. Exposure of CS Grape Berries to Different Endophytic Fungal Strains Differentially Modified the Biochemistry Status
3.2. Anthocyanins in Post-Veraison CS Grape Berries Exposed to Endophytic Fungi Were Quantitatively and Compositionally Modified
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, J.; Goswami, D.; Rawal, R.M. Endophytic Fungi: A Treasure Trove of Novel Anticancer Compounds. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100050. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.H.; Maheshwari, V.L. Endophytes: Potential Source of Compounds of Commercial and Therapeutic Applications; Springer: Berlin/Heidelberg, Germany, 2021; p. 60. [Google Scholar]
- Caradus, J.R.; Johnson, L.J. Improved Adaptation of Temperate Grasses through Mutualism with Fungal Endophytes. In Endophyte Biotechnology: Potential for Agriculture and Pharmacology, CABI Biotechnology Series; Schouten, A., Ed.; Wageningen University and Research Centre: Wageningen, The Netherlands, 2019; p. 85. [Google Scholar]
- Eid, A.M.; Salim, S.S.; Hassan, S.E.-D.; Ismail, M.A.; Fouda, A. Role of Endophytes in Plant Health and Abiotic Stress Management. In Microbiome in Plant Health and Disease; Springer: Singapore, 2019; pp. 119–144. [Google Scholar] [CrossRef]
- Balik, J.; Kyselakova, M.; Vrchotova, N.; Triska, J.; Kumsta, M.; Veverka, J.; Hic, R.; Totusek, J.; Lefnerrova, D. Relations between Polyphenols Content and Antioxidant Activity in Vine Grapes and Leaves. Czech J. Food Sci. 2008, 26, S25–S32. [Google Scholar] [CrossRef]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. Analysis of Tannins in Seeds and Skins of Shiraz Grapes throughout Berry Development. Aust. J. Grape Wine Res. 2003, 9, 15–27. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Buchanan, B.B.; Gruissem, W.; Jones, R.L. Biochemistry and Molecular Biology of Plants, 2nd ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Yu, M.; Chen, J.C.; Qu, J.Z.; Liu, F.; Zhou, M.; Ma, Y.M.; Xiang, S.Y.; Pan, X.X.; Zhang, H.B.; Yang, M.Z. Exposure to Endophytic Fungi Quantitatively and Compositionally Alters Anthocyanins in Grape Cells. Plant Physiol. Bioch. 2020, 149, 144–152. [Google Scholar] [CrossRef]
- Burns, J.; Mullen, W.; Landrault, N.; Teissedre, P.; Lean, M.E.J.; Crozie, A. Variations in the Profile and Content of Anthocyanins in Wines Made from Cabernet Sauvignon and Hybrid Grapes. J. Agr. Food Chem. 2002, 50, 4096–4102. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Aleynova, O.A.; Suprun, A.R.; Nityagovsky, N.N.; Dubrovina, A.S.; Kiselev, K.V. The Influence of the Grapevine Bacterial and Fungal Endophytes on Biomass Accumulation and Stilbene Production by the In Vitro Cultivated Cells of Vitis amurensis Rupr. Plants 2021, 10, 1276. [Google Scholar] [CrossRef]
- Pan, X.X.; Xiang, S.Y.; Zhu, Y.Y.; Yang, M.Z. Co-cultivation with Endophytic Fungi Differentially Shaped the Anthocyanin Profiles in Post-veraison Grape Berries. Appl. Biochem. Micro. 2022, 58, 780–789. [Google Scholar] [CrossRef]
- Chen, J.C.; Yu, M.; Liu, F.; Qu, J.Z.; Pan, X.X.; Zhang, H.B.; Yang, M.Z. Diversity Distributions and the Anthocyanin Associations of Fungal Endophytes in Different Colored Grapevine Leaves. J. Plant Biol. 2020, 63, 107–116. [Google Scholar] [CrossRef]
- Ma, M.D.; Zhang, X.Y.; Cheng, Y.; Huang, Z.Y.; Zhang, H.B.; Yang, M.Z. Impacts on Foliar Endophytic Fungi Community Structures after Exogenous Endophytic Fungi Re-inoculation. Microbiol. China 2014, 41, 2458–2465. [Google Scholar]
- White, T.J. Amplification and Direct Seqencing of Fungal Ribosomal RNA Genes for Phylogenetics. Pcr. Protoc. 1990, 18, 315–322. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Pan, X.X.; Chen, J.C.; Liu, F.; Qu, J.Z.; Zhu, Y.Y.; Yang, M.Z. Symbioses of Endophytic Fungi and Subsequent Physio-chemical Changes in Grapevine Leaves from Two Cultivars. Russ. J. Plant Physiol. 2021, 68, 735–744. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the Total Phenolic and Ascorbic Acid Content of Freeze-dried and Air-dried Marionberry, Strawberry, and Corn Grown Using Conventional, Organic, and Sustainable Agricultural Practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Blanco-Ulate, B.; Amrine, K.C.; Collins, T.S.; Rivero, R.M.; Vicente, A.R.; Morales-Cruz, A.; Doyle, C.L.; Ye, Z.; Allen, G.; Heymann, H.; et al. Developmental and Metabolic Plasticity of White-skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Plant Physiol. 2015, 169, 2422–2443. [Google Scholar] [CrossRef]
- Calderan, A.; Sivilotti, P.; Braidotti, R.; Mihelcic, A.; Lisjak, K.; Vanzo, A. Managing Moderate Water Deficit Increased Anthocyanin Concentration and Proanthocyanidin Galloylation in “Refosk” Grapes in Northeast Italy. Agric. Water Manag. 2021, 246, 106684–106693. [Google Scholar] [CrossRef]
- Guan, L.; Dai, Z.; Wu, B.H.; Wu, J.; Merlin, I.; Hilbert, G.; Renaud, C.; Gomès, E.; Edwards, E.; Li, S.H.; et al. Anthocyanin Biosynthesis is Differentially Regulated by Light in the Skin and Flesh of White-fleshed and Teinturier Grape Berries. Planta 2016, 243, 23–41. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Sánchez-Díaz, M.; Delrot, S.; Aguirreolea, J.; Pascual, I.; Gomès, E. Ultraviolet-B Radiation and Water Deficit Interact to Alter Flavonol and Anthocyanin Profiles in Grapevine Berries through Transcriptomic Regulation. Plant Cell Physiol. 2014, 55, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of Anthocyanins in Red-Wine Grape under High Temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzis, G.; Rustioni, L.; Parisi, S.G.; Zoli, F.; Brancadoro, L. Anthocyanin Biosynthesis during Berry Development in Corvina Grape. Sci. Hortic. 2016, 212, 74–80. [Google Scholar] [CrossRef]
- Obreque-Slier, E.; Herrera-Bustamante, B.; Lopez-Solís, R. Ripening-associated Fattening out of Inter-varietal Differences in Some Groups of Phenolic Compounds in the Skins of Six Emblematic Grape Wine Varieties. J. Food Compos. Anal. 2021, 99, 103858. [Google Scholar] [CrossRef]
- Sun, J.X.; Zhang, Y.; Hu, X.S.; Wu, J.H.; Liao, X.J. Structural Stability and Degradation Mechanisms of Anthocyanins. Sci. Agri. Sin. 2009, 42, 996–1008. [Google Scholar]
- Liang, Z.; Wu, B.; Fan, P.; Yang, C.; Duan, W.; Zheng, X.; Liu, C.; Li, S. Anthocyanin Composition and Content in Grape Berry Skin in Vitis germplasm. Food Chem. 2008, 111, 837–844. [Google Scholar] [CrossRef]
- Zhao, Q.; Duan, C.Q.; Wang, J. Anthocyanins Profile of Grape Berries of Vitis amurensis, Its Hybrids and Their Wines. Int. J. Mol. Sci. 2010, 11, 2212–2228. [Google Scholar] [CrossRef]
- He, F.; He, J.J.; Pan, Q.H.; Duan, C.Q. Mass-spectrometry Evidence Confirming the Presence of Pelargonidin-3-O-glucoside in the Berry Skins of Cabernet Sauvignon and Pinot Noir (Vitis vinifera L.). Aust. J. Grape Wine R. 2010, 16, 464–468. [Google Scholar] [CrossRef]
- Jánváry, L.; Hoffmann, T.; Pfeiffer, J.; Hausmann, L.; Töpfer, R.; Fischer, T.C.; Schwab, W. A Double Mutation in the Anthocyanin 5-O-Glucosyltransferase Gene Disrupts Enzymatic Activity in Vitis vinifera L. J. Agric. Food Chem. 2009, 57, 3512–3518. [Google Scholar] [CrossRef]
Strain ID | Species | GenBank Accession | PAL (U g−1) | SPr (mg g−1) | TF (mg g−1) | TPh (mg g−1) |
---|---|---|---|---|---|---|
RH7 | Epicoccum nigrum | ON740926 | 19.43 ± 4.99 | 7.98 ± 0.48 | 19.79 ± 1.64 | 56.10 ± 1.63 ** |
RH12 | Nigrospora oryzae | ON740927 | 21.37 ± 0.20 | 15.88 ± 1.34 ** | 16.59 ± 2.67 | 52.73 ± 1.61 |
RH32 | Alternaria alternaria | ON740928 | 40.57 ± 2.91 ** | 24.85 ± 2.02 ** | 31.69 ± 0.91 ** | 63.99 ± 0.80 ** |
RH34 | Trichothecium roseum | ON740929 | 42.54 ± 1.32 ** | 15.47 ± 2.32 ** | 23.25 ± 2.33 | 63.73 ± 0.08 ** |
RH36 | Fusarium verticillioides | ON740930 | 53.09 ± 9.91 ** | 12.55 ± 3.70 | 40.68 ± 1.98 ** | 87.56 ± 3.76 ** |
RH44 | Alternaria arborescens | ON740931 | 17.45 ± 0.63 | 9.95 ± 0.21 | 23.32 ± 1.02 | 44.56 ± 0.44 |
RH47 | Fusarium proliferatum | ON740932 | 22.12 ± 0.26 | 16.39 ± 1.66 ** | 20.36 ± 0.80 | 43.97 ± 0.68 |
RH48 | Colletotrichum gloesporioides | ON740933 | 34.13 ± 1.78 * | 9.84± 1.00 | 20.60 ± 1.00 | 40.96 ± 0.52 |
RH49 | Fusarium fujikuroi | ON740934 | 35.43 ± 1.27 * | 8.93 ± 1.10 | 36.86 ± 0.39 ** | 69.33 ± 0.44 ** |
MDR1 | Nigrospora oryzae | ON740935 | 42.83 ± 8.76 ** | 26.50 ± 2.82 ** | 28.55 ± 2.17 ** | 58.96 ± 0.20 ** |
MDR4 | Fusarium annulatum | ON740937 | 47.99 ± 10.12 ** | 13.62 ± 1.00 * | 26.32 ± 1.11 ** | 75.98 ± 1.55 ** |
MDR36 | Colletotrichum siamense | ON740939 | 76.43 ± 9.08 ** | 10.56 ± 1.24 | 20.44 ± 0.98 | 52.42 ± 0.37 |
Control | 16.71 ± 2.20 | 8.26 ± 0.12 | 20.13 ± 1.95 | 48.76 ± 0.34 |
Treatment | RH7 | RH12 | RH32 | RH34 | RH36 | RH44 | RH47 | RH48 | RH49 | MDR1 | MDR4 | MDR36 | Control |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pg-3-glu | / | / | 0.36 ± 0.01 ** | 0.25 ± 0.06 ** | 0.28 ± 0.28 ** | / | / | / | / | 0.30 ± 0.01 ** | 0.21 ± 0.01 ** | 0.34 ± 0.02 ** | / |
Cy-3-glu | / | 0.45 ± 0.01 | 1.46 ± 0.19 ** | 0.75 ± 0.24 | 0.55 ± 0.12 | 0.37 ± 0.15 | 1.19 ± 0.18 ** | / | 1.55 ± 0.46 ** | 0.71 ± 0.12 | 0.52 ± 0.07 | 1.09 ± 0.21 ** | 0.26 ± 0.04 |
Pn-3-glu | / | 0.49 ± 0.29 | 0.49 ± 0.16 | 0.54 ± 0.25 | 0.84 ± 0.06 | 0.64 ± 0.19 | 0.66 ± 0.25 | / | 0.33 ± 0.11 | 0.90 ± 0.02 | 0.18 ± 0.01 | 0.69 ± 0.14 | 0.36 ± 0.19 |
Dp-3-glu | 0.85 ± 0.06 ** | 2.29 ± 0.24 ** | 1.20 ± 0.09 ** | 2.42 ± 0.37 ** | 2.51 ± 0.33 * | 2.65 ± 0.35 * | 5.71 ± 0.36 ** | 9.21 ± 0.64 ** | 1.47 ± 0.17 ** | 6.19 ± 0.19 ** | 3.80 ± 0.52 | 1.70 ± 0.13 ** | 3.78 ± 0.67 |
Pt-3-glu | 0.19 ± 0.01 | 0.30 ± 0.06 * | 0.10 ± 0.01 | 0.12 ± 0.02 | 0.22 ± 0.10 | 0.25 ± 0.03 | 0.18 ± 0.02 | 0.37 ± 0.10 ** | 0.11 ± 0.07 | 0.31 ± 0.04 * | 0.17 ± 0.08 | 0.12 ± 0.02 | 0.13 ± 0.01 |
Mv-3-glu | 0.93 ± 0.08 | 2.69 ± 0.06 | 1.88 ± 0.10 | 2.25 ± 0.08 | 5.91 ± 0.17 ** | 5.96 ± 0.53 ** | 3.56 ± 0.13 | 5.51 ± 2.40 ** | 1.85 ± 0.12 | 6.04 ± 0.11 ** | 1.65 ± 0.20 | 3.98 ± 0.45 | 2.50 ± 0.17 |
Dp-3-ace | / | / | 0.54 ± 0.18 ** | 0.36 ± 0.12 ** | / | / | 0.31 ± 0.01 * | / | 0.51 ± 0.12 ** | / | 0.17 ± 0.01 | 0.36 ± 0.18 ** | / |
Pt-3-ace | 0.13 ± 0.01 | / | 1.16 ± 0.20 ** | 0.60 ± 0.18 * | 0.17 ± 0.00 | / | 0.37 ± 0.06 | / | 0.92 ± 0.24 ** | / | 0.29 ± 0.01 | 0.92 ± 0.29 ** | / |
Pn-3-ace | / | 0.23 ± 0.01 ** | 0.20 ± 0.03 ** | / | / | / | / | / | / | / | / | 0.23 ± 0.01 ** | / |
Mv-3-ace | / | 0.37 ± 0.08 | 2.97 ± 0.30 ** | 1.89 ± 0.26 ** | 0.28 ± 0.01 | / | 0.81 ± 0.02 | / | 2.18 ± 0.23 ** | / | 0.66 ± 0.22 | 2.35 ± 0.31 ** | 0.26 ± 0.00 |
Pt-3,5-dig | / | / | / | / | / | / | / | 0.13 ± 0.10 ** | / | / | / | 0.22 ± 0.03 ** | / |
Pg-3,5-dig | / | / | / | 0.06 ± 0.00 ** | / | / | 0.05 ± 0.01 ** | / | / | / | / | / | / |
Pt-3-caff | / | / | 0.13 ± 0.00 ** | / | / | / | / | 0.19 ± 0.11 ** | / | / | / | 0.22 ± 0.08 ** | / |
Pn-3-coum | 0.08 ± 0.01 ** | 0.18 ± 0.05 ** | / | 0.02 ± 0.00 | / | 0.07 ± 0.00 ** | / | 0.10 ± 0.01 ** | / | 0.22 ± 0.01 ** | 0.06 ± 0.01 ** | / | / |
Mv-3-coum | / | 0.32 ± 0.03 | 0.17 ± 0.03 | 0.26 ± 0.01 | 0.34 ± 0.10 | 0.76 ± 0.16 ** | 0.29 ± 0.05 | 0.28 ± 0.10 | / | 0.86 ± 0.07 ** | 0.15 ± 0.01 | 0.28 ± 0.05 | 0.32 ± 0.05 |
Cy-3-coum-5-glu | / | / | 0.03 ± 0.01 ** | / | / | / | / | / | / | / | / | / | / |
Total | 2.18 ± 0.17 | 7.32 ± 0.83 | 10.69 ± 1.31 | 9.52 ± 1.59 | 11.1 ± 0.90 | 10.7 ± 1.41 | 13.13 ± 1.09 | 15.79 ± 3.46 | 8.92 ± 1.52 | 15.53 ± 0.57 | 7.86 ± 1.15 | 12.5 ± 1.92 | 7.61 ± 1.13 |
RI (%) | −71.35% | −3.81% | 40.47% | 25.10% | 45.86% | 40.60% | 72.54% | 107.49% | 17.21% | 104.07% | 3.29% | 64.26% |
Treatment | Monoglucoside % | Acetylmonoglucoside % | Diglucoside % | Caffeoylmonoglucoside % | (p-Coumaroyl)monoglucoside % | (p-Coumaroyl)diglucoside % |
---|---|---|---|---|---|---|
RH7 | 90.37 | 5.96 | / | / | 3.67 | / |
RH12 | 84.97 | 8.20 | / | / | 6.83 | / |
RH32 | 51.36 | 45.56 | / | 1.22 | 1.59 | 0.28 |
RH34 | 66.49 | 29.94 | 0.63 | / | 2.94 | / |
RH36 | 92.88 | 4.05 | / | / | 3.06 | / |
RH44 | 92.24 | / | / | / | 7.76 | / |
RH47 | 86.06 | 11.35 | 0.38 | / | 2.21 | / |
RH48 | 95.57 | / | 0.82 | 1.20 | 2.41 | / |
RH49 | 59.53 | 40.47 | / | / | / | / |
MDR1 | 93.05 | / | / | / | 6.95 | / |
MDR4 | 83.08 | 14.25 | / | / | 2.67 | / |
MDR36 | 63.36 | 30.88 | 1.76 | 1.76 | 2.24 | / |
Control | 92.38 | 3.42 | / | / | 4.20 | / |
Treatment | Number of Total Anthocyanins Detected | Number of Novel Anthocyanins Detected | Number of Suppressed Anthocyanins | Total Content of Detected Anthocyanins (mg 100 g−1) | The Main Anthocyanin | Content of Main Anthocyanin (mg 100 g−1) |
---|---|---|---|---|---|---|
RH7 | 5 | 2 | 4 | 2.18 | Malvidin-3-O-glucoside | 0.93 |
RH12 | 9 | 2 | 0 | 7.32 | Malvidin-3-O-glucoside | 2.69 |
RH32 | 13 | 6 | 0 | 10.69 | Malvidin-3-O-acetylglucoside | 2.97 |
RH34 | 12 | 5 | 0 | 9.52 | Delphinidin-3-O-glucoside | 2.42 |
RH36 | 9 | 2 | 0 | 11.1 | Malvidin-3-O-glucoside | 5.91 |
RH44 | 7 | 1 | 1 | 10.7 | Malvidin-3-O-glucoside | 5.96 |
RH47 | 10 | 3 | 0 | 13.13 | Delphinidin-3-O-glucoside | 5.71 |
RH48 | 7 | 3 | 3 | 15.79 | Delphinidin-3-O-glucoside | 9.21 |
RH49 | 8 | 2 | 1 | 8.92 | Malvidin-3-O-acetylglucoside | 2.18 |
MDR1 | 8 | 2 | 1 | 15.53 | Delphinidin-3-O-glucoside | 6.19 |
MDR4 | 11 | 4 | 0 | 7.86 | Delphinidin-3-O-glucoside | 3.80 |
MDR36 | 13 | 6 | 0 | 12.5 | Malvidin-3-O-glucoside | 3.98 |
Control | 7 | 7.61 | Delphinidin-3-O-glucoside | 3.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.-X.; Chen, C.-X.; Wang, Y.-T.; Zhu, Y.-Y.; Yang, M.-Z. Exposure to the Endophytic Fungi Regulates the Anthocyanin Profiles in the Post-Veraison Grape Berries of ‘Cabernet Sauvignon’. Horticulturae 2023, 9, 237. https://doi.org/10.3390/horticulturae9020237
Pan X-X, Chen C-X, Wang Y-T, Zhu Y-Y, Yang M-Z. Exposure to the Endophytic Fungi Regulates the Anthocyanin Profiles in the Post-Veraison Grape Berries of ‘Cabernet Sauvignon’. Horticulturae. 2023; 9(2):237. https://doi.org/10.3390/horticulturae9020237
Chicago/Turabian StylePan, Xiao-Xia, Chun-Xiao Chen, Yu-Tao Wang, You-Yong Zhu, and Ming-Zhi Yang. 2023. "Exposure to the Endophytic Fungi Regulates the Anthocyanin Profiles in the Post-Veraison Grape Berries of ‘Cabernet Sauvignon’" Horticulturae 9, no. 2: 237. https://doi.org/10.3390/horticulturae9020237
APA StylePan, X. -X., Chen, C. -X., Wang, Y. -T., Zhu, Y. -Y., & Yang, M. -Z. (2023). Exposure to the Endophytic Fungi Regulates the Anthocyanin Profiles in the Post-Veraison Grape Berries of ‘Cabernet Sauvignon’. Horticulturae, 9(2), 237. https://doi.org/10.3390/horticulturae9020237