Foliar Calcium Effects on Quality and Primary and Secondary Metabolites of White-Fleshed ‘Lemonato’ Peaches
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material and Experimental Treatments
2.2. Fruit Quality Characteristics
2.3. GC–MS-Based Primary Polar Metabolite Analysis
2.4. Total Phenolic Content (TPC) and Total Antioxidant Activity (TAA)
2.5. Individual Phenolic Compounds Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fruit Quality Characteristics
3.2. Primary Metabolites
3.3. Total Antioxidant Activity, Total and Individual Phenolic Contents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aubert, C.; Chalot, G. Physicochemical characteristics, vitamin C, and polyphenolic composition of four European commercial blood-flesh peach cultivars (Prunus persica L. Batsch). J. Food Compos. Anal. 2020, 86, 103–337. [Google Scholar] [CrossRef]
- Cantín, C.M.; Moreno, M.A.; Gogorcena, Y. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] Breeding Progenies. J. Agric. Food Chem. 2009, 57, 4586–4592. [Google Scholar] [CrossRef] [PubMed]
- Manganaris, G.A.; Minas, I.; Cirilli, M.; Torres, R.; Bassi, D.; Costa, G. Peach for the future: A specialty crop revisited. Sci. Hortic. 2022, 305, 111390. [Google Scholar] [CrossRef]
- Mitsopoulou, N.K.; Nanos, G.D.; Grigoriadou, E.; Katis, N. ‘Lemonato’ peach: A series of cultivated clones with high fruit quality. Acta Hortic. 2019, 1242, 363–368. [Google Scholar] [CrossRef]
- Maletsika, P.; Grigoriadou, K.; Melitzanas, E.; Georgoudaki, T.; Nanos, G.D. Foliar calcium applications and maturity on clones of ‘Lemonato’ peach fruit quality and bruising severity. Acta Hortic. 2021, 1327, 695–702. [Google Scholar] [CrossRef]
- Predieri, S.; Ragazzini, P.; Rondelli, R. Sensory evaluation and peach fruit quality. Acta Hortic. 2006, 713, 429–434. [Google Scholar] [CrossRef]
- Cirilli, M.; Bassi, D.; Ciacciulli, A. Sugars in peach fruit: A breeding perspective. Hortic. Res. 2016, 3, 15067. [Google Scholar] [CrossRef] [Green Version]
- Cantín, C.M.; Gogorcena, Y.; Moreno, M.Á. Analysis of phenotypic variation of sugar profile in different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J. Sci. Food Agric. 2009, 89, 1909–1917. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, V.A.; Osorio, S.; Borsani, J.; Lauxmann, M.A.; Bustamante, C.A.; Budde, C.O.; Andreo, C.S.; Lara, M.V.; Fernie, A.R.; Drincovich, M.F. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol. 2011, 157, 1696–1710. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Zhao, L.; Jiang, X.; Cherono, S.; Liu, J.; Ogutu, C.; Ntini, C.; Zhang, X.; Han, Y. Assessment of organic acid accumulation and its related genes in peach. Food Chem. 2021, 334, 127567. [Google Scholar] [CrossRef]
- Mokrani, A.; Krisa, S.; Cluzet, S.; Da Costa, G.; Temsamani, H.; Renouf, E.; Mérillon, J.; Madani, K.; Mesnil, M.; Monvoisin, A.; et al. Phenolic contents and bioactive potential of peach fruit extracts. Food Chem. 2016, 202, 212–220. [Google Scholar] [CrossRef]
- Drogoudi, P.; Pantelidis, G.; Goulas, V.; Manganaris, G.; Ziogas, V.; Manganaris, A. The appraisal of qualitative parameters and antioxidant contents during postharvest peach fruit ripening underlines the genotype significance. Postharvest Biol. Technol. 2016, 115, 142–150. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Simeone, A.; Nota, P.; Piazza, M.; Fideghelli, C.; Caboni, E. Phenolic compounds (hydroxycinnamic acids, flavan-3-ols, flavonols) profile in fruit of Italian peach varieties. Plant Biosyst. 2016, 150, 1370–1375. [Google Scholar] [CrossRef]
- Saidani, F.; Giménez, R.; Aubert, C.; Chalot, G.; Betrán, J.; Gogorcena, Y. Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. J. Food Compost. Anal. 2017, 62, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Cao, J.; Jiang, W. Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT 2015, 63, 1042–1048. [Google Scholar] [CrossRef]
- Hocking, B.; Tyerman, S.D.; Burton, R.A.; Gilliham, M. Fruit Calcium: Transport and Physiology. Front. Plant Sci. 2016, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- Aghdam, M.S.; Hassanpouraghdam, M.B.; Paliyath, G.; Farmani, B. The language of calcium in postharvest life of fruits, vegetables and flowers. Sci. Hortic. 2012, 144, 102–115. [Google Scholar] [CrossRef]
- Ferguson, I.B. Calcium in plant senescence and fruit ripening. Plant Cell Environ. 1984, 7, 477–489. [Google Scholar] [CrossRef]
- Madani, B.; Mirshekari, A.; Yahia, E. Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage. J. Sci. Food Agric. 2015, 96, 2963–2968. [Google Scholar] [CrossRef]
- Gao, Q.; Xiong, T.; Li, X.; Chen, W.; Zhu, X. Calcium and calcium sensors in fruit development and ripening. Sci. Hortic. 2019, 253, 412–421. [Google Scholar] [CrossRef]
- Manganaris, G.; Vasilakakis, M.; Mignani, I.; Diamantidis, G.; Tzavella-Klonari, K. The effect of preharvest calcium sprays on quality attributes, physicochemical aspects of cell wall components and susceptibility to brown rot of peach fruits (Prunus persica L. cv. Andross). Sci. Hortic. 2005, 107, 43–50. [Google Scholar] [CrossRef]
- Ali, I.; Abbasi, N.; Hafiz, I. Application of calcium chloride at different phenological stages alleviates chilling injury and delays climacteric ripening in peach fruit during low-temperature storage. Int. J. Fruit Sci. 2021, 21, 1040–1058. [Google Scholar] [CrossRef]
- Lurie, S. Stress physiology and latent damage. In Postharvest Handling, 2nd ed.; Florkowski, W.J., Shewfelt, R.L., Brueckner, B., Prussia, S.E., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 443–459. [Google Scholar] [CrossRef]
- Val, J.; Fernández, V. In-season calcium-spray formulations improve calcium balance and fruit quality traits of peach. J. Plant Nutr. Soil Sci. 2011, 174, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Crisosto, C.H.; Day, K.R.; Johnson, R.S.; Garner, D. Influence of in-season foliar calcium sprays on fruit quality and surface discoloration incidence of peaches and nectarines. J. Am. Pomol. Soc. 2000, 54, 118–122. [Google Scholar]
- Karagiannis, E.; Michailidis, M.; Tanou, G.; Samiotaki, M.; Karamanoli, K.; Avramidou, E.; Ganopoulos, I.; Madesis, P.; Molassiotis, A. Ethylene –dependent and –independent superficial scald resistance mechanisms in ‘Granny Smith’ apple fruit. Sci. Rep. 2018, 8, 11436. [Google Scholar] [CrossRef] [Green Version]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Vrhovsek, U.; Masuero, D.; Gasperotti, M.; Franceschi, P.; Caputi, L.; Viola, R.; Mattivi, F. A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. J. Agric. Food Chem. 2012, 60, 8831–8840. [Google Scholar] [CrossRef]
- Wahab, M.; Ullah, Z.; Usman, M.; Nayab, S.; Ullah, M.; Sajid, M.; Sohail, K. Effect of three Ca- sources applications on fruit quality attributes of three peach cultivars in Pakistan. PAB 2016, 5, 464–470. [Google Scholar] [CrossRef]
- Genard, M.; Lescourret, F.; Gomez, L.; Habib, R. Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: A modeling approach applied to peach fruit (Prunus persica). Tree Physiol. 2003, 23, 373–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, S.J.; Moore, J.N.; Murphy, J.B. Quantitative and qualitative changes in sugar content of peach genotypes (Prunus persica L. Batsch). J. Am. Soc. Hortic. 1993, 118, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Colaric, M.; Veberic, R.; Stampar, F.; Hudina, M. Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. J. Sci. Food Agric. 2005, 85, 2611–2616. [Google Scholar] [CrossRef]
- Karagiannis, E.; Tanou, G.; Samiotaki, M.; Michailidis, M.; Diamantidis, G.; Minas, I.S.; Molassiotis, A. Comparative physiological and proteomic analysis reveal distinct regulation of peach skin quality traits by altitude. Front. Plant Sci. 2016, 7, 1689. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.H.; Quilot, B.; Génard, M.; Kervella, J.; Li, S.H. Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis. Sci. Hortic. 2005, 103, 429–439. [Google Scholar] [CrossRef]
- Zhang, X.; Su, M.; Du, J.; Zhou, H.; Li, X.; Zhang, M.; Hu, Y.; Ye, Z. Analysis of the free amino acid content and profile of 129 peach (Prunus persica (L.) Batsch) germplasms using LC-MS/MS without derivatization. J. Food Compost. Anal. 2022, 114, 104811. [Google Scholar] [CrossRef]
- Famiani, F.; Bonghi, C.; Chen, Z.; Drincovich, M.F.; Farinelli, D.; Lara, M.V.; Proietti, S.; Rosati, A.; Vizzotto, G.; Walker, R.P. Stone Fruits: Growth and nitrogen and organic acid metabolism in the fruits and seeds—A Review. Front. Plant Sci. 2020, 11, 572601. [Google Scholar] [CrossRef]
- Ranjbar, S.; Rahemi, M.; Ramezanian, A. Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. Red Delicious. Sci. Hortic. 2018, 240, 57–64. [Google Scholar] [CrossRef]
- Morales-Sillero, A.; Lodolini, E.; Suárez, M.; Navarrete, V.; Jiménez, M.; Casanova, L.; Gregori, L.; Rallo, P.; Martín-Vertedor, D. Calcium applications throughout fruit development enhance olive quality, oil yield, and antioxidant compounds’ content. J. Sci. Food Agric. 2021, 101, 1944–1952. [Google Scholar] [CrossRef]
Treatment | Skin a* | Flesh a* | Flesh Firmness (kgF) | SSC (%) | Acidity (%) |
---|---|---|---|---|---|
2019 | |||||
Control | −13.0 a | −12.2 a | 5.32 a | 11.6 a | 1.16 a |
Organic Ca | −12.0 a | −12.0 a | 4.70 a | 12.1 a | 1.16 a |
Ca–Si | −12.9 a | −11.8 a | 3.92 a | 11.8 a | 1.11 a |
Significance | NS | NS | NS | NS | NS |
2020 | |||||
Control | −11.3 b | −10.4 ab | 3.80 b | 11.8 ab | 0.92 a |
Organic Ca | −9.32 a | −10.9 b | 5.10 a | 12.3 a | 0.92 a |
CaCl2 | −9.48 a | −9.80 a | 3.30 b | 11.4 b | 0.85 a |
Significance | *** | * | *** | * | NS |
Treatment | Skin a* | Flesh a* | Flesh Firmness (kgF) | SSC (%) | Acidity (%) |
---|---|---|---|---|---|
2019 | |||||
Control | −7.64 a | −9.66 a | 3.44 a | 12.5 a | 0.95 a |
Organic calcium | −4.14 a | −8.30 a | 2.88 b | 12.6 a | 0.82 a |
Ca–Si | −6.08 a | −8.56 a | 3.13 ab | 12.8 a | 0.92 a |
Significance | NS | NS | * | NS | NS |
2020 | |||||
Control | −8.49 a | −7.99 a | 3.20 b | 12.3 b | 0.69 b |
Organic calcium | −9.51 b | −8.04 a | 2.40 b | 11.6 c | 0.74 ab |
CaCl2 | −11.5 c | −7.92 a | 4.70 a | 13.0 a | 0.79 a |
Significance | *** | NS | *** | *** | ** |
Treatment | DPPH (μmol asc. acid/g fw) | FRAP (μmol asc. acid/g fw) | TPC (mg gallic acid/g fw) |
---|---|---|---|
2019 | |||
Control | 12.10 a | 10.40 a | 1.61 a |
Organic calcium | 9.08 b | 7.27 b | 1.31 b |
Ca–Si | 5.54 c | 4.99 c | 1.06 c |
Significance | *** | *** | *** |
2020 | |||
Control | 7.37 b | 8.17 b | 1.31 b |
Organic calcium | 9.65 a | 13.41 a | 1.93 a |
CaCl2 | 6.97 b | 7.53 b | 1.22 b |
Significance | *** | *** | *** |
Treatment | DPPH (μmol asc. acid/g fw) | FRAP (μmol asc. acid/g fw) | TPC (mg gallic acid/g fw) |
---|---|---|---|
2019 | |||
Control | 6.92 a | 8.36 | 0.83 b |
Organic calcium | 5.88 b | 8.04 | 0.93 b |
Ca–Si | 7.45 a | 8.57 | 1.07 a |
Significance | * | NS | ** |
2020 | |||
Control | 7.78 b | 11.8 b | 1.10 b |
Organic calcium | 9.86 a | 12.6 a | 1.42 a |
CaCl2 | 9.25 a | 12.4 a | 1.32 a |
Significance | * | * | ** |
Treatment | Catechin | Epicatechin | Procyanidin B1 | Procyanidin B2 and B4 | Neochlorogenic Acid | Cryptochlorogenic Acid | Chlorogenic Acid | |
---|---|---|---|---|---|---|---|---|
μg/g Dry Weight | ||||||||
Control | 91.5 b | 5.2 c | 222 c | 2.3 b | 181 c | 17.1 b | 252 c | |
Organic Ca | 287 a | 23.8 a | 2230 a | 49.5 a | 396 a | 22.6 a | 609 a | |
CaCl2 | 236 a | 17.2 b | 1550 b | 38.0 a | 272 b | 15.0 b | 411 b | |
Significance | * | ** | *** | ** | ** | ** | ** |
Treatment | Catechin | Epicatechin | Procyanidin B1 | Procyanidin B2 and B4 | Neochlorogenic Acid | Cryptochlorogenic Acid | Chlorogenic Acid |
---|---|---|---|---|---|---|---|
μg/g Dry Weight | |||||||
Control | 246 a | 17.3 a | 1440 c | 29.9 a | 286 b | 14.9 b | 482 b |
Organic Ca | 312 a | 18.5 a | 1850 a | 43.1 a | 356 a | 17.1 a | 522 b |
CaCl2 | 284 a | 17.1 a | 1650 b | 24.0 a | 291 b | 15.3 b | 607 a |
Significance | NS | NS | ** | NS | ** | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maletsika, P.; Liava, V.; Sarrou, E.; Titeli, V.S.; Nasiopoulou, E.; Martens, S.; Karagiannis, E.; Grigoriadou, K.; Molassiotis, A.; Nanos, G.D. Foliar Calcium Effects on Quality and Primary and Secondary Metabolites of White-Fleshed ‘Lemonato’ Peaches. Horticulturae 2023, 9, 299. https://doi.org/10.3390/horticulturae9030299
Maletsika P, Liava V, Sarrou E, Titeli VS, Nasiopoulou E, Martens S, Karagiannis E, Grigoriadou K, Molassiotis A, Nanos GD. Foliar Calcium Effects on Quality and Primary and Secondary Metabolites of White-Fleshed ‘Lemonato’ Peaches. Horticulturae. 2023; 9(3):299. https://doi.org/10.3390/horticulturae9030299
Chicago/Turabian StyleMaletsika, Persefoni, Vasiliki Liava, Eirini Sarrou, Vaia Styliani Titeli, Elpida Nasiopoulou, Stefan Martens, Evangelos Karagiannis, Katerina Grigoriadou, Athanassios Molassiotis, and George D. Nanos. 2023. "Foliar Calcium Effects on Quality and Primary and Secondary Metabolites of White-Fleshed ‘Lemonato’ Peaches" Horticulturae 9, no. 3: 299. https://doi.org/10.3390/horticulturae9030299
APA StyleMaletsika, P., Liava, V., Sarrou, E., Titeli, V. S., Nasiopoulou, E., Martens, S., Karagiannis, E., Grigoriadou, K., Molassiotis, A., & Nanos, G. D. (2023). Foliar Calcium Effects on Quality and Primary and Secondary Metabolites of White-Fleshed ‘Lemonato’ Peaches. Horticulturae, 9(3), 299. https://doi.org/10.3390/horticulturae9030299