The Impact of Plant Growth Regulators and Floral Cluster Thinning on the Fruit Quality of ‘Shine Muscat’ Grape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Condition of Grown Plants
2.2. Streptomycin (SM) and Plant Growth Regulator (PGR) Treatments
2.3. Floral Cluster and Berry Thinning
2.4. Fruit Quality Evaluation
2.5. Sensory Evaluation of Residual Feel of Peels
2.6. Statistical Analysis
3. Results
3.1. The Impact of Streptomycin (SM) and Plant Growth Regulator (PGR) Treatment on Seedless Induction
3.2. The Effect of Applying Plant Growth Regulators (PGRs) on the Quality of Fruits
3.3. Correlations between Fruit Qualities of ‘Shine Muscat’ by Plant Growth Regulator Treatment
3.4. Effect of Plant Growth Regulator (PGR) Treatment on Fruit Firmness and Sensory Evaluation for Residual Feel of Peels
3.5. Effect of Floral Cluster Thinning on Fruit Qualities
4. Discussion
4.1. Rate of Seedless Induction
4.2. Effects of Plant Growth Regulator Treatments on Fruit Quality
4.3. Firmness Measurement and Sensory Evaluation
4.4. Effect of Floral Cluster Thinning on Fruit Qualities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Averilla, J.N.; Oh, J.; Kim, H.J.; Kim, J.S.; Kim, J.S. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci. Biotechnol. 2019, 28, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Dey, S.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Grape seed extract: Having a potential health benefits. J. Food Sci. Technol. 2020, 57, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- FAO. World Food and Agriculture—Statistical Yearbook 2021. Food and Agriculture Organization: Rome, Italy, 2021. [Google Scholar]
- Yamada, M.; Yamane, H.; Sato, A.; Hirakawa, N.; Iwanami, H.; Yoshinaga, K.; Ozawa, T.; Mitani, N.; Shiraishi, M.; Yoshioka, M.; et al. New grape cultivar ‘Shine muscat’. Bull. Natl. Inst. Fruit Tree Sci. 2008, 7, 21–38. [Google Scholar]
- Ozga, J.A.; Reinecke, D.M. Hormonal interactions in fruit development. J. Plant Growth Regul. 2003, 22, 73–81. [Google Scholar] [CrossRef]
- Pandolfini, T. Seedless fruit production by hormonal regulation of fruit set. Nutrients 2009, 1, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.S.; Heo, J.Y.; Park, S.M. Production of Hypo- and Hypertetraploid Seedlings from Open-, Self-, and Cross-Pollinated Hypo- and Hypertetraploid Grape. Korean J. Hortic. Sci. 2016, 34, 771–778. [Google Scholar] [CrossRef]
- Naito, R.; Miura, K.; Matsuda, K. Effects of the prebloom Application of GA Combined with BA and Urea on the Set and Growth of Seedless Berries in Delaware Grapes. J. Jpn. Soc. Hortic. Sci. 1974, 43, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.W.; Kim, G.H.; Choi, C. Effects of Plant Growth Regulators and Floral Cluster Thinning on Fruit Quality of ‘Shine Muscat’ Grape. Hortic. Sci. Technol. 2019, 37, 678–686. [Google Scholar] [CrossRef]
- Suehiro, Y.; Mochida, K.; Tsuma, M.; Yasuda, Y.; Itamura, H.; Esumi, T. Effects of Gibberellic Acid/Cytokinin Treatments on Berry Development and Maturation in the Yellow-green Skinned ‘Shine Muscat’ Grape. Hortic. J. 2019, 88, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Lamikanra, O.; Leong, S. Induction of seedlessness in ‘triumph’ muscadine grape (Vitis rotundifolia Michx) by applying gibberellic acid. Hortscience 1997, 32, 89–90. [Google Scholar] [CrossRef] [Green Version]
- Baba, T.I.K.; Ikeda, F. Streptomycin inhibits embryo sac development in grape ‘Fujiminori’ [Vitis sp.]. J. Agric. Sci. Tokyo Univ. Agric. Jpn. 2008, 53, 139–143. [Google Scholar]
- Schatz, A.; Bugle, E.; Waksman, S.A. Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative Bacteria. Exp. Biol. Med. 1944, 55, 66–69. [Google Scholar] [CrossRef]
- Lee, B.; Kwon, Y.; Park, Y.; Park, H.-S. Effect of GA3and Thidiazuron on Seedlessness and Fruit Quality of ‘Kyoho’ Grapes. Korean J. Hortic. Sci. Technol. 2013, 31, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.C.; Katterman, F.R. Cytokinin activity induced by thidiazuron. Plant Physiol. 1986, 81, 681–683. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Abbasi, B.H.; Zeb, A.; Xu, L.L.; Wei, Y.H. Thidiazuron: A multi-dimensional plant growth regulator. Afr. J. Biotechnol. 2011, 10, 8984–9000. [Google Scholar] [CrossRef] [Green Version]
- Huetteman, C.A.; Preece, J.E. Thidiazuron—A Potent Cytokinin for Woody Plant-Tissue Culture. Plant Cell Tissue Organ Cult. 1993, 33, 105–119. [Google Scholar] [CrossRef]
- Byun, J.K.; Kim, J.S. Effects of GA3 thidiazuron and ABA on fruit set and quality of ‘Kyoho’ grapes. J. Korean Soc. Hortic. Sci. Korea Repub. 1995, 36, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.G.; Takami, Y.; Mizugami, T.; Beppu, K.; Fukuda, T.; Kataoka, I. CPPU application on size and quality of hardy kiwifruit. Sci. Hortic. 2006, 110, 219–222. [Google Scholar] [CrossRef]
- Zabadal, T.J.; Bukovac, M.J. Effect of CPPU on fruit development of selected seedless and seeded grape cultivars. Hortscience 2006, 41, 154–157. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, S.J.; Koh, S.-W.; Jung, S.M.; Hur, Y.Y.; Nam, J.C.; Park, K.S. Laborsaving Effect and Fruit Characteristics of Grape ‘Campbell Early’ According to Pedicel Thinning. Korean J. Plant Resour. 2015, 28, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Reynolds, A.G.; Wardle, D.A.; Zurowski, C.; Looney, N.E. Phenylureas CPPU and Thidiazuron Affect Yield Components, Fruit Composition, and Storage Potential of Four Seedless Grape Selections. J. Am. Soc. Hortic. Sci. 1992, 117, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Peppi, M.C.; Fidelibus, M.W. Effects of forchlorfenuron and abscisic acid on the quality of ‘Flame Seedless’ grapes. Hortscience 2008, 43, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Visa, S.; Cao, C.X.; Gardener, B.M.; van der Knaap, E. Modeling of tomato fruits into nine shape categories using elliptic fourier shape modeling and Bayesian classification of contour morphometric data. Euphytica 2014, 200, 429–439. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, L.; Fang, J. Genome-wide association study of the candidate genes for grape berry shape-related traits. BMC Plant Biol. 2022, 22, 42. [Google Scholar] [CrossRef]
- Jayasena, V.; Cameron, I. ° Brix/acid ratio as a predictor of consumer acceptability of Crimson Seedless table grapes. J. Food Qual. 2008, 31, 736–750. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, M.H.; Park, Y.S.; Lee, B.H.; Park, H.S. Suitable Yields and Establishment of Harvesting Standard in ‘Shine Muscat’ Grape. Hortic. Sci. Technol. 2019, 37, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Cargnin, A. Canonical correlations among grapevine agronomic and processing characteristics. Acta Sci. Agron. 2019, 41, e42619. [Google Scholar] [CrossRef]
- Gupta, N.; Brar, K.S.; Gill, M.I.S.; Arora, N.K. Studies on Variability, Correlation and Path Analysis of Traits Contributing to Fruit Yield in Grapes. Indian J. Plant Genet. Resour. 2015, 28, 317–320. [Google Scholar] [CrossRef]
- Chen, W.K.; He, F.; Wang, Y.X.; Liu, X.; Duan, C.Q.; Wang, J. Influences of Berry Size on Fruit Composition and Wine Quality of Vitis vinifera L. cv. ‘Cabernet Sauvignon’ Grapes. S. Afr. J. Enol. Vitic. 2018, 39, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.O.; Im, D.; Park, S.J.; Lee, D.H.; Kim, S.J.; Hur, Y.Y. Effects of Berry Thinning on the Physicochemical, Aromatic, and Sensory Properties of Shine Muscat Grapes. Horticulturae 2021, 7, 487. [Google Scholar] [CrossRef]
- Choi, K.O.; Hur, Y.Y.; Park, S.J.; Lee, D.H.; Kim, S.J.; Im, D. Relationships between Instrumental and Sensory Quality Indices of Shine Muscat Grapes with Different Harvesting Times. Foods 2022, 11, 2482. [Google Scholar] [CrossRef]
- Carmona-Jimenez, Y.; Palma, M.; Guillen-Sanchez, D.A.; Garcia-Moreno, M.V. Study of the Cluster Thinning Grape as a Source of Phenolic Compounds and Evaluation of Its Antioxidant Potential. Biomolecules 2021, 11, 227. [Google Scholar] [CrossRef]
Time of Treatment (mg/L) | Seedless Rate (%) | ||
---|---|---|---|
Group | 7 Days Before Full Bloom | Full Bloom | |
1 | - | GA3 12.5 + TDZ 2.5 | 90.1 |
2 | - | SM 200 + GA3 25 + CPPU 5 | 100.0 |
3 | - | SM 200 + GA3 25 + TDZ 2.5 | 99.7 |
4 | SM 200 | GA3 25 + CPPU 5 | 100.0 |
Treatment (mg/L) | Cluster Weight (g) | Berry Weight (g) | Berry Length (mm) | Berry Diameter (mm) | L/D Ratio | ||
---|---|---|---|---|---|---|---|
Group | Full Bloom | 12 Days after Full Bloom | |||||
1 | GA3 12.5 + TDZ 2.5 | GA3 25 | 708.67 bc | 12.48 c | 28.43 b | 26.64 c | 1.07 a |
2 | GA3 25 + CPPU 5 | GA3 25 | 648.67 b | 11.10 b | 30.16 c | 24.23 b | 1.25 b |
3 | GA3 25 + TDZ 5 | GA3 25 | 931.67 d | 15.44 d | 31.73 d | 28.80 d | 1.11 a |
4 | GA3 25 + CPPU 5 | GA3 25+ CPPU 5 | 722.25 c | 13.00 c | 32.32 d | 26.07 c | 1.24 b |
5 | GA3 25 + CPPU 5 | - | 510.33 a | 8.4 a | 25.88 a | 21.53 a | 1.21 b |
Treatment (mg/L) | SSC (°Brix) | Acidity (%) | SSC/Acidity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Group | Full Bloom | 12 Days after Full Bloom | Top | Middle | Bottom | Top | Middle | Bottom | Top | Middle | Bottom |
1 | GA3 12.5 + TDZ 2.5 | GA3 25 | 18.3 d | 18.1 d | 18.1 d | 0.49 b | 0.48 a | 0.48 ab | 37.6 d | 37.6 c | 37.8 bc |
2 | GA3 25 + CPPU 5 | GA3 25 | 17.1 c | 16.6 bc | 16.7 c | 0.46 b | 0.44 a | 0.43 ab | 31.7 bc | 36.8 bc | 38.8 c |
3 | GA3 25 + TDZ 5 | GA3 25 | 15.9 b | 15.7 b | 15.4 b | 0.45 a | 0.44 a | 0.45 a | 35.3 cd | 35.2 c | 34.3 bc |
4 | GA3 25 + CPPU 5 | GA3 25+ CPPU 5 | 16.9 bc | 16.8 c | 16.6 c | 0.53 c | 0.53 b | 0.52 b | 31.9 b | 31.8 b | 32.2 b |
5 | GA3 25 + CPPU 5 | - | 13.0 a | 13.0 a | 13.2 a | 0.61 d | 0.62 c | 0.61 c | 21.7 a | 21.3 a | 22.3 a |
Treatment (mg/L) | Skin Firmness(N) | Flesh Firmness (N) | FDBSF a (N) | Residual Feel of Peel (# of Penal) | Negative Feel b (%) | Positive Feel c (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Group | Full Bloom | 12 Days after Full Bloom | Strong | Mild | Minimal | None | |||||
1 | GA3 12.5 + TDZ 2.5 | GA3 25 | 6.1 a | 3.3 ab | 2.8 a | 1 | 9 | 17 | 0 | 37.0 | 63.0 |
2 | GA3 25 + CPPU 5 | GA3 25 | 5.9 a | 3.8 b | 2.1 a | 0 | 5 | 21 | 9 | 14.3 | 85.7 |
3 | GA3 25 + TDZ 5 | GA3 25 | 8.5 b | 2.7 a | 5.8 b | 6 | 10 | 15 | 1 | 50.0 | 50.0 |
4 | GA3 25 + CPPU 5 | GA3 25+ CPPU 5 | 5.2 a | 2.9 a | 2.3 a | 6 | 12 | 17 | 0 | 51.4 | 48.6 |
5 | GA3 25 + CPPU 5 | - | 6.1 a | 2.9 a | 3.2 a | 19 | 10 | 1 | 2 | 90.6 | 9.4 |
Group a | Thinning Degree | Cluster Weight (g) | Berry Weight (g) | Berry Number (ea) | Berry Length (mm) | Berry Diameter (mm) | L/D Ratio |
---|---|---|---|---|---|---|---|
1 | 3 cm | 629.1 a | 12.8 b | 48.8 a | 30.7 a | 26.4 c | 1.16 a |
2 | 4 cm | 743.5 b | 13.1 b | 56.9 b | 30.6 a | 25.7 b | 1.19 ab |
3 | 5 cm | 713.8 b | 11.3 a | 60.6 c | 30.3 a | 24.5 a | 1.23 b |
Group a | Thinning Degree | SSC (°Brix) | Acidity (%) | SSC/Acidity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Top | Middle | Bottom | Top | Middle | Bottom | Top | Middle | Bottom | ||
1 | 3 cm | 16.6 a | 16.5 a | 16.4 a | 0.48 a | 0.48 ab | 0.48 b | 34.4 ab | 34.2 ab | 34.6 a |
2 | 4 cm | 17.2 a | 17.0 a | 16.9 a | 0.46 a | 0.47 a | 0.45 a | 37.0 b | 36.4 b | 37.3 b |
3 | 5 cm | 16.8 a | 16.4 a | 16.6 a | 0.51 b | 0.50 b | 0.50 c | 32.8 a | 32.9 a | 33.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Ban, S.; Choi, C. The Impact of Plant Growth Regulators and Floral Cluster Thinning on the Fruit Quality of ‘Shine Muscat’ Grape. Horticulturae 2023, 9, 392. https://doi.org/10.3390/horticulturae9030392
Choi S, Ban S, Choi C. The Impact of Plant Growth Regulators and Floral Cluster Thinning on the Fruit Quality of ‘Shine Muscat’ Grape. Horticulturae. 2023; 9(3):392. https://doi.org/10.3390/horticulturae9030392
Chicago/Turabian StyleChoi, Sujung, Seunghyun Ban, and Cheol Choi. 2023. "The Impact of Plant Growth Regulators and Floral Cluster Thinning on the Fruit Quality of ‘Shine Muscat’ Grape" Horticulturae 9, no. 3: 392. https://doi.org/10.3390/horticulturae9030392
APA StyleChoi, S., Ban, S., & Choi, C. (2023). The Impact of Plant Growth Regulators and Floral Cluster Thinning on the Fruit Quality of ‘Shine Muscat’ Grape. Horticulturae, 9(3), 392. https://doi.org/10.3390/horticulturae9030392