Uncovering the Expansin Gene Family in Pomegranate (Punica granatum L.): Genomic Identification and Expression Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Identification and Physicochemical Properties of PgEXP Family Genes
2.3. Phylogenetic Analysis
2.4. Analysis of Conserved Domains, Gene Structure and Protein Conserved Motif
2.5. Analysis of Cis-Acting Elements and Protein Interaction Networks
2.6. RNA-Seq Analysis
2.7. RNA Isolation, Reverse Transcription and Quantitative Real-Time PCR (qRT-PCR)
3. Results
3.1. Identification and Physicochemical Properties of PgEXP Family Genes
3.2. Phylogenetic Analysis
3.3. Analysis of Conserved Domains, Gene Structure, and Protein Conserved Motif
3.4. Analysis of Cis-Acting Elements
3.5. Analysis of Protein Interaction Networks
3.6. Analysis of PgEXPs Gene Expression
3.7. qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, N.; Sun, Y.; Pei, Y.; Zhang, X.; Wang, P.; Li, X.; Li, F.; Hou, Y. A Pectin Methylesterase Inhibitor Enhances Resistance to Verticillium Wilt. Plant Physiol. 2018, 176, 2202–2220. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Choi, H.-S.; Cho, H.-T. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol. Cells 2011, 31, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Rayle, D.L.; Cleland, R. Enhancement of Wall Loosening and Elongation by Acid Solutions. Plant Physiol. 1970, 46, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.J. Loosening of plant cell walls by expansins. Nature 2000, 407, 321–326. [Google Scholar] [CrossRef]
- Feng, X.; Xu, Y.Q.; Peng, L.N.; Yu, X.Y.; Zhao, Q.Q.; Feng, S.S.; Zhao, Z.Y.; Li, F.L.; Hu, B.Z. TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana. Plant Physiol. 2019, 9, 153004. [Google Scholar] [CrossRef]
- Vannerum, K.; Huysman, M.J.; De Rycke, R.; Vuylsteke, M.; Leliaert, F.; Pollier, J.; Lütz-Meindl, U.; Gillard, J.; De Veylder, L.; Goossens, A.; et al. Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta), with emphasis on the role of expansin. BMC Plant Biol. 2011, 11, 128. [Google Scholar] [CrossRef]
- Sampedro, J.; Lee, Y.; Carey, R.E.; DePamphilis, C.; Cosgrove, D.J. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J. 2005, 44, 409–419. [Google Scholar] [CrossRef]
- Lv, L.-M.; Zuo, D.-Y.; Wang, X.-F.; Cheng, H.-L.; Zhang, Y.-P.; Wang, Q.-L.; Song, G.-L.; Ma, Z.-Y. Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton. BMC Plant Biol. 2020, 20, 223. [Google Scholar] [CrossRef]
- Gasperini, D.; Greenland, A.; Hedden, P.; Dreos, R.; Harwood, W.; Griffiths, S. Genetic and physiological analysis of Rht8 in bread wheat: An alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J. Exp. Bot. 2012, 63, 4419–4436. [Google Scholar]
- Yu, Z.M.; Kang, B.; He, X.W.; Lv, S.L.; Bai, Y.H.; Ding, W.N.; Chen, M.; Cho, H.T.; Wu, P. Root hair-specific expansin modulate root hair elongation in rice. Plant J. 2011, 66, 725–734. [Google Scholar]
- Tabuchi, A.; Li, L.-C.; Cosgrove, D.J. Matrix solubilization and cell wall weakening by β-expansin (group-1 allergen) from maize pollen. Plant J. 2011, 68, 546–559. [Google Scholar] [CrossRef]
- Han, Z.; Liu, Y.; Deng, X.; Liu, D.; Liu, Y.; Hu, Y.; Yan, Y. Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genom. 2019, 20, 101. [Google Scholar] [CrossRef]
- Ludidi, N.; Heazlewood, J.; Seoighe, C.; Irving, H.; Gehring, C. Expansin-Like Molecules: Novel Functions Derived from Common Domains. J. Mol. Evol. 2002, 54, 587–594. [Google Scholar] [CrossRef]
- Sampedro, J.; Carey, R.E.; Cosgrove, D.J. Genome histories clarify evolution of the expansin superfamily: New insights from the poplar genome and pine ESTs. J. Plant Res. 2006, 119, 11–21. [Google Scholar] [CrossRef]
- Santo, S.D.; Vannozzi, A.; Tornielli, G.B.; Fasoli, M.; Venturini, L.; Pezzotti, M.; Zenoni, S. Genome-Wide Analysis of the Expansin Gene Superfamily Reveals Grapevine-Specific Structural and Functional Characteristics. PLoS ONE 2013, 8, e62206. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Xu, R.R.; Gao, Z.; Chen, C.T.; Jiang, Z.S.; Shu, H.R. A genome-wide analysis of the expansin genes in Malus Domestica. Mol. Genet. Genom. 2014, 289, 225–236. [Google Scholar] [CrossRef]
- Li, J.; Yin, P.; Wang, H.R.; An, M.; Li, G.T. Identification of Actinidia Chinensis expansin gene family and expression under different stresses. Mol. Plant Breed. 2021, 1–17. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20210820.1356.017.html (accessed on 3 February 2023).
- Liang, Z.X.; Qi, H.Y.; Xu, H.G. Identification and bioinformatics analysis of hemp expansin gene family. Mol. Plant Breed. 2022, 1–13. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20220630.1424.006.html (accessed on 3 February 2023).
- Li, H.Y.; Shi, Y.; Ding, Y.N.; Xu, J.C. Bioinformatics analysis of expansin gene family in poplar genome. Beijing Linye Daxue Xuebao 2014, 36, 59–67. [Google Scholar]
- Zhang, W. Identification of Endosperm-Specific Expression Genes and Functional Analysis of ZmEXPB13 in Maize EXPANSIN Family. Ph.D. Thesis, Anhui Agricultural University, Hefei, China, 2014. [Google Scholar]
- Cho, H.-T.; Cosgrove, D.J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2000, 97, 9783–9788. [Google Scholar] [CrossRef]
- Won, S.-K.; Choi, S.-B.; Kumari, S.; Cho, M.; Lee, S.H.; Cho, H.-T. Root hair-specific EXPANSIN B genes have been selected for graminaceae root hairs. Mol. Cells 2010, 30, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Azeez, A.; Sane, A.P.; Tripathi, S.K.; Bhatnagar, D.; Nath, P. The gladiolus GgEXPA1 is a GA-responsive alpha-expansin gene expressed ubiquitously during expansion of all floral tissues and leaves but repressed during organ senescence. Postharvest Biol. Technol. 2010, 58, 48–56. [Google Scholar] [CrossRef]
- Nardi, C.; Villarreal, N.M.; Rossi, F.; Martínez, S.; Martínez, G.A.; Civello, P.M. Overexpression of the carbohydrate binding module of strawberry expansin2 in Arabidopsis thaliana modifies plant growth and cell wall metabolism. Plant Mol. Biol. 2015, 88, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.H.; Zeng, H.; Zou, M.H.; Lu, C.Z.; Huang, X.M. Progress of research on the relationship between fruit splitting occurrence and pericarp cell wall modification. J. Trop. Crops 2011, 32, 1995–1999. [Google Scholar]
- Lu, P.; Kang, M.; Jiang, X.; Dai, F.; Gao, J.; Zhang, C. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 2013, 237, 1547–1559. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, B.; Li, C.; Lei, C.; Kong, C.; Yang, Y.; Gong, M. A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances. PLoS ONE 2019, 14, e0219837. [Google Scholar] [CrossRef]
- Yuan, Z.; Fang, Y.; Zhang, T.; Fei, Z.; Han, F.; Liu, C.; Liu, M.; Xiao, W.; Zhang, W.; Wu, S.; et al. The pomegranate (Punica granatum L.) geneme provides insights into fruit quality and ovule developmental biology. Plant Biotechnol. J. 2018, 16, 1363–1374. [Google Scholar] [CrossRef]
- Qin, G.; Xu, C.; Ming, R.; Tang, H.; Guyot, R.; Kramer, E.M.; Hu, Y.; Yi, X.; Qi, Y.; Xu, X.; et al. The pomegranate (Punica granatum L.) geneme and the genomics of punicalagin biosynthesis. Plant J. 2017, 91, 1108–1128. [Google Scholar] [CrossRef]
- Hassanen, E.I.; Tohamy, A.F.; Issa, M.Y.; Ibrahim, M.A.; Farroh, K.Y.; Hassan, A.M. Pomegranate juice diminishes the mitochondria-dependent cell death and NF-kB signaling pathway induced by copper oxide nanoparticles on liver and kidneys of rats. Int. J. Nanomed. 2019, 14, 8905–8922. [Google Scholar] [CrossRef]
- Pirzadeh, M.; Caporaso, N.; Rauf, A.; Shariati, M.A.; Yessimbekov, Z.; Khan, M.U.; Imran, M.; Mubarak, M.S. Pomegranate as a source of bioactive constituents: A review on their characterization, properties and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 982–999. [Google Scholar] [CrossRef]
- Kandylis, P.; Kokkinomagoulos, E. Food Applications and Potential Health Benefits of Pomegranate and its Derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Li, H.; Niu, J.; Xue, H.; Liu, B.; Wang, Q.; Luo, X.; Zhang, F.; Zhao, D.; et al. Transcriptomic Analysis Reveals Candidate Genes for Female Sterility in Pomegranate Flowers. Front. Plant Sci. 2017, 8, 1430. [Google Scholar] [CrossRef]
- Yuan, Z.; Yin, Y.; Qu, J.; Zhu, L.; Li, Y. Population Genetic Diversity in Chinese Pomegranate (Punica granatum L.) Cultivars Revealed by Fluorescent-AFLP Markers. J. Genet. Genom. 2007, 34, 1061–1071. [Google Scholar] [CrossRef]
- Usha, T.; Goyal, A.K.; Lubna, S.; Prashanth, H.; Mohan, T.M.; Pande, V.; Middha, S.K. Identification of Anti-Cancer Targets of Eco-Friendly Waste Punica granatum Peel by Dual Reverse Virtual Screening and Binding Analysis. Asian Pac. J. Cancer Prev. 2014, 15, 10345–10350. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Ophir, R.; Sherman, A.; Rubinstein, M.; Eshed, R.; Schwager, M.S.; Harel-Beja, R.; Bar-Ya’Akov, I.; Holland, D. Single-Nucleotide Polymorphism Markers from De-Novo Assembly of the Pomegranate Transcriptome Reveal Germplasm Genetic Diversity. PLoS ONE 2014, 9, e88998. [Google Scholar] [CrossRef]
- Ono, N.N.; Britton, M.T.; Fass, J.N.; Nicolet, C.M.; Lin, D.; Tian, L. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker DiscoveryF. J. Integr. Plant Biol. 2011, 53, 800–813. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zeng, N.; Li, W.; Wang, S.L.; Xu, F.S.; Shi, L. Genome-wide identification of the expansin gene family and differences in transcriptional responses to boron deficiency in Brassica napus L. Plant Sci. J. 2021, 39, 59–75. [Google Scholar]
- Krishnamurthy, P.; Hong, J.K.; Kim, J.A.; Jeong, M.J.; Lee, Y.H.; Lee, S.I. Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication. Mol. Genet. Genom. 2015, 290, 521–530. [Google Scholar] [CrossRef]
- Hao, X.; Li, X.Y.; La, G.X.; Dai, D.D.; Yang, T.G. Identification and bioinformatics analysis of cucumber expansin gene family in cucumber. Fenzi Zhiwu Yuzhong Mol. Plant Breed. 2015, 13, 2280–2289. [Google Scholar]
- Ding, A.; Marowa, P.; Kong, Y. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum). Mol. Genet. Genom. 2016, 291, 1891–1907. [Google Scholar] [CrossRef]
- Wang, R.X.; Yang, R.X.; Yin, P.; Liu, J.F.; Xu, J.C. Identification and characterization of the expansin gene in Ginkgo biloba. Mol. Plant Breed. 2021, 19, 1741–1749. [Google Scholar]
- Shi, Y.; Xu, X.; Li, H.; Xu, Q.; Xu, J. Bioinformatics analysis of the expansin gene family in rice. Hereditas 2014, 36, 809–820. [Google Scholar] [CrossRef]
- Lan, Y.C.; Huang, B.; Wei, J.; Jiang, S. Identification and bioinformatic analysis of the expansin gene family in Physcomitrella patens. Guihaia 2020, 40, 854–863. [Google Scholar]
- Yang, R.X.; Liu, X.R.; Lan, B.L.; Wang, H.; Liu, X.; Xu, J.C. Genome identification and analysis of the expansin genes family in Salix purpurea. Mol. Plant Breed. 2021, 19, 2538–2549. [Google Scholar]
- Hou, L.; Zhang, Z.; Dou, S.; Zhang, Y.; Pang, X.; Li, Y. Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.). Planta 2019, 249, 815–829. [Google Scholar] [CrossRef]
- Mao, Y. Preliminary Analysis of the Function of CpEXP2 gene of Plum Expansin. Master’s Thesis, Southwest University, Chongqing, China, 2009. [Google Scholar]
- Mayorga-Gómez, A.; Nambeesan, S.U. Temporal expression patterns of fruit-specific α- EXPANSINS during cell expansion in bell pepper (Capsicum annuum L.). BMC Plant Biol. 2020, 20, 241. [Google Scholar] [CrossRef]
- Minami, A.; Yano, K.; Gamuyao, R.L.; Nagai, K.; Kuroha, T.; Ayano, M.; Nakamori, M.; Koike, M.; Kondo, Y.; Niimi, Y.; et al. Time-Course Transcriptomics Analysis Reveals Key Responses of Submerged Deepwater Rice to Flooding. Plant Physiol. 2018, 176, 3081–3102. [Google Scholar] [CrossRef]
- Jiang, F.; Lopez, A.; Jeon, S.; de Freitas, S.T.; Yu, Q.; Wu, Z.; Labavitch, J.M.; Tian, S.; Powell, A.L.T.; Mitcham, E. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Hortic. Res. 2019, 6, 17. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Chen, S.-Y.; Liu, G.-T.; Jia, X.-Y.; Haq, S.U.; Deng, Z.-J.; Luo, D.-X.; Li, R.; Gong, Z.-H. Morphological, physiochemical, and transcriptome analysis and CaEXP4 identification during pepper (Capsicum annuum L.) fruit cracking. Sci. Hortic. 2022, 297, 110982. [Google Scholar] [CrossRef]
- Li, W.C.; Wu, J.Y.; Zhang, H.N.; Shi, S.Y.; Liu, L.Q.; Shu, B.; Liang, Q.Z.; Xie, J.H.; Wei, Y.Z. De Novo assembly and characterization of pericarp transcriptome and identification of candidate genes mediating fruit cracking in Litchi chinensis Sonn. Int. J. Mol. Sci. 2014, 15, 17667–17685. [Google Scholar] [CrossRef]
- Kasai, S.; Hayama, H.; Kashimura, Y.; Kudo, S.; Osanai, Y. Relationship between fruit cracking and expression of the expansin gene MdEXPA3 in ‘Fuji’ apples (Malus domestica Borkh.). Sci. Hortic. 2008, 116, 194–198. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Zhao, X.; Zhao, Y.; Hao, Z.; Luo, H.; Yuan, Z. Advances in Mechanisms and Omics Pertaining to Fruit Cracking in Horticultural Plants. Agronomy 2021, 11, 1045. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, N.; Song, W.; Yin, G.; Qin, Y.; Yan, Y.; Hu, Y. Soybean (Glycine max) expansin gene superfamily origins: Segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol. 2014, 14, 93. [Google Scholar] [CrossRef]
- İncili, Ç.Y.; Arslan, B.; Çelik, E.N.Y.; Ulu, F.; Horuz, E.; Baloglu, M.C.; Çağlıyan, E.; Burcu, G.; Bayarslan, A.U.; Altunoglu, Y.C. Comparative bioinformatics analysis and abiotic stress responses of expansin proteins in Cucurbitaceae members: Watermelon and melon. Protoplasma 2023, 260, 509–527. [Google Scholar] [CrossRef]
- Zhang, Q. Characterization and Functional Validation of Land Cotton Expansin Protein Gene Family. Master’s Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2020. [Google Scholar]
- Li, X.J.; Zao, H.L.; Lu, Y.C.; Zhao, Y.; Xiang, G.S.; Fan, W.; Yang, S.C. Identification and bioinformatic analysis of expansin family genes in Panax notoginseng. Mol. Plant Breed. 2021, 19, 6365–6375. [Google Scholar]
- Zimmermann, R.; Sakai, H.; Hochholdinger, F. The Gibberellic Acid Stimulated-Like Gene Family in Maize and Its Role in Lateral Root Development. Plant Physiol. 2010, 152, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Gao, Z.; Cantini, C.; Loescher, W.H.; Nocker, S.V. Fruit ripening in sour cherry: Changes in expression of genes encoding expansins and other cell-wall-modifying enzymes. J. Am. Soc. Hortic. Sci. 2003, 128, 16–22. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Xu, Y.; Joo, S.-H.; Kim, S.-K.; Xue, Z.; Xu, Z.; Wang, Z.; Chong, K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J. 2009, 57, 498–510. [Google Scholar] [CrossRef]
Accession No. | Cultivar | Sample | ID | Reference |
---|---|---|---|---|
SRR5279388 | Dabenzi | Outer seed coat | Dabenzi_OSC | [29] |
SRR5279391 | Dabenzi | Inner seed coat | Dabenzi_ISC | [29] |
SRR5279394 | Dabenzi | Pericarp | Dabenzi_pericarp | [29] |
SRR5279395 | Dabenzi | Flower | Dabenzi_flower | [29] |
SRR5279396 | Dabenzi | Root | Dabenzi_root | [29] |
SRR5279397 | Dabenzi | Leaf | Dabenzi_leaf | [29] |
SRR5446592 | Tunisia | Bisexual flowers (3.0–5.0 mm) | 3–5 mm(B) | [34] |
SRR5446595 | Tunisia | Bisexual flowers (5.1–13.0 mm) | 5.1–13 mm(B) | [34] |
SRR5446598 | Tunisia | Bisexual flowers (13.1–25.0 mm) | 13.1–25 mm(B) | [34] |
SRR5446601 | Tunisia | Functional male flowers (3.0–5.0 mm) | 3–5 mm(F) | [34] |
SRR5446604 | Tunisia | Functional male flowers (5.1–13.0 mm) | 5.1–13 mm(F) | [34] |
SRR5446607 | Tunisia | Functional male flowers (13.1–25.0 mm) | 13.1–25 mm(F) | [34] |
SRR5678820 | Tunisia | Inner seed coat | TNS_ISC | [29] |
SRR5678819 | Baiyushizi | Inner seed coat | BYSZ_ISC | [29] |
SRR1054190 | Black127 | Mix of leaves, flowers, fruit and roots | Black127 | [41] |
SRR1055290 | Nana | Mix of leaves, flowers, fruit and roots | Nana | [41] |
SRR080723 | Wonderful | Pericarp | Wonderful | [42] |
Species | EXPA | EXPB | EXLA | EXLB | Total | Reference |
---|---|---|---|---|---|---|
Actinidia chinensis | 28 | 6 | 1 | 4 | 39 | [17] |
Arabidopsis thaliana | 26 | 6 | 3 | 1 | 36 | [7] |
Brassica napus | 79 | 21 | 5 | 4 | 109 | [44] |
Brassica rapa | 39 | 9 | 2 | 3 | 53 | [45] |
Cannabis sativa | 19 | 7 | 1 | 5 | 32 | [18] |
Cucumis sativus | 21 | 3 | 9 | 2 | 35 | [46] |
Glycine max | 49 | 9 | 2 | 15 | 75 | [47] |
Ginkgo biloba | 20 | 1 | 4 | 3 | 28 | [48] |
Gossypium hirsutum | 67 | 12 | 15 | 1 | 93 | [49] |
Malus×Domestica | 34 | 1 | 2 | 4 | 41 | [15] |
Nicotiana tabacum | 36 | 6 | 3 | 7 | 52 | [47] |
Oryza sativa | 34 | 19 | 4 | 1 | 58 | [49] |
Physcomitrella patens | 32 | 0 | 6 | 0 | 38 | [50] |
Populus | 27 | 3 | 2 | 4 | 36 | [19] |
Punica granatum | 25 | 5 | 1 | 2 | 33 | This study |
Salix sinopurpurea | 26 | 3 | 2 | 3 | 34 | [51] |
Solanum lycopersicum | 25 | 8 | 1 | 4 | 38 | [47] |
Triticum aestivum | 26 | 15 | 4 | 0 | 45 | [12] |
Vitis vinifera | 20 | 4 | 1 | 4 | 29 | [14] |
Zea mays | 36 | 48 | 4 | 0 | 88 | [47] |
Ziziphus zizyphus | 19 | 3 | 1 | 7 | 30 | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wang, Y.; Zhao, X.; Yuan, Z. Uncovering the Expansin Gene Family in Pomegranate (Punica granatum L.): Genomic Identification and Expression Analysis. Horticulturae 2023, 9, 539. https://doi.org/10.3390/horticulturae9050539
Xu X, Wang Y, Zhao X, Yuan Z. Uncovering the Expansin Gene Family in Pomegranate (Punica granatum L.): Genomic Identification and Expression Analysis. Horticulturae. 2023; 9(5):539. https://doi.org/10.3390/horticulturae9050539
Chicago/Turabian StyleXu, Xintong, Yuying Wang, Xueqing Zhao, and Zhaohe Yuan. 2023. "Uncovering the Expansin Gene Family in Pomegranate (Punica granatum L.): Genomic Identification and Expression Analysis" Horticulturae 9, no. 5: 539. https://doi.org/10.3390/horticulturae9050539
APA StyleXu, X., Wang, Y., Zhao, X., & Yuan, Z. (2023). Uncovering the Expansin Gene Family in Pomegranate (Punica granatum L.): Genomic Identification and Expression Analysis. Horticulturae, 9(5), 539. https://doi.org/10.3390/horticulturae9050539