Mapping of the Susceptibility of Colombian Musaceae Lands to a Deadly Disease: Fusarium oxysporum f. sp. cubense Tropical Race 4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data, Criteria, and Standardization
2.3. Determination of the Susceptibility Index of the Farm’s Production to the Foc TR4 (SUPFoc)
2.4. The Fit Factor According to Altitude (FH) and Density of Musaceae Production Farms (FD)
2.5. SUPFoc Index Classification
2.6. Results Analysis
Classifier Performance and Accuracy Assessment
3. Results
3.1. Effect of Climate (EClimate)
3.2. Effect of Soil (Esoil)
3.3. The Joint Effect of Climate and Soil (Sclimate–soil)
3.4. The Density of Farms (iD)
3.5. Susceptibility of Production Farms to Foc TR4 (SUPFoc)
3.6. Exploratory Multivariate Analysis
3.7. Classifier Performance of Random Forest
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inta, W.; Traiperm, P.; Ruchisansakun, S.; Janssens, S.B.; Viboonjun, U.; Swangpol, S.C. Evolution and Classification of Musaceae Based on Male Floral Morphology. Plants 2023, 12, 1602. [Google Scholar] [CrossRef]
- Altendorf, S. La marchitez del banano por Fusarium Raza 4 Tropical: ¿Una creciente amenaza al mercado mundial del banano? La reciente difusión y el posible impacto futuro de esta calamidad en el comercio mundial del banano. In Food Outlook—Biannual Report on Global Food Markets; FAO: Rome, Italy, 2019; pp. 13–21. [Google Scholar]
- Izquierdo-García, L.F.; Carmona, S.L.; Zuluaga, P.; Rodríguez, G.; Dita, M.; Betancourt, M.; Soto-Suárez, M. Efficacy of disinfectants against Fusarium oxysporum f. sp. cubense tropical race 4 isolated from La Guajira, Colombia. J. Fungi 2021, 7, 297. [Google Scholar] [CrossRef]
- AGRONET. Production Statistics of the Agricultural Sector in Colombia. 2021. Available online: https://www.agronet.gov.co/ (accessed on 29 April 2023).
- Maryani, N.; Lombard, L.; Poerba, Y.S.; Subandiyah, S.; Crous, P.W.; Kema, G.H.J. Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian center of origin. Stud. Mycol. 2019, 91, 155–194. [Google Scholar] [CrossRef] [PubMed]
- García-Bastidas, F.A.; Quintero-Vargas, J.C.; Ayala-Vasquez, M.; Schermer, T.; Seidl, M.F.; Santos-Paiva, M.; Noguera, A.M.; Aguilera-Galvez, C.; Wittenberg, A.; Hofstede, R.; et al. The first report of Fusarium wilt Tropical Race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 2020, 104, 994. [Google Scholar] [CrossRef]
- Kema, G.H.; Drenth, A.; Dita, M.; Jansen, K.; Vellema, S.; Stoorvogel, J.J. Fusarium wilt of banana, a recurring threat to global banana production. Front. Plant Sci. 2021, 11, 628888. [Google Scholar] [CrossRef]
- ICA. Gestión de riesgos fitosanitarios con enfoque preventivo: Un nuevo abordaje para el sector productivo. In 1° Congreso Bananero del Caribe Colombiano; ICA: Magdalena, Colombia, 2023. [Google Scholar]
- Vásquez, M.B.; Gutiérrez, S.L.C.; Yzquierdo, G.A.R.Y.R.; García, L.F.I.; Suárez, M.S.; Correa, J.C.G.; Henao, S.Z.; Ulloa, A.J.G.; Cruz, A.P.Z.; Córdoba, J.H.P.; et al. Uso y control de calidad de desinfectantes en esquemas de bioseguridad, para la prevención y contención de la marchitez por Fusarium Raza 4 Tropical. In Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA; AGROSAVIA: Mosquera, Colombia, 2022; 71p. [Google Scholar] [CrossRef]
- Zheng, S.J.; García-Bastidas, F.A.; Li, X.; Zeng, L.; Bai, T.; Xu, S.; Kema, G.H. New geographical insights of the latest expansion of Fusarium oxysporum f. sp. cubense tropical race 4 into the greater Mekong subregion. Front. Plant Sci. 2018, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Staver, C.; Pemsl, D.E.; Scheerer, L.; Perez Vicente, L.; Dita, M. Ex ante assessment of returns on research investments to address the impact of Fusarium wilt tropical race 4 on global banana production. Front. Plant Sci. 2020, 11, 844. [Google Scholar] [CrossRef]
- Li, C.Y.; Deng, G.M.; Yang, J.; Viljoen, A.; Jin, Y.; Kuang, R.B.; Yi, G.J. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genom. 2012, 13, 374. [Google Scholar] [CrossRef] [Green Version]
- García-Bastidas, F.A.; Van der Veen, A.J.; Nakasato-Tagami, G.; Meijer, H.J.; Arango-Isaza, R.E.; Kema, G.H. An improved phenotyping protocol for Panama disease in banana. Front. Plant Sci. 2019, 10, 1006. [Google Scholar] [CrossRef] [Green Version]
- Dita, M.; Barquero, M.; Heck, D.; Mizubuti, E.S.; Staver, C.P. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 2018, 9, 1468. [Google Scholar] [CrossRef] [Green Version]
- Olivares, B.O.; Rey, J.C.; Lobo, D.; Navas-Cortés, J.A.; Gómez, J.A.; Landa, B.B. Fusarium wilt of bananas: A review of agro-environmental factors in the Venezuelan production system affecting its development. Agronomy 2021, 11, 986. [Google Scholar] [CrossRef]
- Segura, R.A.; Stoorvogel, J.J.; García-Bastidas, F.; Salacinas-Niez, M.; Kema, G.H.J.; Sandoval, J.A. Evaluating the potential of soil management to reduce the effect of Fusarium oxysporum f. sp. cubense in banana (Musa AAA). Eur. J. Plant Pathol. 2021, 160, 441–455. [Google Scholar] [CrossRef]
- Segura, M.R.A.; Stoorvogel, J.J.; Blanco, R.F.A.; Sandoval, F.J.A. A medium-term field experiment to study the effect of managing soil chemical properties on Fusarium wilt in banana (Musa AAA). J. Fungi 2021, 7, 261. [Google Scholar] [CrossRef]
- Dita, M.; Teixeira, L.A.J.; O’Neill, W.; Pattison, A.B.; Weinert, M.P.; Li, C.Y.; Zheng, S.J.; Staver, C.; Thangavelu, R.; Viljoen, A. Current state of Fusarium wilt of banana in the subtropics. Acta Hortic. 2020, 1272, 45–56. [Google Scholar] [CrossRef]
- Cannon, S.; Kay, W.; Kilaru, S.; Schuster, M.; Gurr, S.J.; Steinberg, G. Multi-site fungicides suppress banana Panama disease, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. PLoS Pathog. 2022, 18, e1010860. [Google Scholar] [CrossRef]
- Olivares, B. Banana Production in Venezuela: Novel Solutions to Productivity and Plant Health; Springer Nature: Berlin/Heidelberg, Germany, 2023; p. 180. [Google Scholar]
- Segura, R.A.; Stoorvogel, J.J.; Sandoval, J.A. The effect of soil properties on the relation between soil management and Fusarium wilt expression in Gros Michel bananas. Plant Soil 2022, 471, 89–100. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, S.; Jiang, J.; Gao, C.; Qi, X.; Zhang, L.; Sun, S.; Dai, Y.; Fan, X. Synchronized Efficacy and Mechanism of Alkaline Fertilizer and Biocontrol Fungi for Fusarium oxysporum f. sp. cubense Tropical Race 4. J. Fungi 2022, 8, 261. [Google Scholar] [CrossRef]
- Olivares, B.; Paredes, F.; Rey, J.; Lobo, D.; Galvis-Causil, S. The relationship between the normalized difference vegetation index, rainfall, and potential evapotranspiration in a banana plantation of Venezuela. SAINS TANAH-J. Soil Sci. Agroclimatol. 2021, 18, 58–64. [Google Scholar] [CrossRef]
- Olivares, B. Machine Learning and the New Sustainable Agriculture: Applications in Banana Production Systems of Venezuela. Agric. Res. Updates 2022, 42, 133–157. [Google Scholar]
- Martínez, G.; Olivares, B.O.; Rey, J.C.; Rojas, J.; Cardenas, J.; Muentes, C.; Dawson, C. The Advance of Fusarium Wilt Tropical Race 4 in Musaceae of Latin America and the Caribbean: Current Situation. Pathogens 2023, 12, 277. [Google Scholar] [CrossRef]
- Pitti, J.; Olivares, B.O.; Montenegro, E.; Miller, L.; Ñango, Y. The role of agriculture in the Changuinola district: A case of applied economics in Panama. Trop. Subtrop. Agroecosyst. 2021, 25, 017. [Google Scholar] [CrossRef]
- Montenegro, E.J.; Pitti-Rodríguez, J.E.; Olivares-Campos, B.O. Identification of the main subsistence crops of Teribe: A case study based on multivariate techniques. Idesia 2021, 39, 83–94. [Google Scholar] [CrossRef]
- Olivares, B.; Pitti, J.; Montenegro, E. Socioeconomic characterization of Bocas del Toro in Panama: An application of multivariate techniques. Rev. Bras. Gest. Desenvolv. Reg. 2020, 16, 59–71. [Google Scholar]
- Zhang, X.; Huang, H.; Wu, B.; Xie, J.; Viljoen, A.; Wang, W.; Mostert, D.; Xie, Y.; Fu, G.; Xiang, D.; et al. The M35 Metalloprotease Effector FocM35_1 Is Required for Full Virulence of Fusarium oxysporum f. sp. cubense Tropical Race 4. Pathogens 2021, 10, 670. [Google Scholar] [CrossRef]
- Magdama, F.; Monserrate-Maggi, L.; Serrano, L.; Sosa, D.; Geiser, D.M.; Jiménez-Gasco, M.D.M. Comparative analysis uncovers the limitations of current molecular detection methods for Fusarium oxysporum f. sp. cubense race 4 strains. PLoS ONE 2019, 14, e0222727. [Google Scholar] [CrossRef] [Green Version]
- Dale, J.; James, A.; Paul, J.Y.; Khanna, H.; Smith, M.; Peraza-Echeverria, S.; Harding, R. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 2017, 8, 1496. [Google Scholar] [CrossRef] [Green Version]
- Mintoff, S.J.L.; Nguyen, T.V.; Kelly, C.; Cullen, S.; Hearnden, M.; Williams, R.; Daniells, J.W.; Tran-Nguyen, L.T.T. Banana Cultivar Field Screening for Resistance to Fusarium oxysporum f. sp. cubense Tropical Race 4 in the Northern Territory. J. Fungi 2021, 7, 627. [Google Scholar] [CrossRef]
- Warman, N.M.; Aitken, E.A. The movement of Fusarium oxysporum f. sp. cubense (sub-tropical race 4) in susceptible cultivars of banana. Front. Plant Sci. 2018, 9, 1748. [Google Scholar] [CrossRef] [Green Version]
- Drenth, A.; Kema, G. The vulnerability of bananas to globally emerging disease threats. Phytopathology 2021, 111, 2146–2161. [Google Scholar] [CrossRef]
- USGS–EROS. 2018 USGS EROS Archive—Digital Elevation—Global 30 Arc-Second Elevation (GTOPO30). U.S. Geological Survey. Earth Resources Observation and Science Center. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30 (accessed on 16 April 2023).
- IDEAM. Escenario Precipitación para Colombia (mm) Periodo 1976–2005. Instituto de Hidrología, Meteorología y Estudios Ambientales. En: Sistema de Información Ambiental de Colombia (SIAC), Catálogo de Mapas. 2012. Available online: http://bart.ideam.gov.co/cneideam/Capasgeo/Escenario_Precipitacion_1976_2005.zip (accessed on 29 April 2023).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1 km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. Available online: https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_30s_tavg.zip (accessed on 15 April 2023). [CrossRef]
- FAO. Harmonized World Soil Data Base. HWSD Raster. 2018. Available online: https://www.fao.org/soils-portal/soil-survey/mapas-historicos-de-suelos-y-bases-de-datos/base-de-datos-armonizada-de-los-suelos-del-mundo-v12/es/ (accessed on 28 April 2023).
- Betancourt Vásquez, M.; Cárdenas López, J.; Rodríguez Yzquierdo, G.A. Guía Para Importar a Colombia Germoplasma y Material de Propagación de Plátano y Banano en el Marco de la Emergencia Sanitaria por Foc R4T en Colombia; AGROSAVIA: Mosquera, Colombia, 2021; pp. 13–20. [Google Scholar] [CrossRef]
- Hughes, R.T. Expert judgment as an estimating method. Inf. Softw. Technol. 1996, 38, 67–75. [Google Scholar] [CrossRef]
- Van Leeuwen, J.; Creamer, R.; Cluzeau, D.; Debeljak, M.; Gaffi, F.; Henriksen, C.; Kuzmanovski, V.; Menta, C.; Pérès, G.; Picaud, C.; et al. Modeling of soil functions for assessing soil quality: Soil biodiversity and habitat provisioning. Front. Environm. Sci. 2019, 17, 113. [Google Scholar] [CrossRef]
- Procter, A.; McDaniels, T.; Vignola, R. Using expert judgments to inform economic evaluation of ecosystem-based adaptation decisions: Watershed management for enhancing water supply for Tegucigalpa, Honduras. Environ. Syst. Decis. 2017, 37, 410–422. [Google Scholar] [CrossRef]
- AbdelRahman, M.; Metwaly, M.; Afifi, A.; D’Antonio, P.; Scopa, A. Assessment of soil fertility status under soil degradation rate using geomatics in West Nile Delta. Land 2022, 11, 1256. [Google Scholar] [CrossRef]
- Sonneveld, B. Formalizing expert judgements in land degadation assessment: A case of study for Ethiopia. Land Degrad. Dev. 2023, 14, 347–361. [Google Scholar] [CrossRef]
- Falcón-Acosta, M.; Vargas-Rodríguez, H.; Torres-Menéndez, F.; Herrera-Blen, L. Evaluación del conflicto de uso agrícola de las tierras a partir de su aptitud física como contribución a la explotación sostenible. Cultiv. Trop. 2014, 35, 13–18. [Google Scholar]
- Mattey-Trigueros, D.; Navarro-Picado, J.; Obando-Rodríguez, P.; Fonseca-Sanchez, A.; Nuñez-Solis, C. Caracterización de la cobertura vegetal dentro de la franja de protección del río Copey, Jacó, Puntarenas, Costa Rica. Rev. Geográfica América Cent. 2017, 58, 275–294. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team. QGIS Geographic Information System. Open-Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 29 April 2023).
- R Core Team. R A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, C.; Cheng, S.; Li, G.; Griebel, J.; Neuhaus, J. Novel Metabolic Signatures of Prostate Cancer Revealed by 1H-NMR Metabolomics of Urine. Diagnostics 2021, 11, 149. [Google Scholar] [CrossRef]
- Szymańska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 2012, 8, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Olivares, B.O.; Rey, J.C.; Perichi, G.; Lobo, D. Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela. Sustainability 2022, 14, 13531. [Google Scholar] [CrossRef]
- Mevik, B.H.; Wehrens, R. The pls package: Principal component and partial least squares regression in R. J. Stat Softw 2007, 18, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Caret: Classification and Regression Training, ascl-1505; Astrophysics Source Code Library: Houghton, MI, USA, 2015. Available online: http://topepo.github.io/caret/train-models-by-tag.html(accessed on 29 April 2023).
- Liaw, A.; Wiener, M. Classification and regression by Random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Olivares, B.O.; Vega, A.; Rueda Calderón, M.A.; Montenegro-Gracia, E.; Araya-Almán, M.; Marys, E. Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka: An Application with Random Forest. Sustainability 2022, 14, 14123. [Google Scholar] [CrossRef]
- Olivares, B.O.; Vega, A.; Calderón, M.A.R.; Rey, J.C.; Lobo, D.; Gómez, J.A.; Landa, B.B. Identification of Soil Properties Associated with the Incidence of Banana Wilt Using Supervised Methods. Plants 2022, 11, 2070. [Google Scholar] [CrossRef]
- Rodríguez, G.; Becerra, J.; Miranda, T.; Alzate, S.; Sandoval, H. Caracterización de tipologías de productores de plátano (Musa AAB) en los Llanos Orientales de Colombia. Rev. Temas Agrar. 2019, 24, 129–138. [Google Scholar] [CrossRef]
- Rodríguez, G.; Becerra, J.; Betancourt, M.; Alzate, S.; Miranda, T.; Pisco, C.; Sandoval, H. Modelo productivo de plátano para los Llanos Orientales. In Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA; Agrosavia: Mosquera, Colombia, 2018; 216p. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, L.; Jin, H.; Cong, B.; Yang, H.; Wang, S. Investigating the responses of microbial communities to banana Fusarium wilt in suppressive and conductive soils based on soil particle size differentiation. Agronomy 2022, 12, 229. [Google Scholar] [CrossRef]
- Yang, J.; Ren, X.; Liu, M.; Fan, P.; Ruan, Y.; Zhao, Y.; Wang, B.; Li, R. Suppressing soil-borne Fusarium pathogens of bananas by planting different cultivars of pineapples, with comparisons of the resulting bacterial and fungal communities. Appl. Soil Ecol. 2022, 169, 104211. [Google Scholar] [CrossRef]
- Jamil, F.N.; Hashim, A.M.; Yusof, M.T.; Saidi, N.B. Analysis of soil bacterial communities and physicochemical properties associated with Fusarium wilt disease of banana in Malaysia. Sci. Rep. 2022, 12, 999. [Google Scholar] [CrossRef]
- Dror, B.; Amutuhaire, H.; Frenkel, O.; Jurkevitch, E.; Cytryn, E. Identification of Bacterial Populations and Functional Mechanisms Potentially Involved in Biochar-Facilitated Antagonism of the Soilborne Pathogen Fusarium Oxysporum. Phytobiomes J. 2022, 6, 139–150. [Google Scholar] [CrossRef]
- Delgado, H.; Rangel, J.; Silva, A. Caracterización de la fertilidad química de los suelos en sistemas productivos de la altillanura plana, Meta, Colombia. Luna Azul. 2018, 46, 54–69. [Google Scholar] [CrossRef] [Green Version]
- García, S.; Bautista, L.; Bolaños, M. Diagnóstico de la fertilidad de los suelos de cuatro municipios de Cundinamarca (Colombia) para la producción de plátano. Actual. Divulg. Científica 2019, 22, e1192. [Google Scholar] [CrossRef] [Green Version]
- Combatt-Caballero, E.; Novoa-Yánez, R.; Barrera-Violeth, J.L. Caracterización química de macroelementos en suelos cultivados con plátano (Musa AAB Simmonds) en el departamento de Córdoba, Colombia. Acta Agronómica 2012, 61, 166–176. [Google Scholar]
- González, R.; Alvares, E.; Castañeda, D. Evaluación de la calidad química del suelo en agroecosistemas cacaoteros de la subregión del Nordeste y Urabá Antioqueño. Rev. Colomb. Investig. Ind. 2018, 5, 41–52. [Google Scholar] [CrossRef]
- Haddad, F.; Rocha, L.; Soares, A.; Martins, I.; Teixeira, L.; Staver, C.; Dita, M. Management of Fusarium wilt of bananas in Minas Gerais, Brazil. Acta Hortic. 2018, 1196, 137–146. [Google Scholar] [CrossRef]
- Nowembabazi, A.; Tautaya, G.; Tinzaara, W.; Karamura, E. Effect of integrated potassium nutrition on Fusarium wilt tolerance in apple banana. Afr. J. Plant Sci. 2021, 15, 257–265. [Google Scholar]
- Teixeira, L.; Heck, D.; Nomura, E.; Vieira, H.; Dita, M. Soil attributes, plant nutrition, and Fusarium wilt of banana in São Paulo, Brazil. Trop. Plant Pathol. 2021, 46, 443–454. [Google Scholar] [CrossRef]
- Sanchez, J.; Rubiano, Y. Procesos específicos de formación en Andisoles, Alfisoles y Ultisoles en Colombia. Rev. EIA 2015, 12, 85–97. [Google Scholar]
- Teixeira, L.; Nomura, E.; Damatto, E.; Vieira, H.; Staver, C.; Dita, M. Effectiveness of soil management practices on Fusarium wilt of banana in the Ribeira Valley, Brazil. Trop. Plant Pathol. 2022, 47, 411–420. [Google Scholar] [CrossRef]
- González, H.; Gonzalez, A.; Pineda, M.; Escalante, H.; Rodríguez, G.; Soto, A. Edaphic microbiota in banana plots with contrasting vigor and its relationship with soil properties. Bioagro 2021, 33, 143–148. [Google Scholar]
- González, H.; González, A.; Rodríguez, G.; León, M.; Betancourt, M. Vigor in banana plants (Musa AAB cv. Hartón) and its relationship with physical, chemical and biological characteristics of the soil. Agron. Costarric. 2021, 45, 115–124. [Google Scholar]
- Olivares, B.; Calero, J.; Rey, J.C.; Lobo, D.; Landa, B.; Gómez, J. Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression. Catena 2022, 208, 105718. [Google Scholar] [CrossRef]
- Olivares, B.O.; Araya-Alman, M.; Acevedo-Opazo, C.; Rey, J.C.; Cañete-Salinas, P.; Kurina, F.G.; Balzarini, M.; Lobo, D.; Navas-Cortés, J.A.; Landa, B.B.; et al. Relationship Between Soil Properties and Banana Productivity in the Two Main Cultivation Areas in Venezuela. J. Soil Sci. Plant Nutr. 2020, 20, 2512–2524. [Google Scholar] [CrossRef]
- Gazolla, C.; Britto, B.; Freitas, J.; Beneduzi, A.; Eichelberger, G.; Kayser, L. Soil-plant-microbiota interaction to enhance plant growth. Rev. Bras. Cienc. Solo 2022, 46, e0210098. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, G.; Deng, R.; Hu, X.; Tan, H.; Chen, Y.; Tian, Z.; Li, J. Spatiotemporal biocontrol and rhizosphere microbiome analysis of Fusarium wilt of banana. Commun. Biol. 2023, 6, 27. [Google Scholar] [CrossRef]
- Shen, Z.; Xue, C.; Penton, C.R.; Thomashow, L.S.; Zhang, N.; Wang, B.; Ruan, Y.; Li, R.; Shen, Q. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biol. Biochem. 2019, 128, 164–174. [Google Scholar] [CrossRef]
- Ye, H.C.; Huang, W.J.; Huang, S.Y.; Cui, B.; Dong, Y.Y.; Guo, A.T.; Ren, Y.; Jin, Y. Identification of banana fusarium wilt using supervised classification algorithms with UAV-based multi-spectral imagery. Int. J. Agric. Biol. 2020, 13, 136–142. [Google Scholar] [CrossRef]
- Gomez-Selvaraj, M.; Vergara, A.; Montenegro, F.; Alonso Ruiz, H.; Safari, N.; Raymaekers, D.; Ocimati, W.; Ntamwira, J.; Tits, L.; Omondi, A.B.; et al. Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin. ISPRS J. Photogramm. Remote Sens. 2020, 169, 110–124. [Google Scholar] [CrossRef]
- Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; Ma, X.; Chen, D. Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using Random Forest and Support Vector Machine classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Sangeetha, T.; Lavanya, G.; Jeyabharathi, D.; Rajesh Kumar, T.; Mythili, K. Detection of pest and disease in banana leaf using convolution Random Forest. Test Eng. Manag. 2020, 83, 3727–3735. Available online: https://n9.cl/mevdug (accessed on 24 November 2021).
- Ugarte Fajardo, J.; Bayona Andrade, O.; Criollo Bonilla, R.; Cevallos-Cevallos, J.; Mariduena-Zavala, M.; Ochoa Donoso, D.; Vicente Villardon, J.L. Early detection of black Sigatoka in banana leaves using hyperspectral images. Appl. Plant Sci. 2020, 8, e11383. [Google Scholar] [CrossRef]
- Chu, X.; Zhang, K.; Liu, H.; Ma, Z.; Wei, H. Early Discrimination of Banana Diseases Based on Two-Dimensional Correlation Spectroscopy (2D-COS) Combined with Partial Least Square Method. In Proceedings of the 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 10–12 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1520–1525. [Google Scholar]
- Aeberli, A.; Robson, A.; Phinn, S.; Lamb, D.W.; Johansen, K. A Comparison of Analytical Approaches for the Spectral Discrimination and Characterisation of Mite Infestations on Banana Plants. Remote Sens. 2022, 14, 5467. [Google Scholar] [CrossRef]
- Devi, R.D.; Nandhini, S.A.; Hemalatha, R.; Radha, S. IoT enabled efficient detection and classification of plant diseases for agricultural applications. In Proceedings of the 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 447–451. [Google Scholar]
- Anitha, A. Disease prediction and knowledge extraction in banana crop cultivation using decision tree classifiers. Int. J. Bus. Intell. Data Min. 2022, 20, 107–120. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Ba, Y.; Lyu, X.; Zhang, M.; Li, M. Banana Fusarium Wilt Disease Detection by Supervised and Unsupervised Methods from UAV-Based Multispectral Imagery. Remote Sens. 2022, 14, 1231. [Google Scholar] [CrossRef]
- Ye, H.; Cui, B.; Huang, S.; Dong, Y.; Huang, W.; Guo, A.; Ren, Y.; Jin, Y. Performance of Support Vector Machines, Artificial Neural Network, and Random Forest for Identifying Banana Fusarium Wilt Using UAV-Based Multi-spectral Imagery. In Proceedings of the 6th China High-Resolution Earth Observation Conference (CHREOC 2019), Changsha, China, 17–19 November 2020; Springer: Singapore, 2020; pp. 261–270. [Google Scholar]
Data Name | Spatial Resolution (Arc-Seconds) | Format | Source |
---|---|---|---|
Annual mean Precipitation | 30 | Raster | [36] 1 |
Annual mean temperature | 30 | Raster | [37] 2 |
Soil characteristics | 30 | Raster | [38] 3 |
Altitude | 30 | Raster | [35] 4 |
Location points of farms | - | Vector (Point feature) | [39] |
Class and Valuation (Vi) | |||||
---|---|---|---|---|---|
Element | Low (1) | Medium (2) | High (3) | Very High (4) | Importance (Ici) |
Mean Precipitation (mm/year) | <200 | 200–600 | 600–2000 | >2000 | 10 |
Mean Temperature (°C) | <12 | 12–18 | 18.1–25 | >25 | 1 |
Class and Valuation (Vi) | |||||
---|---|---|---|---|---|
Element | Low (1) | Medium (2) | High (3) | Very High (4) | Importance (Isi) |
pH | >7.5 | 7.5–6.5 | 6.5–5.5 | <5.5 | 15 |
Organic Carbon (%) | >3.68 | 3.68–1.84 | 1.84–0.92 | <0.92 | 6 |
Drainage (class) * | 6 and 7 | 5 | 3 and 4 | 1 and 2 | 15 |
Clay (%) | <15 | 15–30 | 30–50 | >50 | 7 |
Silt (%) | <20 | 20–35 | 35–50 | >50 | 7 |
Land slope (%) | >25 | 12–25 | 3–12 | <3 | 10 |
SUPFoc Value | Susceptibility Class |
---|---|
0–0.5 | Very low or no considerable |
0.5–1.5 | Low |
1.5–2.5 | Medium |
2.5–3.5 | High |
3.5–4 | Very High |
Susceptibility Class | 0 | 1 | 2 | 3 | 4 | Class Error |
---|---|---|---|---|---|---|
0 (very low) | 5 | 1 | 0 | 0 | 0 | 0.17 |
1 (low) | 0 | 27 | 4 | 1 | 0 | 0.16 |
2 (medium) | 0 | 1 | 54 | 2 | 0 | 0.05 |
3 (high) | 0 | 1 | 4 | 707 | 6 | 0.02 |
4 (very high) | 0 | 0 | 0 | 4 | 212 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Yzquierdo, G.; Olivares, B.O.; Silva-Escobar, O.; González-Ulloa, A.; Soto-Suarez, M.; Betancourt-Vásquez, M. Mapping of the Susceptibility of Colombian Musaceae Lands to a Deadly Disease: Fusarium oxysporum f. sp. cubense Tropical Race 4. Horticulturae 2023, 9, 757. https://doi.org/10.3390/horticulturae9070757
Rodríguez-Yzquierdo G, Olivares BO, Silva-Escobar O, González-Ulloa A, Soto-Suarez M, Betancourt-Vásquez M. Mapping of the Susceptibility of Colombian Musaceae Lands to a Deadly Disease: Fusarium oxysporum f. sp. cubense Tropical Race 4. Horticulturae. 2023; 9(7):757. https://doi.org/10.3390/horticulturae9070757
Chicago/Turabian StyleRodríguez-Yzquierdo, Gustavo, Barlin O. Olivares, Oscar Silva-Escobar, Antonio González-Ulloa, Mauricio Soto-Suarez, and Mónica Betancourt-Vásquez. 2023. "Mapping of the Susceptibility of Colombian Musaceae Lands to a Deadly Disease: Fusarium oxysporum f. sp. cubense Tropical Race 4" Horticulturae 9, no. 7: 757. https://doi.org/10.3390/horticulturae9070757
APA StyleRodríguez-Yzquierdo, G., Olivares, B. O., Silva-Escobar, O., González-Ulloa, A., Soto-Suarez, M., & Betancourt-Vásquez, M. (2023). Mapping of the Susceptibility of Colombian Musaceae Lands to a Deadly Disease: Fusarium oxysporum f. sp. cubense Tropical Race 4. Horticulturae, 9(7), 757. https://doi.org/10.3390/horticulturae9070757