Interaction Effects of Cultivars and Nutrition on Quality and Yield of Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Growing Conditions
2.2. Experimental Design, Plants and Treatments
2.3. Total Soluble Solids, Acidity and Ash Analyses
2.4. Analytical Quantifications of the Phenolic Compounds
2.5. Lycopene and β-Carotene Content
2.6. Antioxidant Activity
2.7. Mineral Content
2.8. Biometric and Yield Determinations
2.9. Statistical Analysis of the Data
3. Results
3.1. Water Content, Dry Matter, Total Soluble Solid, Acidity and Ash
3.2. Antioxidant Contents
3.3. Mineral Content
3.4. Biometrical and Yield Parameters
4. Discussion
4.1. Water Content, Dry Matter, Total Soluble Solid, Acidity and Ash of Tomato Fruits
4.2. Antioxidant Contents
4.3. Mineral Content
4.4. Biometrical and Yield Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kibr, G. The Health Benefits of Vegetables; Preventive Implications for Chronic Non-Communicable Diseases; IntechOpen: Rijeka, Croatia, 2022; ISBN 978-1-83969-949-8. [Google Scholar]
- Ülger, T.G.; Songur, A.N.; Çırak, O.; Çakıroğlu, F.P. Role of Vegetables in Human Nutrition and Disease Prevention. In Vegetables—Importance of Quality Vegetables to Human Health; Asaduzzaman, M., Asao, T., Eds.; InTech: Rijeka, Croatia, 2018; ISBN 978-1-78923-506-7. [Google Scholar]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical Review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef]
- Caprile, A.; Rossi, R. 2021 International Year of Fruits and Vegetables; EPRS—European Parliamentary Research Service: 2021. Available online: https://www.europarl.europa.eu/RegData/etudes/ATAG/2021/689367/EPRS_ATA(2021)689367_EN.pdf (accessed on 15 October 2022).
- World Health Organization Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 15 October 2022).
- Perveen, R.; Suleria, H.A.R.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims—A comprehensive review. Crit. Rev. Food. Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in food: Cancer prevention and apoptosis induction. Curr. Med. Chem. 2018, 25, 4740–4757. [Google Scholar] [CrossRef] [PubMed]
- Inculet, C.-S.; Mihalache, G.; Sellitto, V.M.; Hlihor, R.-M.; Stoleru, V. The effects of a microorganisms-based commercial product on the morphological, biochemical and yield of tomato plants under two different water regimes. Microorganisms 2019, 7, 706. [Google Scholar] [CrossRef]
- Shukla, S.K.; Gupta, S.; Ojha, S.K.; Sharma, S.B. Cardiovascular friendly natural products: A promising approach in the management of CVD. Nat. Prod. Res. 2010, 24, 873–898. [Google Scholar] [CrossRef]
- Tan, S.; Ke, Z.; Chai, D.; Miao, Y.; Luo, K.; Li, W. Lycopene, polyphenols and antioxidant activities of three characteristic tomato cultivars subjected to two drying methods. Food Chem. 2021, 338, 128062. [Google Scholar] [CrossRef]
- Dimitriu, D.C.; Stoleru, V.; Corciova, A.; Vlase, L.; Stan, T.; Jitareanu, A.; Munteanu, N.; Rotaru, L.; Patras, A. P-coumaric acid content in sweet pepper under farming methods. Environ. Eng. Manag. J. 2016, 15, 1841–1848. [Google Scholar] [CrossRef]
- Shahbandeh, M. World Vegetable Production by Type 2020. Available online: https://www.statista.com/statistics/264065/global-production-of-vegetables-by-type/ (accessed on 15 December 2022).
- Choksi, P.M.; Joshi, V.Y. A review on lycopene—Extraction, purification, stability and applications. Int. J. Food Prop. 2007, 10, 289–298. [Google Scholar] [CrossRef]
- Chang, C.-H.; Lin, H.-Y.; Chang, C.-Y.; Liu, Y.-C. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng. 2006, 77, 478–485. [Google Scholar] [CrossRef]
- Rosa-Martínez, E.; García-Martínez, M.D.; Adalid-Martínez, A.M.; Pereira-Dias, L.; Casanova, C.; Soler, E.; Figàs, M.R.; Raigón, M.D.; Plazas, M.; Soler, S.; et al. Fruit composition profile of pepper, tomato and eggplant varieties grown under uniform conditions. Int. Food Res. J. 2021, 147, 110531. [Google Scholar] [CrossRef]
- Hertog, M.G.; Hollman, P.C. Potential health effects of the dietary flavonol quercetin. Eur. J. Clin. Nutr. 1996, 50, 63–71. [Google Scholar] [PubMed]
- Roșca, M.; Mihalache, G.; Stoleru, V. Tomato responses to salinity stress: From morphological traits to genetic changes. Front. Plant Sci. 2023, 14, 1118383. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, V.; Inculet, S.-C.; Mihalache, G.; Cojocaru, A.; Teliban, G.-C.; Caruso, G. Yield and nutritional response of greenhouse grown tomato cultivars to sustainable fertilization and irrigation management. Plants 2020, 9, 1053. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef]
- Singh, T.B.; Ali, A.; Prasad, M.; Yadav, A.; Shrivastav, P.; Goyal, D.; Dantu, P.K. Role of Organic Fertilizers in Improving Soil Fertility. In Contaminants in Agriculture: Sources, Impacts and Management; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 61–77. ISBN 978-3-030-41552-5. [Google Scholar]
- Spencer, J.P.E.; Kuhnle, G.G.C.; Hajirezaei, M.; Mock, H.-P.; Sonnewald, U.; Rice-Evans, C. The genotypic variation of the antioxidant potential of different tomato varieties. Free Radic. Res. 2005, 39, 1005–1016. [Google Scholar] [CrossRef]
- De Sio, F.; Rapacciuolo, M.; De Giorgi, A.; Sandei, L.; Giuliano, B.; Tallarita, A.; Golubkina, N.; Sekara, A.; Stoleru, V.; Cuciniello, A.; et al. Industrial processing affects product yield and quality of diced tomato. Agriculture 2021, 11, 230. [Google Scholar] [CrossRef]
- Mihalache, G.; Peres, C.I.; Bodale, I.; Achitei, V.; Gheorghitoaie, M.V.; Teliban, G.C.; Cojocaru, A.; Butnariu, M.; Muraru, V.; Stoleru, V. Tomato crop performances under chemical nutrients monitored by electric signal. Agronomy 2020, 10, 1915. [Google Scholar] [CrossRef]
- Martí, R.; Leiva-Brondo, M.; Lahoz, I.; Campillo, C.; Cebolla-Cornejo, J.; Roselló, S. Polyphenol and L-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different environments. Food Chem. 2018, 239, 148–156. [Google Scholar] [CrossRef]
- Assefa, S.; Tadesse, S. The principal role of organic fertilizer on soil properties and agricultural productivity—A review. Agric. Res. Technol. Open Access J. 2019, 22, 556192. [Google Scholar]
- European Commission. Report from the Commission to the Council and the European Parliament on the Implementation of Council Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources Based on Member State Reports for the Period 2016–2019. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2021%3A1000%3AFIN (accessed on 15 March 2023).
- European Commission. Sustainable Use of Nutrients. Available online: https://agriculture.ec.europa.eu/sustainability/environmental-sustainability/low-input-farming/nutrients_en (accessed on 15 March 2023).
- Runge, T.; Latacz-Lohmann, U.; Schaller, L.; Todorova, K.; Daugbjerg, C.; Termansen, M.; Liira, J.; Le Gloux, F.; Dupraz, P.; Leppanen, J.; et al. Implementation of eco-schemes in fifteen European Union member states. EuroChoices 2022, 21, 19–27. [Google Scholar] [CrossRef]
- Szabo, K.; Diaconeasa, Z.; Cătoi, A.-F.; Vodnar, D.C. Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities. Antioxidants 2019, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, V.; Munteanu, N.; Sellitto, M.V. New Approach of Organic Vegetable Systems; Aracnee: Rome, Italy, 2014. [Google Scholar]
- Xu, S.; Li, J.; Baldwin, E.A.; Plotto, A.; Rosskopf, E.; Hong, J.C.; Bai, J. Electronic tongue discrimination of four tomato cultivars harvested at six maturities and exposed to blanching and refrigeration treatments. Postharvest Biol. Technol. 2018, 136, 42–49. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. (Eds.) Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; ISBN 0-935584-77-3. [Google Scholar]
- Ilahy, R.; Hdider, C.; Lenucci, M.S.; Tlili, I.; Dalessandro, G. Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in southern Italy. Sci. Hortic. 2011, 127, 255–261. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Li, R.; Bi, X.; Liao, X. Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars. Innov. Food Sci. Emerg. Technol. 2014, 21, 35–43. [Google Scholar] [CrossRef]
- Cristea, E.; Sturza, R.; Patraș, A. The influence of temperature and time on the stability of the antioxidant activity and colour parameters of grape marc ethanolic extract. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2015, 39, 96–104. [Google Scholar]
- Vlase, L.; Mocan, A.; Hanganu, D.; Benedec, D.; Gheldiu, A. Comparative Study of polyphenolic content, antioxidant and antimicrobial activity of four galium species (Rubiaceae). Dig. J. Nanomater. 2014, 9, 1085–1094. [Google Scholar]
- Davis, A.R.; Fish, W.W.; Perkins-Veazie, P. A rapid spectrophotometric method for analyzing lycopene content in tomato and tomato products. Postharvest Biol. Technol. 2003, 28, 425–430. [Google Scholar] [CrossRef]
- Cadoni, E.; Rita De Giorgi, M.; Medda, E.; Poma, G. Supercritical CO2 extraction of lycopene and β-carotene from ripe tomatoes. Dye. Pigm. 1999, 44, 27–32. [Google Scholar] [CrossRef]
- Musa, K.H.; Abdullah, A.; Kuswandi, B.; Hidayat, M.A. A Novel high throughput method based on the DPPH dry reagent array for determination of antioxidant activity. Food Chem. 2013, 141, 4102–4106. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ruiz, V.; Olives, A.I.; Cámara, M.; Sánchez-Mata, M.D.C.; Torija, M.E. Mineral and Trace elements content in 30 accessions of tomato fruits (Solanum lycopersicum L.) and wild relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites S. Knapp & D.M. Spooner). Biol. Trace Elem. Res. 2011, 141, 329–339. [Google Scholar] [CrossRef]
- Guilherme, R.; Reboredo, F.; Guerra, M.; Ressurreição, S.; Alvarenga, N. Elemental composition and some nutritional parameters of sweet pepper from organic and conventional agriculture. Plants 2020, 9, 863. [Google Scholar] [CrossRef] [PubMed]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Yildirim, E. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2007, 57, 182–186. [Google Scholar] [CrossRef]
- Gheorghitoaie, M.-V.; Bodale, I.; Achitei, V.; Teliban, G.-C.; Cojocaru, A.; Caruso, G.; Mihalache, G.; Stoleru, V. Potential of continuous electric current on biometrical, physiological and quality characteristics of organic tomato. Appl. Sci. 2022, 12, 4211. [Google Scholar] [CrossRef]
- Pieper, J.R.; Barrett, D.M. Effects of organic and conventional production systems on quality and nutritional parameters of processing tomatoes. J. Sci. Food Agric. 2009, 89, 177–194. [Google Scholar] [CrossRef]
- Sammi, S.; Masud, T. Effect of different packaging systems on the quality of tomato (Lycopersicon esculentum Var. Rio Grande) Fruits during Storage. Int. J. Food Sci. Technol. 2009, 44, 918–926. [Google Scholar] [CrossRef]
- Bona, E.; Todeschini, V.; Cantamessa, S.; Cesaro, P.; Copetta, A.; Lingua, G.; Gamalero, E.; Berta, G.; Massa, N. Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Sci. Hortic. 2018, 234, 160–165. [Google Scholar] [CrossRef]
- Bona, E.; Cantamessa, S.; Massa, N.; Manassero, P.; Marsano, F.; Copetta, A.; Lingua, G.; D’Agostino, G.; Gamalero, E.; Berta, G. Arbuscular mycorrhizal fungi and plant growth-promoting Pseudomonads improve yield, quality and nutritional value of tomato: A field study. Mycorrhiza 2017, 27, 1–11. [Google Scholar] [CrossRef]
- Ayuso-Yuste, M.C.; González-Cebrino, F.; Lozano-Ruiz, M.; Fernández-León, A.M.; Bernalte-García, M.J. Influence of ripening stage on quality parameters of five traditional tomato varieties grown under organic conditions. Horticulturae 2022, 8, 313. [Google Scholar] [CrossRef]
- Stoleru, V.; Vitanescu, M.; Teliban, G.-C.; Cojocaru, A.; Vlase, L.; Gheldiu, A.-M.; Mangalagiu, I.; Amăriucăi-Mantu, D.; Burducea, M.; Zheljazkov, V.; et al. Phytosterol and polyphenol contents and quinoa leave yields variation in relationships to variety, density and harvesting date. Agronomy 2022, 12, 2397. [Google Scholar] [CrossRef]
- Spagna, G.; Barbagallo, R.N.; Chisari, M.; Branca, F. Characterization of a tomato polyphenol oxidase and its role in browning and lycopene content. J. Agric. Food Chem. 2005, 53, 2032–2038. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Velasco, C.E.; Valadez-Blanco, R.; Salas-Coronado, R.; Sustaita-Rivera, F.; Hernández-Carlos, B.; García-Ortega, S.; Santos-Sánchez, N.F. Effect of nitrogen fertilization and bacillus licheniformis biofertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Sci. Hortic. 2016, 201, 338–345. [Google Scholar] [CrossRef]
- Raiola, A.; Del Giudice, R.; Monti, D.; Tenore, G.; Barone, A.; Rigano, M. Bioactive compound content and cytotoxic effect on human cancer cells of fresh and processed yellow tomatoes. Molecules 2015, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Tomas, M.; Beekwilder, J.; Hall, R.D.; Sagdic, O.; Boyacioglu, D.; Capanoglu, E. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants. Food Chem. 2017, 220, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Cvijanović, V.; Sarić, B.; Dramićanin, A.; Kodranov, I.; Manojlović, D.; Momirović, N.; Momirović, N.; Milojković-Opsenica, D. Content and distribution of macroelements, microelements, and rare-earth elements in different tomato varieties as a promising tool for monitoring the distinction between the integral and organic systems of production in Zeleni Hit—Official Enza and Vitalis Trial and Breeding Station. Agriculture 2021, 11, 1009. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Pinela, J.; Carvalho, A.M.; Barros, L.; Fernández-Ruiz, V.; Ferreira, I.C.F.R.; Sánchez-Mata, M.D.C.; Morales, P. Bioaccessibility of macrominerals and trace elements from tomato (Solanum lycopersicum L.) farmers’ varieties. Foods 2022, 11, 1968. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Rahmat, A.; Rahman, Z.A. Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip fatimah (Labisia pumila Blume). Int. J. Mol. Sci. 2011, 12, 5238–5254. [Google Scholar] [CrossRef]
- Khalifezadeh Koureh, O.; Bakhshi, D.; Pourghayoumi, M.; Majidian, M. Comparison of yield, fruit quality, antioxidant activity, and some phenolic compounds of white seedless grape obtained from organic, conventional, and integrated fertilization. Int. J. Fruit Sci. 2019, 19, 1–12. [Google Scholar] [CrossRef]
- Abdelaal, K.; AlKahtani, M.; Attia, K.; Hafez, Y.; Király, L.; Künstler, A. The Role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology 2021, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Liphadzi, M.S.; Kirkham, M.B. Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. S. Afr. J. Bot. 2006, 72, 391–397. [Google Scholar] [CrossRef]
- Singh, P.; Chauhan, P.K.; Upadhyay, S.K.; Singh, R.K.; Dwivedi, P.; Wang, J.; Jain, D.; Jiang, M. Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front. Microbiol. 2022, 13, 898979. [Google Scholar] [CrossRef] [PubMed]
- Terada, N.; Dissanayake, K.; Okada, C.; Sanada, A.; Koshio, K. Micro-Tom tomato response to fertilization rates and the effect of cultivation systems on fruit yield and quality. Horticulturae 2023, 9, 367. [Google Scholar] [CrossRef]
- Wu, Y.; Si, W.; Yan, S.; Wu, L.; Zhao, W.; Zhang, J.; Zhang, F.; Fan, J. Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices. Agric. Water Manag. 2023, 277, 108092. [Google Scholar] [CrossRef]
Treatment | Water Content (%) | Dry Matter (%) | TSS (°Brix) | Acidity (g Citric Acid·100 g−1 f.w.) | Ash (g·100 g−1 d.w.) |
---|---|---|---|---|---|
Cultivar | |||||
Cristal | 94.03 ± 3.14 | 5.97 ± 3.14 | 5.78 ± 1.07 | 0.50 ± 0.11 | 4.57 ± 0.84 |
Siriana | 93.59 ± 3.03 | 6.41 ± 3.03 | 6.29 ± 1.08 | 0.55 ± 0.11 | 5.01 ± 0.84 |
Signification | ns | ns | ns | ns | ns |
Fertilization type | |||||
Nutrifine | 94.01 ± 3.51 | 5.99 ± 3.51 | 5.99 ± 1.04 | 0.50 ± 0.09 | 4.51 ± 0.85 |
Orgevit | 93.53 ± 3.33 | 6.47 ± 3.33 | 6.18 ± 1.08 | 0.56 ± 0.10 | 5.12 ± 0.89 |
Micoseed | 93.69 ± 3.10 | 6.32 ± 3.10 | 6.48 ± 1.16 | 0.60 ± 0.10 | 4.92 ± 0.86 |
Control | 94.02 ± 2.98 | 5.98 ± 2.98 | 5.49 ± 1.09 | 0.43 ± 0.09 | 4.60 ± 0.89 |
Signification | ns | ns | ns | ns | ns |
Treatment | Water Content (%) | Dry Matter (%) | TSS (°Brix) | Acidity (g Citric Acid·100 g−1 f.w.) | Ash (g·100 g−1 d.w.) |
---|---|---|---|---|---|
Cristal × Nutrifine | 94.30 ± 2.53 | 5.70 ± 1.10 | 5.88 ± 1.13 | 0.48 ± 0.09ab | 4.22 ± 0.20 |
Cristal × Orgevit | 93.61 ± 1.87 | 6.39 ± 1.24 | 6.02 ± 1.16 | 0.53 ± 0.10ab | 5.04 ± 0.98 |
Cristal × Micoseed | 93.83 ± 2.09 | 6.17 ± 1.19 | 6.21 ± 1.20 | 0.59 ± 0.11ab | 4.77 ± 0.92 |
Cristal × Control | 94.39 ± 1.89 | 5.61 ± 1.08 | 5.01 ± 0.97 | 0.40 ± 0.08b | 4.23 ± 0.82 |
Siriana × Nutrifine | 93.72 ± 1.94 | 6.28 ± 1.21 | 6.11 ± 1.18 | 0.52 ± 0.10ab | 4.80 ± 0.93 |
Siriana × Orgevit | 93.45 ± 2.39 | 6.55 ± 1.27 | 6.34 ± 1.22 | 0.58 ± 0.11ab | 5.20 ± 1.00 |
Siriana × Micoseed | 93.54 ± 1.90 | 6.46 ± 1.25 | 6.75 ± 1.31 | 0.61 ± 0.12a | 5.06 ± 0.98 |
Siriana × Control | 93.65 ± 1.92 | 6.35 ± 1.22 | 5.97 ± 1.15 | 0.47 ± 0.09ab | 4.97 ± 0.96 |
Signification | ns | ns | ns | * | ns |
Treatment | Total Phenolic (μg·100 mL−1) | Lycopene (mg·100 g−1 d.w.) | β-Carotene (mg 100 g−1 d.w.) | Antioxidant Activity (mmol Trol·100 g−1 d.w.) |
---|---|---|---|---|
Cultivar | ||||
Cristal | 194.79 ± 42.66 | 9.01 ± 1.87 | 3.04 ± 0.93 | 85.88 ± 17.45 |
Siriana | 274.52 ± 57.86 | 10.15 ± 2.20 | 3.43 ± 1.10 | 109.56 ± 21.22 |
Signification | * | ns | ns | * |
Fertilization type | ||||
Nutrifine | 195.12 ± 58.07 | 8.45 ± 1.51 b | 2.28 ± 0.41 c | 83.53 ± 21.48 |
Orgevit | 251.82 ± 71.05 | 9.67 ± 1.71 ab | 3.39 ± 0.60 b | 104.26 ± 23.06 |
Micoseed | 270.12 ± 67.61 | 11.51 ± 2.20 a | 4.48 ± 0.86 a | 107.56 ± 24.95 |
Control | 221.58 ± 45.43 | 8.70 ± 1.71 b | 2.79 ± 0.54 bc | 95.54 ± 17.41 |
Signification | ns | * | * | ns |
Treatment | Total Phenolic (μg·100 mL−1) | Lycopene (mg·100 g−1 f.w.) | β-Carotene (mg 100 g−1 f.w.) | Antioxidant Activity (mmol Trolox·100 g−1 d.w.) |
---|---|---|---|---|
Cristal × Nutrifine | 152.47 ± 29.45 c | 8.11 ± 1.56 b | 2.19 ± 0.42 d | 69.18 ± 13.36 b |
Cristal × Orgevit | 201.17 ± 38.86 bc | 9.32 ± 1.80 ab | 3.26 ± 0.63 bcd | 91.27 ± 17.63 ab |
Cristal × Micoseed | 226.00 ± 43.65 abc | 10.65 ± 2.06 ab | 4.15 ± 0.80 ab | 92.54 ± 17.87 ab |
Cristal × Control | 199.52 ± 38.53 bc | 7.96 ± 1.54 b | 2.55 ± 0.49 cd | 90.53 ± 17.48 ab |
Siriana × Nutrifine | 237.76 ± 45.92 abc | 8.79 ± 1.70 ab | 2.37 ± 0.46 cd | 97.88 ± 18.90 ab |
Siriana × Orgevit | 302.47 ± 58.42 a | 10.02 ± 1.93 ab | 3.51 ± 0.68 bc | 117.24 ± 22.64 a |
Siriana × Micoseed | 314.23 ± 60.69 a | 12.36 ± 2.39 a | 4.82 ± 0.93 a | 122.57 ± 23.67 a |
Siriana × Control | 243.64 ± 47.05 ab | 9.44 ± 1.82 ab | 3.02 ± 0.58 bcd | 100.54 ± 19.41 ab |
Signification | * | * | * | * |
Treatment | Chlorogenic Acid (μg·100 mL−1) | p-Coumaric Acid (μg·100 mL−1) | Rutin (μg·100 mL−1) | Ferulic Acid (μg·100 mL−1) | Quercitin (μg·100 mL−1) |
---|---|---|---|---|---|
Cultivar | |||||
Cristal | 17.53 ± 6.93 | 1.18 ± 1.38 | 82.60 ± 35.19 | 4.25 ± 5.04 | 0.68 ± 0.73 |
Siriana | 37.12 ± 13.41 | 1.94 ± 1.73 | 63.68 ± 24.29 | 5.58 ± 5.22 | 0.87 ± 0.97 |
Signification | * | ns | ns | ns | ns |
Fertilization type | |||||
Nutrifine | 28.25 ± 10.27 a | 0.00 ± 0.00 c | 70.00 ± 13.97 b | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
Orgevit | 32.95 ± 14.93 a | 1.95 ± 0.51 b | 78.85 ± 14.12 b | 5.7 ± 0.99 b | 1.30 ± 0.25 b |
Micoseed | 34.95 ± 15.37 a | 3.72 ± 0.94 a | 107.1 ± 30.53 a | 12.3 ± 2.35 a | 1.80 ± 0.45 a |
Control | 13.15 ± 6.87 b | 0.56 ± 0.62 c | 36.60 ± 9.42 c | 1.65 ± 1.85 c | 0.00 ± 0.00 c |
Signification | * | * | * | * | * |
Treatment | Chlorogenic Acid (μg·100 mL−1) | p-Coumaric Acid (μg·100 mL−1) | Rutin (μg·100 mL−1) | Ferulic Acid (μg·100 mL−1) | Quercitin (μg·100 mL−1) |
---|---|---|---|---|---|
Cristal × Nutrifine | 20.10 ± 2.24 c | tr | 76.30 ± 8.51 b | tr | tr |
Cristal × Orgevit | 20.50 ± 2.29 c | 1.60 ± 0.18 cd | 82.20 ± 9.16 b | 5.60 ± 0.62 b | 1.20 ± 0.13 b |
Cristal × Micoseed | 22.20 ± 2.47 c | 3.10 ± 0.35 b | 85.20 ± 9.50 b | 11.40 ± 1.27 a | 1.50 ± 0.17 b |
Cristal × Control | 7.30 ± 0.81 d | tr | 42.90 ± 4.78 cd | tr | tr |
Siriana × Nutrifine | 36.40 ± 4.06 b | tr | 63.70 ± 7.10 bc | tr | tr |
Siriana × Orgevit | 45.40 ± 5.06 ab | 2.29 ± 0.26 c | 75.50 ± 8.42 b | 5.80 ± 0.65 b | 1.40 ± 0.16 b |
Siriana × Micoseed | 47.70 ± 5.32 a | 4.34 ± 0.48 a | 129.00 ± 14.38 a | 13.20 ± 1.47 a | 2.10 ± 0.23 a |
Siriana × Control | 19.00 ± 2.12 c | 1.11 ± 0.12 d | 30.30 ± 3.38 d | 3.30 ± 0.37 c | tr |
Signification | * | * | * | * | * |
Treatment | K (mg·100 g−1 f.w.) | Ca (mg·100 g−1 f.w.) | P (mg·100 g−1 f.w.) | Mg (mg·100 g−1 f.w.) |
---|---|---|---|---|
Cultivar | ||||
Cristal | 198.67 ± 38.30 | 9.32 ± 2.90 | 10.25 ± 2.94 | 11.10 ± 2.30 |
Siriana | 203.84 ± 44.37 | 10.93 ± 2.48 | 11.55 ± 2.82 | 11.87 ± 2.60 |
Signification | ns | ns | ns | ns |
Fertilization type | ||||
Nutrifine | 233.24 ± 41.52 a | 12.20 ± 2.38 a | 13.30 ± 2.55 a | 12.95 ± 2.34 a |
Orgevit | 206.08 ± 35.84 ab | 11.00 ± 1.90 a | 12.02 ± 2.08 ab | 12.45 ± 2.27 a |
Micoseed | 197.20 ± 34.07 ab | 10.28 ± 1.86 a | 10.56 ± 1.84 b | 11.35 ± 1.96 ab |
Control | 168.49 ± 29.27 b | 7.02 ± 2.17 b | 7.07 ± 1.88 c | 9.18 ± 1.62 b |
Signification | * | * | * | * |
Treatment | K (mg·100 g−1 f.w.) | Ca (mg·100 g−1 f.w.) | P (mg·100 g−1 f.w.) | Mg (mg·100 g−1 f.w.) |
---|---|---|---|---|
Cristal × Nutrifine | 224.20 ± 43.30 | 11.20 ± 2.16 ab | 12.30 ± 2.37 ab | 12.32 ± 2.38 ab |
Cristal × Orgevit | 202.36 ± 39.08 | 10.90 ± 2.10 ab | 11.84 ± 2.29 ab | 11.80 ± 2.28 ab |
Cristal × Micoseed | 196.78 ± 38.00 | 9.80 ± 1.90 ab | 10.34 ± 2.00 abc | 11.37 ± 2.20 ab |
Cristal × Control | 171.32 ± 33.09 | 5.40 ± 1.04 c | 6.50 ± 1.26 c | 8.90 ± 1.72 b |
Siriana × Nutrifine | 242.28 ± 46.79 | 13.20 ± 2.55 a | 14.30 ± 2.76 a | 13.58 ± 2.62 a |
Siriana × Orgevit | 209.80 ± 40.52 | 11.10 ± 2.14 ab | 12.20 ± 2.35 ab | 13.10 ± 2.53 ab |
Siriana × Micoseed | 197.62 ± 38.17 | 10.76 ± 2.08 ab | 10.78 ± 2.08 ab | 11.32 ± 2.19 ab |
Siriana × Control | 165.66 ± 31.99 | 8.65 ± 1.67 bc | 8.90 ± 1.72 bc | 9.46 ± 1.83 ab |
Signification | ns | * | * | * |
Treatment | Cu (mg kg−1 f.w.) | Fe (mg·kg−1 f.w.) | Mn (mg kg−1 f.w.) | Zn (mg kg−1 f.w.) |
---|---|---|---|---|
Cultivar | ||||
Cristal | 0.45 ± 0.10 | 4.53 ± 1.46 | 0.47 ± 0.16 | 4.57 ± 1.82 |
Siriana | 0.54 ± 0.14 | 5.17 ± 1.54 | 0.56 ± 0.20 | 4.72 ± 1.98 |
Signification | ns | ns | ns | ns |
Fertilization type | ||||
Nutrifine | 0.52 ± 0.11 ab | 6.36 ± 1.21 a | 0.61 ± 0.13 a | 5.29 ± 0.93 b |
Orgevit | 0.61 ± 0.13 a | 5.32 ± 0.92 ab | 0.69 ± 0.13 a | 6.51 ± 1.16 a |
Micoseed | 0.47 ± 0.08 b | 4.65 ± 0.94 b | 0.48 ± 0.10 b | 4.77 ± 0.83 b |
Control | 0.40 ± 0.07 b | 3.07 ± 0.64 c | 0.29 ± 0.05 c | 2.02 ± 0.35 c |
Signification | * | * | * | * |
Treatment | No of Fruits per Plant | Mean Weight per Fruit (g) | Yield (t·ha−1) |
---|---|---|---|
Cultivar | |||
Cristal | 24.1 ± 3.05 | 186 ± 21 | 129.65 ± 16.33 |
Siriana | 23.9 ± 3.02 | 162 ± 20 | 102.29 ± 12.89 |
Signification | ns | ns | ns |
Fertilization type | |||
Nutrifine | 24.5 ± 3.07 | 168 ± 21 | 115.07 ± 14.49 |
Orgevit | 23.6 ± 2.96 | 178 ± 22 | 116.04 ± 14.62 |
Micoseed | 25.1 ± 3.16 | 183 ± 23 | 129.74 ± 16.34 |
Control | 23.0 ± 2.90 | 164 ± 20 | 103.01 ± 12.97 |
Signification | ns | ns | ns |
Treatment | No of Fruits per Plant | Mean Weight per Fruit (g) | Yield (t·ha−1) |
---|---|---|---|
Cristal × Nutrifine | 24.6 ± 3.11 | 181 ± 23 | 128.75 ± 16.22 ab |
Cristal × Orgevit | 23.7 ± 2.99 | 191 ± 24 | 129.72 ± 16.34 ab |
Cristal × Micoseed | 25.2 ± 3.17 | 195 ± 25 | 143.42 ± 18.07 a |
Cristal × Control | 23.1 ± 2.90 | 175 ± 22 | 116.69 ± 14.70 ab |
Siriana × Nutrifine | 24.4 ± 3.07 | 156 ± 20 | 101.40 ± 12.78 ab |
Siriana × Orgevit | 23.5 ± 2.96 | 166 ± 21 | 102.36 ± 12.89 ab |
Siriana × Micoseed | 25.1 ± 3.17 | 171 ± 22 | 116.06 ± 14.62 ab |
Siriana × Control | 22.9 ± 2.90 | 154 ± 19 | 89.33 ± 11.25 b |
Signification | ns | ns | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, O.-R.; Mangalagiu, I.; Amăriucăi-Mantu, D.; Teliban, G.-C.; Cojocaru, A.; Burducea, M.; Mihalache, G.; Roșca, M.; Caruso, G.; Sekara, A.; et al. Interaction Effects of Cultivars and Nutrition on Quality and Yield of Tomato. Horticulturae 2023, 9, 541. https://doi.org/10.3390/horticulturae9050541
Rusu O-R, Mangalagiu I, Amăriucăi-Mantu D, Teliban G-C, Cojocaru A, Burducea M, Mihalache G, Roșca M, Caruso G, Sekara A, et al. Interaction Effects of Cultivars and Nutrition on Quality and Yield of Tomato. Horticulturae. 2023; 9(5):541. https://doi.org/10.3390/horticulturae9050541
Chicago/Turabian StyleRusu, Oana-Raluca, Ionel Mangalagiu, Dorina Amăriucăi-Mantu, Gabriel-Ciprian Teliban, Alexandru Cojocaru, Marian Burducea, Gabriela Mihalache, Mihaela Roșca, Gianluca Caruso, Agnieszka Sekara, and et al. 2023. "Interaction Effects of Cultivars and Nutrition on Quality and Yield of Tomato" Horticulturae 9, no. 5: 541. https://doi.org/10.3390/horticulturae9050541
APA StyleRusu, O. -R., Mangalagiu, I., Amăriucăi-Mantu, D., Teliban, G. -C., Cojocaru, A., Burducea, M., Mihalache, G., Roșca, M., Caruso, G., Sekara, A., & Stoleru, V. (2023). Interaction Effects of Cultivars and Nutrition on Quality and Yield of Tomato. Horticulturae, 9(5), 541. https://doi.org/10.3390/horticulturae9050541