Insecticide Efficacy against Earias Species Infestation of Okra and Residue Analysis of Chlorantraniliprole under Field Conditions in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design to Determine the Effcacy of Insecticides
2.2. Efficacy of Insecticides—Statistical Analysis
2.3. Collection of Okra Fruit Samples for Residue Analysis
2.4. Preparation of Okra Fruit Samples for Residue Analysis
2.5. Collecting Soil Samples for Residue Analysis
2.6. Preparation of Soil Samples for Residue Analysis
2.7. GCMS/MS Analysis of Chlorantraniliprole 18.5% Residue in Okra Fruit and Soil
3. Results
3.1. Earias Infestation before Application of Insecticide
3.2. Earias Infestation following the First Insecticidal Spray
3.3. Earias Infestation before the Second Insecticidal Spray
3.4. Earias Infestation following the Second Insecticidal Spray
3.5. Effect of Insecticides on Okra Yield
3.6. GCMS/MS Analysis of Chlorantraniliprole 18.5% SC Residue in Okra Fruit and Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working paper No. 12-03; FAO: Rome, Italy, 2012. [Google Scholar]
- Brunner, J.F.; Beers, E.H.; Dunley, J.E.; Doerr, M.; Granger, K. Role of neonicotinyl insecticides in Washington apple Integrated Pest Management. Part I. Control of lepidopteran pests. J. Insect Sci. 2005, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Weinberger, K.; Srinivasan, R. Farmers’ management of cabbage and cauliflower pests in india and their approaches to crop protection. J. Asia-Pac. Entomol. 2009, 12, 253–259. [Google Scholar] [CrossRef]
- Kodandaram, M.; Rai, A.; Halder, J. Novel insecticides for management of insect pests in vegetable crops: A Review. Veg. Sci. 2010, 37, 109–123. [Google Scholar]
- Shabozoi, N.U.K.; Abro, G.H.; Syed, T.S.; Awan, M.S. Economic appraisal of pest management options in okra. Pak. J. Zool. 2011, 43, 869–878. [Google Scholar]
- Bhutto, Z.A.; Magsi, F.H.; Soomro, A.A.; Ahmed, M.; Channa, N.A.; Lashari, S.H.; Mangi, S.; Junejo, A.A. Integrated pest management of okra insect pests. Int. J. Fauna Biol. Stud. 2017, 4, 39–42. [Google Scholar]
- Anonymous. Horticultural Statistics at a Glance; Horticulture Statistics Division, Department of Agriculture, Cooperation & Farmers’ Welfare, Ministry of Agriculture & Farmers’ Welfare, Government of India: New Delhi, India, 2018; Volume 196, p. 10. [Google Scholar]
- Biswas, S.; Mahato, B.; Panda, P.; Guha, S. Effect of different does of nitrogen on insect pest attack and yield potentiality of okra, Abelmonschus Esculentus (L.) Moench at Terai ecology of West Bengal. J. Entomol. Res. 2013, 33, 219–222. [Google Scholar]
- Misra, H.P.; Dash, D.D.; Mahapatra, D. Efficacy of some insecticides against okra fruit borer, Earias spp. and leafroller, Sylepta derogata Fab. Ann. Plant prot. Sci. 2002, 10, 51–54. [Google Scholar]
- Chauhan, H.K.; Singh, K. Potancy of Vermiwash with Neem plant parts on the Infestation of Earias vittella (Fabricius) and Productivity of okra (Abelmoschus esculentus) (L.) Moench. Asian J. Res. Pharm. Sci. 2015, 5, 36–40. [Google Scholar]
- Mohammad, A.; Alam, S.N.; Miah, M.R.U.; Amin, M.R.; Saif, H.B. Bio-rational management packages of jassid and shoot and fruit borer of okra. Bangladesh J. Agric. Res. 2018, 43, 323–332. [Google Scholar] [CrossRef]
- Rahman, M.M.; Uddin, M.M.; Shahjahan, M. Management of okra shoot and fruit borer, Earias vittella (Fabricius) using chemical and botanical insecticides for different okra varieties. Int. Res. J. Appl. Life Sci. 2013, 2, 1–9. [Google Scholar]
- Bashoum, A.S.H.; Osman, S.-A.A. A Toxicity Study of Some Plant Extracts Synergized with Sesame Oil against the Spiny Bollworm Earias Insulana. Ph.D. Thesis, Sudan University of Science and Technology, Khartoum, Sudan, 2016. [Google Scholar]
- Javed, M.; Majeed, M.; Sufyan, M.; Ali, S.; Afzal, M. Field efficacy of selected synthetic and botanical insecticides against lepidopterous borers, Earias Vittella and Helicoverpa Armigera (Lepidoptera: Noctuidae), on okra (Abelmoschus Esculentus (L.) Moench). Pak. J. Zool. 2018, 50, 2019–2028. [Google Scholar] [CrossRef]
- Choudhury, M.A.R.; Mondal, M.F.; Khan, A.U.; Hossain, M.S.; Azad, M.O.K.; Prodhan, M.D.H.; Uddain, J.; Rahman, M.S.; Ahmed, N.; Choi, K.Y.; et al. Evaluation of biological approaches for controlling shoot and fruit borer (Earias Vitella F.) of okra grown in peri-urban area in Bangladesh. Horticulturae 2021, 7, 7. [Google Scholar] [CrossRef]
- El-Naggar, A.Z. Efficacy of some foliar fertilizers and alternative chemicals on the spiny bollworm, Earias Insulana (Boisd.) larvae (Lepidoptera: Noctuidae). Alex. J. Agric. Res. 2009, 54, 139–146. [Google Scholar]
- El-Naggar, A.Z.; Tawfeek, M.E. Efficacy of some foliar fertilizers and alternative chemicals on the spiny bollworm, Earias Insulana (Boisd.) larvae (Lepidoptera: Noctuidae) and their side effect on protease activity. J. Entomol. 2012, 9, 375–381. [Google Scholar] [CrossRef]
- Khanzada, A.G. Pyrethroids against Spiny Bollworm. Pak. J. Agric. Res. 2002, 17, 199–200. [Google Scholar]
- Younis, A.M.; Hamouda, S.H.H.; Ibrahim, S.A.; Zeitoun, Z.a.M. Field evaluation of certain pesticides against the cotton bollworms with special reference to their negative impact on beneficial arthropods (2006 Cotton Season, Minia Region, Egypt). In Proceedings of the Eighth African Crop Science Society Conference, El-Minia, Egypt, 27–31 October 2007; pp. 993–1002. [Google Scholar]
- Jadhav, R.P.; Mundhe, D.R.; Bhosle, B.B.; Yadav, G.A. Bioefficacy of new insecticide acetamaprid 20 SP and indoxacarb 14.5 SC against bollworm complex of Cotton. Pestic. Res. J. 2009, 21, 150–154. [Google Scholar]
- Ratan, D.; Deb, P.; Pandey, H.; Sarkar, M. Insecticidal resistance of okra fruit borer (Earias Vittella) and its management. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2932–2941. [Google Scholar] [CrossRef]
- Ahmad, M.; Iqbal Arif, M. Resistance of Pakistani field populations of spotted bollworm Earias Vittella (Lepidoptera: Noctuidae) to pyrethroid, organophosphorus and new chemical insecticides. Pest Manag. Sci. 2009, 65, 433–439. [Google Scholar] [CrossRef]
- Jan, M.T.; Abbas, N.; Shad, S.A.; Saleem, M.A. Resistance to organophosphate, pyrethroid and biorational insecticides in populations of spotted bollworm, Earias Vittella (Fabricius) (Lepidoptera: Noctuidae), in Pakistan. Crop. Prot. 2015, 78, 247–252. [Google Scholar] [CrossRef]
- Kranthi, K.R.; Jadhav, D.; Wanjari, R.; Kranthi, S.; Russell, D. Pyrethroid resistance and mechanisms of resistance in field strains of Helicoverpa Armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 2001, 94, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Franco-Bernardes, M.F.; Pazin, M.; Pereira, L.C.; Dorta, D.J. Impact of pesticides on environmental and human health. In Toxicology Studies—Cells, Drugs and Environment; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Maggi, F.; Tang, F.H.M. Estimated decline in global earthworm population size caused by pesticide residue in soil. Soil Secur. 2021, 5, 100014. [Google Scholar] [CrossRef]
- Siviter, H.; Koricheva, J.; Brown, M.J.F.; Leadbeater, E. Quantifying the impact of pesticides on learning and memory in bees. J. Appl. Ecol. 2018, 55, 2812–2821. [Google Scholar] [CrossRef]
- Sponsler, D.B.; Grozinger, C.M.; Hitaj, C.; Rundlöf, M.; Botías, C.; Code, A.; Lonsdorf, E.V.; Melathopoulos, A.P.; Smith, D.J.; Suryanarayanan, S.; et al. Pesticides and Pollinators: A socioecological synthesis. Sci. Total Environ. 2019, 662, 1012–1027. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.M.; Jensen, H.; Scott, J.G.; Isman, M.B.; Arnason, J.T.; Philogène, B.J.R. Botanical insecticides for controlling agricultural pests: Piperamides and the colorado potato beetle Leptinotarsa Decemlineata Say (Coleoptera: Chrysomelidae). Arch. Insect Biochem. Physiol. 2003, 54, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, K.V.; Gowthami, R.; Lepakshi, N.; Dhananivetha, M.; Shashank, R. Use of botanicals by farmers for integrated pest management of crops in Karnataka. Asian Agri-Hist. 2016, 20, 173–180. [Google Scholar]
- Nayak, P. Dibyarani Botanical pesticides: An insecticide from plant derivatives. Biot. Res. Today 2020, 2, 727–730. [Google Scholar]
- Koskor, E.; Muljar, R.; Drenkhan, K.; Karise, R.; Bender, A.; Viik, E.; Luik, A.; Mänd, M. The chronic effect of the botanical insecticide neem EC on the pollen forage of the bumble bee Bombus Terrestris L. Agron. Res. 2009, 7, 341–346. [Google Scholar]
- Hameed, A.; Shah, F.H.; Mehmood, M.A.; Karar, H.; Siddique, B.; Nabi, S.K.; Pasha, A.M.; Khaliq, Z. Comparative efficacy of five medicinal plant extracts against Rosa indica pests and elaboration of hazardous effects on pollinators and predators. Pak. Entomol. 2013, 35, 145–150. [Google Scholar]
- Campos, E.V.R.; de Oliveira, J.L.; Pascoli, M.; de Lima, R.; Fraceto, L.F. Neem oil and crop protection: From now to the future. Front. Plant Sci. 2016, 7, 1494. [Google Scholar] [CrossRef] [PubMed]
- Oguh, C.; Ogechi, O.; Ubani, C.; Okekeaji, U.; PS, J.; Ugochukwu, E. Natural pesticides (Biopesticides) and uses in pest management-A critical review. Asian J. Biotechnol. Genet. Eng. 2019, 2, 1–18. [Google Scholar]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. OnLine J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Shoiful, H.; Fujita, I.; Watanabe, K. Honda Concentrations of organochlorine pesticides (OCPs) residues in foodstuffs collected from traditional markets in Indonesia. Chemosphere 2013, 90, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Prado-Lu, D.; Leilanie, J. Insecticide residues in soil, water, and eggplant fruits and farmers’ health effects due to exposure to pesticides. Environ. Health Prev. Med. 2015, 20, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Package of Practices for Fruits and Vegetables; CCS Haryana Agricultural University: Hisar, India, 2019; pp. 183–186. [Google Scholar]
- Kaur, S.; Ginday, K.K.; Singh, S. Economic Threshold Level (ETL) of okra shoot and fruit borer, Earias spp. on okra. Afr. J. Agric. Res. 2015, 10, 697–701. [Google Scholar]
- Kumar, U.; Singh, D.V.; Sachan, S.K.; Bhatnagar, A.; Singh, R. Insect pest complex of okra and biology of shoot and fruit borer, Earias vittella (F.). Indian J. Entomol. 2014, 76, 29–31. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 9 June 2020).
- Gupta, S.; Gajbhiye, V.T.; Sharma, R.K.; Gupta, R.K. Dissipation of cypermethrin, chlorpyriphos, and profenofos in tomato fruits and soil following application of pre-mix formulations. Environ. Monit. Assess. 2011, 174, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.; Madan, V.K.; Kathpal, T.S. Status of pesticide contamination of soil and water in Haryana, India. Environ. Monit. Assess. 2008, 136, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Hosamani, A.C.; Chowdary, L.R.; Bheemanna, M.; Hanchinal, S.G. Field bioefficacy of Rynaxypyr 20 SC against fruit borer complex in okra. Ann. Plant Prot. Sci. 2011, 19, 463–464. [Google Scholar]
- Rakshith, K.A.; Kumar, A. Field efficacy of selected insecticides and neem products against shoot and fruit borer [Earias vittella (Fabricius)] on okra [Abelmoschus esculentus (L.) Moench]. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 122–128. [Google Scholar] [CrossRef]
- Dhawan, A.K.; Singh, R.; Singh, K.; Sharma, M. Efficacy of chlorantraniliprole against bollworm complex on Cotton. J. Insect Sci. 2009, 22, 248–253. [Google Scholar]
- Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorganic Med. Chem. 2009, 17, 4127–4133. [Google Scholar] [CrossRef] [PubMed]
- Hannig, G.T.; Ziegler, M.; Marçon, P.G. Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Pest Manag. Sci. 2009, 65, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Hardke, J.T.; Temple, J.H.; Leonard, B.R.; Jackson, R.E. Laboratory toxicity and field efficacy of selected insecticides against Fall Armyworm (Lepidoptera: Noctuidae). Fla. Entomol. 2011, 94, 272–278. [Google Scholar] [CrossRef]
- Rajavel, D.S.; Mohanraj, A.; Bharathi, K. Efficacy of chlorantraniliprole (Coragen 20SC) against brinjal shoot and fruit borer, Leucinodes orbonalis (Guen.). Pest Manag. Hortic. Ecosyst. 2011, 17, 28–31. [Google Scholar]
- Huseth, A.S.; Groves, R.L.; Chapman, S.A.; Nault, B.A. Evaluation of diamide insecticides co-applied with other agrochemicals at various times to manage Ostrinia nubilalis in processing snap bean. Pest Manag. Sci. 2015, 71, 1649–1656. [Google Scholar] [CrossRef]
- Younas, A.Z.; Khan, W.; Wakil, M.; Shaaban, M.; Prager, S.M. The efficacy of Beauveria bassiana 1%WP, Jasmonic acid and Chlorantraniliprole 18.5% SC on larval populations of Helicoverpa armigera in chickpea crop ecosystems. Pest Manag. Sci. 2016, 73, 418–424. [Google Scholar] [CrossRef]
- Reddy, G.N.; Thara, K. Field Efficacy of Selected Bio-Agent and Insecticide against Shoot and Fruit Borer, Earias Vittella (Noctuidae: Lepidoptera) on okra. J. Entomol. Zool. Stud. 2019, 7, 380–383. [Google Scholar]
- Lahm, G.P.; Stevenson, T.M.; Selby, T.P.; Freudenberger, J.H.; Cordova, D.; Flexner, L.; Benner, E.A. Rynaxypyr™: A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorganic Med. Chem. Lett. 2007, 17, 6274–6279. [Google Scholar] [CrossRef]
- Dinter, A.; Brugger, K.; Frost, N.M.; Woodward, M.D. Chlorantraniliprole 18.5% SC (Rynaxypyr): A novel DuPontTM insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terrestris) providing excellent tools for uses in integrated pest management. In Proceedings of the 10th International Symposium of the ICP-Bee Protection Group, Bucharest, Romania, 8–10 October 2008; pp. 84–96. [Google Scholar]
- Gradish, A.E.; Scott-Dupree, C.D.; Shipp, L.; Harris, C.R.; Ferguson, G. Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae). Pest Manag. Sci. Former. Pestic. Sci. 2010, 66, 142–146. [Google Scholar]
- Dinter, A.; Brugger, K.; Bassi, A.; Frost, N.M.; Woodward, M.D. Chlorantraniliprole (DPX-E2Y45, DuPont™ Rynaxypyr®, Coragen® and Altacor® insecticide)-a novel anthranilic diamide insecticide-demonstrating low toxicity and low risk for beneficial insects and predatory mites. IOBC/Wprs Bull. 2008, 35, 128–135. [Google Scholar]
- Brugger, K.E.; Cole, P.G.; Newman, I.C.; Parker, N.; Scholz, B.; Suvagia, P.; Walker, G.; Hammond, T.G. Selectivity of chlorantraniliprole to parasitoid wasps. Pest Manag. Sci. 2010, 66, 1075–1081. [Google Scholar] [CrossRef]
- Dinter, A.; Samel, A.; Frost, N.M.; Groya, F.L. Cyantraniliprole (DPXHGW86, DuPontTM CyazypyrTM)—A novel DuPont insecticide with selectivity towards beneficial non-target arthropods. IOBC WPRS Bull. 2012, 82, 9–14. [Google Scholar]
- Larson, J.L.; Redmond, C.T.; Potter, D.A. Comparative impact of an anthranilic diamide and other insecticidal chemistries on beneficial invertebrates and ecosystem services in turfgrass. Pest Manag. Sci. 2012, 68, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Whalen, R.A.; Herbert, D.A.; Malone, S.; Kuhar, T.P.; Brewster, C.C.; Reisig, D.D. Effects of diamide insecticides on predators in soybean. J. Econ. Entomol. 2016, 109, 2014–2019. [Google Scholar] [CrossRef] [PubMed]
- Kambrekar, D.N.; Jahagirdar, S. Safety of insecticides to honeybees targeted for the management of Helicoverpa armigera in pigeon pea. Appl. Ecol. Environ. Res. 2021, 19, 1661–1672. [Google Scholar] [CrossRef]
- Zobayer, N.; Hasan, R. Effects of manually processed bio-pesticides on crop production and pest managements in okra (Abelmoschus Esculentus (L.) Moench). J. Nat. Sci. Res. 2013, 5, 112–118. [Google Scholar]
- Archunan, K.; Pazhanisamy, M. Field Evaluation of biorational insecticides against shoot and fruit Borer Earias vittella (Fabricious) on Bhendi. Plant Arch. 2020, 20, 2587–2590. [Google Scholar]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Dougoud, J.; Toepfer, S.; Bateman, M.; Jenner, W.H. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Develop. 2019, 39, 37. [Google Scholar] [CrossRef]
- Isman, M.B.; Koul, O.; Luczynski, A.; Kaminski, J. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J. Agric. Food Chem. 1990, 38, 1406–1411. [Google Scholar] [CrossRef]
- Verkerk, R.H.; Wright, D.J. Biological activity of neem seed kernel extracts and synthetic azadirachtin against larvae of Plutella xylostella L. Pestic. Sci. 1993, 37, 83–91. [Google Scholar] [CrossRef]
- Himmi, S.K.; Tarmadi, D.; Ismayati, M.; Yusuf, S. Bioefficacy performance of neem-based formulation on wood protection and soil barrier against subterranean termite, Coptotermes gestroi Wasmann (Isoptera: Rhinotermitidae). Procedia Environ. Sci. 2013, 17, 135–141. [Google Scholar] [CrossRef]
- Waghmode, S.; Lande, G.; Jawanjal, K.; Gavhane, R. Effect of insecticides and botanicals alone and in combination with fungicide against okra shoot and fruit borer. J. Entomol. Zool. Stud. 2020, 8, 511–518. [Google Scholar]
- Hsu, J.-C.; Feng, H.-T.; Wu, W.-J. Resistance and synergistic effects of insecticides in Bactrocera Dorsalis (Diptera: Tephritidae) in Taiwan. J. Econ. Entomol. 2004, 97, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Odeyemi, O.O.; Masika, P.; Afolayan, A.J. A Review of the use of phytochemicals for insect pest control. Afr. Plant Prot. 2008, 14, 1–7. [Google Scholar] [CrossRef]
- Quintela, E.D.; Mccoy, C.W. Pathogenicity Enhancement of Metarhizium anisopliae and Beauveria bassiana to First Instars of Diaprepes abbreviatus (Coleoptera: Curculionidae) with sublethal doses of imidacloprid. Environ. Entomol. 1997, 26, 1173–1182. [Google Scholar] [CrossRef]
- Purwar, J.P.; Sachan, G.C. Synergistic Effect of entomogenous fungi on some insecticides against bihar hairy caterpillar Spilarctia Obliqua (Lepidoptera: Arctiidae). Microbiol. Res. 2006, 161, 38–42. [Google Scholar] [CrossRef]
- Shakir, H.U.; Saeed, M.; Anjum, N.; Farid, A.; Khan, I.A.; Liaquat, M.; Badshah, T. Combined effect of entomopathogenic fungus (Beauveria bassiana, imidacloprid and potassium silicate against Cnaphalocrocis Medinalis Guenée (Lepidoptera: Pyralidae) in Rice Crop. J. Entomol. Zool. Stud. 2015, 3, 173–177. [Google Scholar]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl 2010, 55, 159–185. [Google Scholar] [CrossRef]
- Faria, M.; Wraight, S.P. Biological control of Bemisia Tabaci with fungi. Crop Prot. 2001, 20, 767–778. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella Xylostella. J. Econ. Entomol. 2012, 105, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Tamilselvan, R.; Kennedy, J.S.; Suganthi, A. Monitoring the resistance and baseline susceptibility of Plutella Xylostella (L.) (Lepidoptera: Plutellidae) against Spinetoram in Tamil Nadu, India. Crop Prot. 2021, 142, 105491. [Google Scholar] [CrossRef]
- Roditakis, E.; Vasakis, E.; Grispou, M.; Stavrakaki, M.; Nauen, R.; Gravouil, M.; Bassi, A. First report of Tuta absoluta resistance to diamide insecticides. J. Pestic. Sci. 2015, 88, 9–16. [Google Scholar] [CrossRef]
- Nauen, R.; Steinbach, D. Resistance to Diamide Insecticides in Lepidopteran Pests. In Advances in Insect Control and Resistance Management; Springer: Cham, Switzerland, 2016; pp. 219–240. [Google Scholar]
- Marriapan, P.; Kaithamalai, B. Dissipation kinetics, decontamination and risk assessment of chlorantraniliprole in okra and soil under open field condition using GC-MS. Int. J. Environ. Anal. Chem. 2022, 102, 3694–3706. [Google Scholar] [CrossRef]
- Sun, D.; Zhu, Y.; Pang, J.; Zhou, Z.; Jiao, B. Residue level, persistence and safety of spirodiclofen–pyridaben mixture in citrus fruits. Food Chem. 2016, 194, 805–810. [Google Scholar] [CrossRef]
- Zhang, P.W.; Wang, S.Y.; Huang, C.L.; Fu, J.T.; Huang, R.L.; Li, Z.H.; Zhang, Z.X. Dissipation and residue of clothianidin in granules and pesticide fertilizers used in cabbage and soil under field conditions. Environ. Sci. Pollut. Res. 2018, 25, 27. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kaur, A.; Warangtiwar, R.K. Dissipation and Residual Bioefficacy of Chlorantraniliprole in Tomato and Brinjal Fruits. Pestic. Res. J. 2019, 31, 249–258. [Google Scholar] [CrossRef]
- Preethi, S.; Vinothkumar, B.; Bhuvaneswari, K.; Paramasivam, M. Dissipation pattern of chlorantraniliprole in/on cabbage. Int. J. Chem. Stud. 2019, 7, 4791–4795. [Google Scholar]
- Malhat, F.; Abdallah, H.; Hegazy, I. Dissipation of chlorantraniliprole in tomato fruits and soil. Bull. Environ. Contam. Toxicol. 2012, 88, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, S.; Gulia, S.; Malik, K.; Rani, S.; Chauhan, R. Persistence and decontamination studies of chlorantraniliprole in Capsicum annuum using GC-MS/MS. J. Food Sci. Technol. 2019, 56, 2925–2931. [Google Scholar] [CrossRef] [PubMed]
- Khay, S.; Choi, J.; Abd El-Aty, M. Dissipation behavior of lufenuron, benzoyphenylurea insecticide, in/on Chinees cabbage applied by foliar spraying under greenhouse condition. Bull. Environ. Contam. Toxicol. 2008, 81, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Cabras, P.; Spanedda, L.; Cabitza, F.; Cubeddu, M.; Martini, M.; Brandolini, G. Pirimicarb and its metabolites residues in lettuce. Influence of cultural environment. J. Agric. Food Chem. 1990, 38, 879–882. [Google Scholar] [CrossRef]
S. No. | Treatments | Dose | Percent Shoot Infestation after 1st Spray | Percent Shoot Infestation after 2nd Spray | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Before Spray | 3 DAS | 7 DAS | 10 DAS | Before Spray | 3 DAS | 7 DAS | 10 DAS | |||
T1 | Neem oil | 3–4 mL/L water | 26.02 a,* | 11.06 f | 11.26 f | 11.55 f | 15.81 bc | 5.18 f | 5.54 f | 5.00 e |
T2 | Neem Seed Kernal Extract 5% | 50 mL/L water | 14.31 a | 8.48 h | 8.26 h | 8.62 h | 13.54 cd | 3.74 h | 3.99 gh | 3.62 g |
T3 | Nimbicidine 300 ppm | 2.5 L/ha | 28.10 a | 10.21 g | 10.22 g | 10.68 g | 7.70 fg | 5.59 f | 5.11 f | 5.29 e |
T4 | Beauveria bassiana 1 × 109 cfu | 4 Kg/ha | 23.31 a | 22.79 b | 18.74 b | 22.20 b | 13.33 a | 9.52 b | 9.86 b | 9.99 b |
T5 | Fenvalerate 20% EC | 300–375 mL/ha | 27.78 a | 14.23 d | 13.23 e | 12.94 e | 10.27 ef | 6.41 e | 6.18 e | 6.78 d |
T6 | Chlorantraniliprole 18.5% SC | 125 mL/ha | 15.21 a | 4.96 j | 4.67 i | 4.28 j | 6.85 g | 1.38 j | 1.19 i | 1.00 h |
T7 | Malathion 50% EC | 1000–1250 mL/ha | 13.16 a | 12.18 e | 12.54 e | 12.96 e | 11.82 de | 4.38 g | 4.42 g | 4.00 f |
T8 | Fenpropathrin 30% EC | 250–340 mL/ha | 16.55 a | 14.23 d | 14.68 d | 15.02 d | 13.05 d | 7.46 d | 7.72 d | 7.06 d |
T9 | Lambda-cyhalothrin 4.9% CS | 300 mL/ha | 23.00 a | 19.45 c | 18.57 c | 18.78 c | 16.75 b | 8.32 c | 8.65 c | 9.09 c |
T10 | Pyriproxyfen 5% EC+ fenpropathrin 15% EC | 500–750 mL/ha | 13.86 a | 7.61 i | 7.90 h | 7.96 i | 11.59 de | 3.25 i | 3.60 h | 3.75 fg |
T11 | Control | Untreated | 28.13 a | 30.99 a | 30.15 a | 31.83 a | 22.09 a | 20.75 a | 20.51 a | 21.18 a |
Mean | 20.86 | 14.32 | 14.26 | 14.62 | 13.71 | 6.91 | 6.98 | 6.98 | ||
t.value | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | ||
LSD | 16.61 | 0.77 | 0.74 | 0.58 | 2.64 | 0.49 | 0.44 | 0.32 | ||
p-value | 0.33 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||
F-value | 1.24 | 872.09 | 938.08 | 1718.99 | 30.71 | 971.18 | 1158.89 | 239.12 |
S. No. | Treatments | Dose | Percent Fruit Infestation on Number Basis after 1st Spray | Percent Fruit Infestation on Number Basis after 2nd Spray | Yield (Metric Tons) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before 1st Spray | 3 DAS | 7 DAS | 10 DAS | Before 2nd Spray | 3 DAS | 7 DAS | 10 DAS | ||||
T1 | Neem oil | 3–4 mL/L water | 29.76 ab,* | 16.76 g | 16.24 g | 15.94 g | 15.67 c,* | 14.90 g | 13.36 g | 12.39 g | 4.08 d |
T2 | Neem Seed Kernal Extract 5% | 50 mL/L water | 24.92 bc | 13.70 h | 13.22 h | 13.10 h | 15.10 c | 10.33 j | 9.42 i | 8.16 j | 4.44 b |
T3 | Nimbicidine 300 ppm | 2.5 L/ha | 34.54 a | 18.56 f | 18.24 f | 18.91 f | 19.89 bc | 15.60 f | 14.18 f | 13.79 f | 3.96 e |
T4 | Beauveria bassiana 1 × 109 cfu | 4 Kg/ha | 26.69 abc | 26.16 b | 26.66 b | 26.08 b | 23.00 b | 22.65 b | 22.14 b | 21.71 b | 3.27 i |
T5 | Fenvalerate 20% EC | 300–375 mL/ha | 29.21 abc | 24.19 c | 23.09 cd | 23.91 c | 22.69 b | 17.31 e | 16.26 e | 15.13 e | 3.77 f |
T6 | Chlorantraniliprole 18.5% SC | 125 mL/ha | 20.71 c | 10.53 i | 9.26 i | 9.10 i | 7.93 d | 7.33 k | 6.10 j | 6.03 k | 4.59 a |
T7 | Malathion 50% EC | 1000–1250 mL/ha | 22.88 bc | 21.56 e | 20.76 e | 20.00 e | 19.76 bc | 12.84 h | 11.65 h | 10.94 h | 4.22 c |
T8 | Fenpropathrin 30% EC | 250–340 mL/ha | 25.36 bc | 24.60 c | 23.92 c | 24.33 c | 22.74 b | 18.60 d | 17.98 d | 16.30 d | 3.65 g |
T9 | Lambda- cyhalothrin 4.9% CS | 300 mL/ha | 31.00 ab | 23.11 d | 22.18 d | 21.23 d | 22.69 b | 21.50 c | 20.86 c | 19.96 c | 3.45 h |
T10 | Pyriproxyfen 5% EC+ fenpropathrin 15% EC | 500–750 mL/ha | 27.06 abc | 13.24 h | 13.10 h | 13.03 h | 14.83 c | 11.22 i | 9.98 i | 8.75 i | 4.39 b |
T11 | Control | Untreated | 27.09 abc | 33.76 a | 39.02 a | 40.54 a | 37.30 a | 32.93 a | 28.50 a | 25.30 a | 3.12 j |
Mean | 27.20 | 20.65 | 20.51 | 20.56 | 20.14 | 16.84 | 15.49 | 14.41 | 3.9 | ||
t value | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.07 | ||
LSD | 8.84 | 0.81 | 0.96 | 0.72 | 6.67 | 0.65 | 0.61 | 0.40 | 0.11 | ||
p-value | 0.16 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||
F-value | 1.65 | 625.17 | 622.00 | 1201.55 | 10.64 | 1037.82 | 978.93 | 1950.78 | 170.3 | ||
df | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
S. No. | Treatments | Dose | Percent Fruit Infestation on Weight Basis after 1st Spray | Percent Fruit Infestation on Weight Basis after 2nd Spray | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Before Spray | 3 DAS | 7 DAS | 10 DAS | Before Spray | 3 DAS | 7 DAS | 10 DAS | |||
T1 | Neem oil | 3–4 mL/L water | 31.42 abc,* | 18.76 g | 18.24 g | 17.94 g | 18.00 cd,* | 16.89 g | 15.36 g | 14.39 g |
T2 | Neem Seed Kernal Extract 5% | 50 mL/L water | 27.25 bcd | 15.70 h | 15.22 h | 15.10 h | 16.80 de | 12.33 j | 11.42 i | 10.16 j |
T3 | Nimbicidine 300 ppm | 2.5 L/ha | 36.14 a | 20.56 f | 20.24 f | 20.89 f | 21.56 bcd | 17.60 f | 16.18 f | 15.79 f |
T4 | Beauveria bassiana 1 × 109 cfu | 4 Kg/ha | 28.68 abcd | 28.16 b | 28.66 b | 28.08 b | 25.00 b | 24.65 b | 24.14 b | 23.71 b |
T5 | Fenvalerate 20% EC | 300–375 mL/ha | 31.74 abc | 26.19 c | 25.09 cd | 25.91 c | 24.47 bc | 19.31 e | 18.26 e | 17.13 e |
T6 | Chlorantraniliprole 18.5% SC | 125 mL/ha | 23.04 d | 12.53 i | 11.26 i | 11.10 i | 10.76 e | 9.33 k | 8.10 j | 8.03 k |
T7 | Malathion 50% EC | 1000–1250 mL/ha | 24.88 cd | 23.56 e | 22.42 e | 22.00 e | 21.76 bcd | 14.84 h | 13.65 h | 12.94 h |
T8 | Fenpropathrin 30% EC | 250–340 mL/ha | 27.42 bcd | 26.60 c | 25.92 c | 26.33 c | 24.74 b | 20.60 d | 19.98 d | 18.30 d |
T9 | Lambda-cyhalothrin 4.9% CS | 300 mL/ha | 33.00 ab | 25.11 d | 24.12 d | 23.23 d | 24.68 b | 23.50 c | 22.86 c | 21.96 c |
T10 | Pyriproxyfen 5% EC+ fenpropathrin 15% EC | 500–750 mL/ha | 28.50 abcd | 15.24 h | 15.10 h | 15.03 h | 16.83 de | 13.22 i | 11.98 i | 10.75 i |
T11 | Control | untreated | 29.09 abcd | 35.42 a | 41.02 a | 42.54 a | 39.31 a | 34.93 a | 30.50 a | 27.30 a |
Mean | 29.20 | 22.62 | 22.48 | 22.55 | 22.17 | 18.84 | 17.49 | 16.41 | ||
t value | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | ||
LSD | 7.97 | 0.69 | 0.998 | 0.72 | 6.60 | 0.65 | 0.61 | 0.40 | ||
p-value | 0.11 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||
F-value | 1.90 | 856.04 | 575.77 | 1201.66 | 10.48 | 1040.0 | 978.93 | 1950.78 | ||
df | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Days after Treatment | Chlorantraniliprole Residue (mg kg−1) | ||||
---|---|---|---|---|---|
Recommended Dose of CAP (125 mL/ha) | Double Strength Dose of CAP (250 mL/ha) | Control | |||
Average Residues ± SD | % Dissipation | Average Residues ± SD | % Dissipation | Average Residues ± SD | |
0 | 0.083 ± 0.008 | - | 0.144 ± 0.006 | - | ND |
1 | 0.057 ± 0.006 | 31.33 | 0.101 ± 0.006 | 30.10 | ND |
3 | 0.025 ± 0.004 | 70.48 | 0.056 ± 0.004 | 60.90 | ND |
5 | 0.016 ± 0.001 | 81.33 | 0.019 ± 0.002 | 86.51 | ND |
7 | <LOQ | - | 0.015 ± 0.003 | 89.62 | ND |
10 | - | - | <LOQ | - | ND |
Soil at time of harvest | <LOQ | <LOQ | |||
Correlation Coefficient r = −0.984 Regression Equation y = −0.147x + 1.891 R² = 0.984 t1/2 = 2.04 days | Correlation Coefficient r = −0.971 Regression Equation y = −0.148x + 2.149 R² = 0.971 t1/2 = 2.06 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheoran, S.; Kalkal, D.; Chauhan, R.; Rolania, K.; Ahlawat, S.; Gilpin, A.-M. Insecticide Efficacy against Earias Species Infestation of Okra and Residue Analysis of Chlorantraniliprole under Field Conditions in India. Horticulturae 2023, 9, 356. https://doi.org/10.3390/horticulturae9030356
Sheoran S, Kalkal D, Chauhan R, Rolania K, Ahlawat S, Gilpin A-M. Insecticide Efficacy against Earias Species Infestation of Okra and Residue Analysis of Chlorantraniliprole under Field Conditions in India. Horticulturae. 2023; 9(3):356. https://doi.org/10.3390/horticulturae9030356
Chicago/Turabian StyleSheoran, Sindhu, Deepika Kalkal, Reena Chauhan, Krishna Rolania, Sushil Ahlawat, and Amy-Marie Gilpin. 2023. "Insecticide Efficacy against Earias Species Infestation of Okra and Residue Analysis of Chlorantraniliprole under Field Conditions in India" Horticulturae 9, no. 3: 356. https://doi.org/10.3390/horticulturae9030356
APA StyleSheoran, S., Kalkal, D., Chauhan, R., Rolania, K., Ahlawat, S., & Gilpin, A. -M. (2023). Insecticide Efficacy against Earias Species Infestation of Okra and Residue Analysis of Chlorantraniliprole under Field Conditions in India. Horticulturae, 9(3), 356. https://doi.org/10.3390/horticulturae9030356