Effects of Magnetic Field and Ultrasound Applications on Endogenous Melatonin Content and Drought Stress Tolerance of Pepper Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, MF and US applications
- With the help of Hall Effect equipment (HEMS-5405 Dipole-GMW, San Carlos, CA, USA) (Figure S1), an MF of 0, 0.3, 0.9, and 1.1 Tesla was applied to dried pepper seeds for 5 min.
- With an ultrasonic bath (Elma-Elmasonic S, Singen, Germany), 40 Hz US was applied to dry pepper seeds at room temperature for 0, 15 and 30 min.
2.2. Sampling and Methods
2.2.1. MEL Content
2.2.2. Chlorophyll Content
2.2.3. Carotenoid Content
2.2.4. Malondialdehyde (MDA) Analysis
2.2.5. Total Phenolic Substance
2.2.6. Proline Analysis
2.2.7. Hydrogen Peroxide (H2O2) Analysis
2.2.8. Enzyme Analysis
2.3. Statistical Analysis
3. Results
3.1. The Effect of Magnetic Field (Tesla) Applications
3.2. The Effect of US Applications
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Available online: https://www.fao.org/3/cb9910en/cb9910en.pdf (accessed on 25 November 2022).
- FAO. Available online: https://www.fao.org/3/i5199e/i5199e.pdf (accessed on 2 January 2022).
- FAO. Available online: https://www.fao.org/3/i6738e/i6738e.pdf (accessed on 1 June 2023).
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef]
- Bağatırlar, A.G. Heat Obtaining by Using Magnetic Area. Master’s Thesis, Graduate School of Natural and Applied Sciences, Hitit University, Çorum, Türkiye, 2016. 102p. [Google Scholar]
- Belyavskaya, N.A. Biological effects due to weak magnetic field on plants. Adv. Space Res. 2004, 34, 1566–1574. [Google Scholar] [CrossRef]
- Alshalwi, H.A. Effect of magnetic field treatment on germination of some medicinal and aromatic plants. Master’s Thesis, Graduate School of Natural and Applied Sciences Department of Forest Engineering, Kastamonu University, Kastamonu, Türkiye, 2017. 35p. [Google Scholar]
- Kataria, S.; Baghel, L.; Jain, M.; Guruprasad, K.N. Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatal. Agric. Biotechnol. 2019, 18, 1878–8181. [Google Scholar] [CrossRef]
- Kataria, S.; Jain, M.; Rastogi, A.; Brestic, M. Static magnetic field treatment enhanced photosynthetic performance in soybean under supplemental ultraviolet-B (280–320 nm) radiation. Photosynth. Res. 2021, 150, 263–278. [Google Scholar] [CrossRef]
- Pietruszewski, S. Effects of magnetic seed treatment on yields of wheat. Seed Sci. Technol. 1993, 21, 621–626. [Google Scholar]
- Reina, F.G.; Pascual, L.A.; Fundora, I.A. Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: Experimental results. Bioelectromagnetics 2001, 22, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Ahmet, E. Effects of magnetic fields on yield and growth in strawberry “Camarosa”. J. Hortic. Sci. Biotechnol. 2003, 78, 147. [Google Scholar]
- Majd, A.; Shabrangi, A.; Bahar, M.; Abdi, S. Effect of AC and DC magnetic fields on seed germination and early vegetative growth in Brassica napus L. Progress. Prog. Electromagn. Res. 2009, 18, 18–21. [Google Scholar]
- Dhawi, F.; Al-Khayri, J.M. Magnetic Field Increase Weight and Water Content in Date Palm (Phoenix dactylifera L.). J. Agric. Sci. Technol. 2009, 3, 14–24. [Google Scholar]
- Radhakrishnan, R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol. Mol. Biol. Plants 2019, 25, 1107–1119. [Google Scholar] [CrossRef]
- Leelapriya, T.; Dilip, K.S.; Sanker-Narayan, P.V. Effect of weak sinusoidal magnetic field on germination and yield of cotton (Gossypium sp.). Electromagn. Biol. Med. 2003, 22, 117–125. [Google Scholar] [CrossRef]
- Hasan, M.M.; Alharby, H.F.; Uddin, M.N.; Ali, M.A.; Anwar, Y.; Fang, X.W.; Hakeem, K.R.; Alzahrani, Y.; Hajar, A.S. Magnetized water confers drought stress tolerance in Moringa biotype via modulation of growth, gas exchange, lipid peroxidation and antioxidant activity. Pol. J. Environ. Stud. 2020, 1, 1625–1636. [Google Scholar] [CrossRef] [PubMed]
- Karimi, S.; Hojati, S.; Eshghi, S.; Moghaddam, R.N.; Jandoust, S. Magnetic exposure improves tolerance of fig ‘Sabz’ explants to drought stress induced in vitro. Sci. Hortic. 2012, 137, 95–99. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin synthesis and function: Evolutionary history in animals and plants. Front. Endocrinol. 2019, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- Arnao, M.B.; Hernández-Ruiz, J. Is phytomelatonin a new plant hormone? Agronomy 2020, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.X.; Hardeland, R.; Manchester, L.C.; Korkmaz, A.; Ma, S.; Rosales-Corral, S.; Reiter, R.J. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot. 2012, 63, 577–597. [Google Scholar] [CrossRef]
- Yakupoğlu, G.; Köklü, Ş.; Korkmaz, A. Phytomelatonin and its roles in plants. J. Agric. Nat. 2018, 21, 264–276. [Google Scholar]
- Stolárik, T.; Henselová, M.; Martinka, M.; Novák, O.; Zahoranová, A.; Černák, M. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem. Plasma Process. 2015, 35, 659–676. [Google Scholar] [CrossRef]
- Le, T.Q.X.; Nguyen, L.N.; Nguyen, T.T.; Choi, E.H.; Nguyen, Q.L.; Kaushik, N.K.; Dao, N.T. Effects of cold plasma treatment on physical modification and endogenous hormone regulation in enhancing seed germination and radicle growth of mung bean. Appl. Sci. 2022, 12, 10308. [Google Scholar] [CrossRef]
- Anand, A.; Kumari, A.; Thakur, M.; Koul, A. Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Sci. Rep. 2019, 9, 8814. [Google Scholar] [CrossRef] [Green Version]
- Arnao, M.B.; Hernández-Ruiz, J. Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochem. Anal. 2009, 20, 14–18. [Google Scholar] [CrossRef]
- Güneş, A.; İnal, A.; Alpaslan, M.; Eraslan, F.; Bağcı, E.G.; Çiçek, N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Plant Physiol. 2007, 164, 724–736. [Google Scholar] [CrossRef]
- Witham, F.H.; Blaydes, D.F.; Devlin, R.M. Experiments of Plant Physiology; Von Nostrand Reinhold Co.: New York, NY, USA, 1971; pp. 55–58. [Google Scholar]
- Zhang, J.H.; Huang, W.D.; Liu, Y.P.; Pan, Q.H. Effects of Temperature Acclimation Pretreatment on the Ultrastructure of Mesophyll Cells in Young Grape Plants (Vitis vinifera L. cv. Jingxiu) under Cross-Temperature Stresses. J. Integr. Plant Biol. 2005, 47, 959–970. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Al-Zubaidy, A.M.; Othman-Qadir, G. Biological investigations on macro-morphological characteristics, polyphenolic acids, antioxidant activity of Perilla frutescens (L) Britt. grown under open field. Saudi J. Biol. Sci. 2022, 29, 3213–3222. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Özden, M.; Demirel, U.; Kahraman, A. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Sci. Horti. 2009, 119, 163–168. [Google Scholar] [CrossRef]
- Seckin, B.; Turkan, I.; Sekmen, A.H.; Ozfidan, C. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barley grass) and Hordeum vulgare L. (cultivated barley). Environ. Exp. Bot. 2010, 69, 76–85. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadian, A.; Sanavy, S.A.M.M.; Chashmi, N.A. The effects of foliar application of ascorbic acid (vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of canola (Brassica napus L.) under conditions of salt stress. J. Agron. Crop Sci. 2008, 194, 206–213. [Google Scholar] [CrossRef]
- Bergmeyer, H.U. Methods of Enzymatic Analysis; Verlag Chemie: Weinheim, Germany; Academic Press, Inc.: New York, NY, USA, 1974. [Google Scholar]
- Bhardwaj, J.; Anand, A.; Nagarajan, S. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiol. Biochem. 2012, 57, 67–73. [Google Scholar] [CrossRef]
- Kataria, S.; Baghel, L.; Guruprasad, K. Acceleration of germination and early growth characteristics of soybean and maize after pre-treatment of seeds with static magnetic field. Int. J. Trop. Agric. 2015, 33, 985–992. [Google Scholar]
- Shine, M.; Guruprasad, K.; Anand, A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics 2011, 32, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, M.; Kataria, S.; Taimourya, H.; Santos, L.O.; Menegatti, R.D.; Jain, M.; Ihtisham, M.; Liu, S. Magnetic field (MF) applications in plants: An overview. Plants 2020, 9, 1139. [Google Scholar] [CrossRef] [PubMed]
- Podleśny, J.; Podleśna, A.; Gładyszewska, B.; Bojarszczuk, J. Effect of pre-sowing magnetic field treatment on enzymes and phytohormones in pea (Pisum sativum L.) seeds and seedlings. Agronomy 2021, 11, 494. [Google Scholar] [CrossRef]
- Korkmaz, A.; Düver, E.; Szafrańska, K.; Karaca, A.; Ardıç, Ş.K.; Yakupoğlu, G. Feasibility of using melatonin content in pepper (Capsicum annuum) seeds as a physiological marker of chilling stress tolerance. Funct. Plant Biol. 2022, 49, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.Y.; Zhang, Y.; Xu, Y.P.; Qi, Z.Y.; Li, M.Q.; Ahammed, G.J.; Xio, X.J.; Shi, K.; Zhou, Y.H.; Reiter, R.J.; et al. HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J. Pineal Res. 2017, 62, e12387. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, M.J.; Song, J.B.; Zhang, S.Y.; Guo, R.; Hou, D.R.; Hao, C.Y.; An, H.L.; Huang, X. Roles of endogenous melatonin in resistance to Botrytis cinerea infection in an Arabidopsis model. Front. Plant Sci. 2021, 12, 1031. [Google Scholar] [CrossRef]
- Selim, A.; Zayed, M.; Zayed, M. Magnetic field treated water effects on germination, growth and physio-chemical aspects of some economic plants. Acta Bot. Hung. 2013, 55, 99–116. [Google Scholar] [CrossRef]
- Paredes, S.D.; Korkmaz, A.; Manchester, L.C.; Tan, D.X.; Reiter, R.J. Phytomelatonin: A Review. J. Pineal Res. 2009, 60, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Byeon, Y.; Back, K. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). J. Pineal Res. 2015, 58, 343–351. [Google Scholar] [CrossRef]
- Park, S.; Lee, D.E.; Jang, H.; Byeon, Y.; Kim, Y.S.; Back, K. Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J. Pineal Res. 2013, 54, 258–263. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Xu, W.; Liu, A.; Chen, S. Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ. Exp. Bot. 2019, 161, 303–311. [Google Scholar] [CrossRef]
- Yang, P.; Gan, T.; Pi, W.; Cao, M.; Chen, D.; Luo, J. Effect of using Celosia argentea grown from seeds treated with a magnetic field to conduct Cd phytoremediation in drought stress conditions. Chemosphere 2021, 280, 130724. [Google Scholar] [CrossRef]
- Chen, Y.P.; Li, R.; He, J.M. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology 2011, 20, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, M.B.; Zahra, N.; Ahmad, N.; Shi, Z.; Raza, A.; Wang, X.; Li, J. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. Plant Biol. 2023, 25, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Guo, W.; Hu, X.; Liu, M.; Xu, X.; Hu, F.; Lan, Y.; Lv, C.; Fang, Y.; Liu, M.; et al. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Sci. Rep. 2019, 9, 14384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments | MEL ng g−1 FW | CAT (U mg−1 Protein) | POX (U mg−1 Protein) | MDA μmol g−1 FW | Prolin μmol g−1 FW | H2O2 μmol g−1 FW | |
---|---|---|---|---|---|---|---|
Tesla | |||||||
0 T | 84.38 d | 1.04 b | 1.05 ab | 0.77 a | 0.19 a | 0.31 a | |
0.3 T | 153.23 a | 1.09 b | 0.81 c | 0.72 a | 0.15 b | 0.15 c | |
0.9 T | 100.54 c | 1.19 ab | 0.98 b | 0.62 b | 0.13 b | 0.23 b | |
1.1 T | 117.30 b | 1.29 a | 1.15 a | 0.71 a | 0.16 b | 0.19 b | |
Stress | |||||||
Control (C) | 84.50 b | 1.05 b | 0.73 b | 0.55 b | 0.08 b | 0.16 b | |
Drought (D) | 143.14 a | 1.26 a | 1.26 a | 0.86 a | 0.22 a | 0.28 a | |
Tesla × Stress | |||||||
0 T | 62.28 | 0.97 d | 0.87 cd | 0.57 c | 0.16 b | 0.12 d | |
Control | 0.3 T | 121.98 | 1.04 cd | 0.69 de | 0.69 b | 0.08 c | 0.14 d |
0.9 T | 67.63 | 0.94 d | 0.74 cde | 0.48 c | 0.04 d | 0.21 bc | |
1.1 T | 86.43 | 1.26 abc | 0.64 e | 0.46 c | 0.05 d | 0.16 cd | |
0 T | 106.47 | 1.11 bcd | 1.22 b | 0.96 a | 0.21 a | 0.49 a | |
Drought | 0.3 T | 184.47 | 1.14 bcd | 0.93 c | 0.74 b | 0.21 a | 0.16 cd |
0.9 T | 133.45 | 1.44 a | 1.21 b | 0.76 b | 0.22 a | 0.24 b | |
1.1 T | 148.17 | 1.32 ab | 1.66 a | 0.96 a | 0.24 a | 0.22 b | |
Significance | |||||||
Tesla | ** | ** | *** | * | ** | ** | |
Stress | ** | * | *** | ** | ** | ** | |
Tesla × Stress | ns | * | *** | ** | ** | ** |
Treatments | Chlorophyll Content mg g−1 FW | Carotenoid Content mg g−1 FW | Total Phenolic GAE mg g−1 FW | |
---|---|---|---|---|
Tesla | ||||
0 T | 248.99 ab | 9.69 | 7.84 ab | |
0.3 T | 221.07 b | 8.81 | 8.14 a | |
0.9 T | 255.57 a | 9.57 | 7.00 bc | |
1.1 T | 246.48 ab | 9.29 | 6.54 c | |
Stress | ||||
Control (C) | 216.47 | 8.20 b | 7.27 | |
Drought (D) | 269.59 | 10.39 a | 7.49 | |
Tesla × Stress | ||||
0 T | 216.79 | 8.29 | 7.08 c | |
Control | 0.3 T | 202.72 | 7.77 | 8.91 a |
0.9 T | 228.25 | 8.76 | 6.57 c | |
1.1 T | 218.13 | 7.97 | 6.51 c | |
0 T | 281.19 | 10.69 | 8.59 ab | |
Drought | 0.3 T | 239.42 | 9.86 | 7.36 bc |
0.9 T | 282.89 | 10.40 | 7.42 bc | |
1.1 T | 274.84 | 10.60 | 6.57 c | |
Significance | ||||
Tesla | ** | ns | ** | |
Stress | ns | ** | ns | |
Tesla × Stress | ns | ns | ** |
Treatments | MEL ng g−1 FW | CAT (U mg−1 Protein) | POX (U mg−1 Protein) | MDA μmol g−1 FW | Prolin μmol g−1 FW | H2O2 μmol g−1 FW | |
---|---|---|---|---|---|---|---|
40 Hz | |||||||
0 min | 84.37 c | 1.04 b | 1.05 | 0.77 a | 0.19 a | 0.31 a | |
15 min | 109.63 b | 1.27 a | 1.03 | 0.50 c | 0.17 b | 0.28 a | |
30 min | 167.27 a | 1.27 a | 0.91 | 0.61 b | 0.14 c | 0.13 b | |
Stress | |||||||
Control (C) | 95.93 b | 1.14 | 0.83 b | 0.48 b | 0.09 b | 0.11 b | |
Drought (D) | 144.92 a | 1.24 | 1.15 a | 0.76 a | 0.23 a | 0.36 a | |
Hz × Stress | |||||||
Control | 0 min | 62.28 d | 0.97 c | 0.87 | 0.57 cd | 0.16 d | 0.12 cd |
15 min | 74.87 d | 1.21 ab | 0.82 | 0.40 e | 0.08 e | 0.15 c | |
30 min | 150.64 b | 1.25 ab | 0.81 | 0.48 de | 0.04 f | 0.06 d | |
Drought | 0 min | 106.47 c | 1.11 bc | 1.22 | 0.96 a | 0.21 c | 0.49 a |
15 min | 144.39 b | 1.33 a | 1.24 | 0.60 c | 0.25 a | 0.41 b | |
30 min | 183.89 a | 1.28 ab | 1.00 | 0.73 b | 0.23 b | 0.19 c | |
Significance | |||||||
Hz | ** | ** | ns | ** | ** | ** | |
Stress | ** | ns | ** | ** | ** | ** | |
Hz × Stress | * | ** | ns | * | ** | ** |
Treatments | Chlorophyll Content mg g−1 FW | Carotenoid Content mg g−1 FW | Total Phenolic GAE mg g−1 FW | |
---|---|---|---|---|
40 Hz | ||||
0 min | 248.99 | 9.49 | 7.84 b | |
15 min | 248.96 | 9.89 | 6.61 c | |
30 min | 246.58 | 9.63 | 8.56 a | |
Stress | ||||
Control (C) | 224.22 b | 8.36 b | 7.54 | |
Drought (D) | 278.14 a | 10.98 a | 7.93 | |
Hz × Stress | ||||
Control | 0 min | 216.79 | 8.29 | 7.08 cd |
15 min | 223.87 | 8.46 | 6.24 d | |
30 min | 213.99 | 8.32 | 9.30 a | |
Drought | 0 min | 281.19 | 10.69 | 8.59 ab |
15 min | 274.04 | 11.32 | 6.97 cd | |
30 min | 279.18 | 10.94 | 7.82 bc | |
Significance | ||||
Hz | ns | ns | ** | |
Stress | ** | ** | ns | |
Hz × Stress | ns | ns | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakupoğlu, G. Effects of Magnetic Field and Ultrasound Applications on Endogenous Melatonin Content and Drought Stress Tolerance of Pepper Seedlings. Horticulturae 2023, 9, 704. https://doi.org/10.3390/horticulturae9060704
Yakupoğlu G. Effects of Magnetic Field and Ultrasound Applications on Endogenous Melatonin Content and Drought Stress Tolerance of Pepper Seedlings. Horticulturae. 2023; 9(6):704. https://doi.org/10.3390/horticulturae9060704
Chicago/Turabian StyleYakupoğlu, Gökçen. 2023. "Effects of Magnetic Field and Ultrasound Applications on Endogenous Melatonin Content and Drought Stress Tolerance of Pepper Seedlings" Horticulturae 9, no. 6: 704. https://doi.org/10.3390/horticulturae9060704
APA StyleYakupoğlu, G. (2023). Effects of Magnetic Field and Ultrasound Applications on Endogenous Melatonin Content and Drought Stress Tolerance of Pepper Seedlings. Horticulturae, 9(6), 704. https://doi.org/10.3390/horticulturae9060704