Evaluation of Artemisia absinthium L. Essential Oil as a Potential Novel Prophylactic against the Asian Citrus Psyllid Diaphorina citri Kuwayama
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Plant Materials Extraction Procedure
2.3. Settling Behaviour of D. citri
2.4. Antifeedent Activity of AAEO against D. citri
2.5. Ovicidal Toxicity of AAEO
2.6. Effect of AAEO on Fitness and Development of D. citri
- Nf = Final number of D. citri;
- N0 = Initial number of D. citri;
- Δt = Total number of days for the experiment.
2.7. Toxicity of AAEO against Non-Targeted Organisms
2.8. Statistical Analysis
3. Results
3.1. Effect of AAEO on Settling Behavior of D. citri
3.2. Effect of AAEO on D. citri Feeding Activity
3.3. Effect of AAEO on Eggs Hatchability of D. citri
3.4. Population Parameters
3.5. Toxicity of AAEO against A. mellifera
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Rizvi, S.A.H.; Ling, S.; Tian, F.; Liu, J.; Zeng, X. Interference mechanism of Sophora alopecuroides L. alkaloids extract on host finding and selection of the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Environ. Sci. Pollut. Res. Int. 2019, 26, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Zaka, S.M.; Zeng, X.N.; Holford, P.; Beattie, G.A.C. Repellent effect of guava leaf volatiles on settlement of adults of citrus psylla, Diaphorina citri Kuwayama, on citrus. Insect Sci. 2010, 17, 39–45. [Google Scholar] [CrossRef]
- Halbert, S.E.; Manjunath, K.L. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Fla. Entomol. 2004, 87, 330–353. [Google Scholar] [CrossRef]
- Byrne, F.J.; Daugherty, M.P.; Grafton-Cardwell, E.E.; Bethke, J.A.; Morse, J.G. Evaluation of systemic neonicotinoid insecticides for the management of the Asian citrus psyllid Diaphorina citri on containerized citrus. Pest Manag. Sci. 2017, 73, 506–514. [Google Scholar] [CrossRef]
- Srinivasan, R.; Hoy, M.A.; Singh, R.; Rogers, M.E. Laboratory and field evaluations of Silwet L-77 and kinetic alone and in combination with imidacloprid and abamectin for the management of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Fla. Entomol. 2008, 91, 87–100. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Singerman, A.; Rogers, M.E. The economic challenges of dealing with citrus greening: The case of Florida. J. Integr. Pest Manag. 2020, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-D.; Kaur, N.; Horton, D.R.; Cooper, W.R.; Qureshi, J.A.; Stelinski, L.L. Crude Extracts and Alkaloids Derived from Ipomoea-Periglandula Symbiotic Association Cause Mortality of Asian Citrus Psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Insects 2021, 12, 929. [Google Scholar] [CrossRef]
- Tian, F.; Rizvi, S.A.H.; Liu, J.; Zeng, X. Differences in susceptibility to insecticides among color morphs of the Asian citrus psyllid. Pestic. Biochem. Physiol. 2020, 163, 193–199. [Google Scholar] [CrossRef]
- Lee, X.; Wong, C.; Coats, J.; Paskewitz, S.M. Semi-field evaluations of three botanically derived repellents against the blacklegged tick, Ixodes scapularis (Acari: Ixodidae). bioRxiv 2022, 12, 476114. [Google Scholar]
- Kamaraj, C.; Gandhi, P.R.; Elango, G.; Karthi, S.; Chung, I.-M.; Rajakumar, G. Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). Int. J. Biol. Macromol. 2018, 107, 59–69. [Google Scholar] [CrossRef]
- Achimón, F.; Areco, V.A.; Brito, V.D.; Peschiutta, M.L.; Merlo, C.; Pizzolitto, R.P.; Zygadlo, J.A.; Zunino, M.P.; Omarini, A.B. Plants as Bioreactors for the Production of Biopesticides. Plants Bioreact. Ind. Mol. 2023, 337–366. [Google Scholar]
- Chen, J. Biopesticides: Global Markets to 2022. Rep. Code CHM029G 2018. [Google Scholar]
- Tripathi, A.K.; Upadhyay, S.; Bhuiyan, M.; Bhattacharya, P. A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phytother. 2009, 1, 052–063. [Google Scholar]
- Isman, M.B. Bridging the gap: Moving botanical insecticides from the laboratory to the farm. Ind. Crops Prod. 2017, 110, 10–14. [Google Scholar] [CrossRef]
- Titouhi, F.; Amri, M.; Messaoud, C.; Haouel, S.; Youssfi, S.; Cherif, A.; Jemâa, J.M.B. Protective effects of three Artemisia essential oils against Callosobruchus maculatus and Bruchus rufimanus (Coleoptera: Chrysomelidae) and the extended side-effects on their natural enemies. J. Stored Prod. Res. 2017, 72, 11–20. [Google Scholar] [CrossRef]
- Pradeepa, V.; Senthil-Nathan, S.; Sathish-Narayanan, S.; Selin-Rani, S.; Vasantha-Srinivasan, P.; Thanigaivel, A.; Ponsankar, A.; Edwin, E.S.; Sakthi-Bagavathy, M.; Kalaivani, K.; et al. Potential mode of action of a novel plumbagin as a mosquito repellent against the malarial vector Anopheles stephensi, (Culicidae: Diptera). Pestic. Biochem. Physiol. 2016, 134, 84–93. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; BINIAŚ, B. Effect of water extracts from Artemisia absinthium L. on feeding of selected pests and their response to the odor of this plant. J. Cent. Eur. Agric. 2016, 17, 188–206. [Google Scholar] [CrossRef] [Green Version]
- Aslan, I.; Kordali, S.; Calmasur, O. Toxicity of the vapours of Artemisia absinthium essential oils to Tetranychus urticae Koch and Bemisia tabasi(Genn.). Fresenius Environ. Bull. 2005, 14, 413–417. [Google Scholar]
- Husain, M.A.; Nath, D. The Citrus Psylla: (Diaphorina citri, Kuw.) Psyllidae: Homoptera; Government of India Central Pubilication Branch: Delhi, India, 1927.
- Wenninger, E.J.; Stelinski, L.L.; Hall, D.G. Behavioral evidence for a female-produced sex attractant in Diaphorina citri. Entomol. Exp. Appl. 2008, 128, 450–459. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; Tao, L.; Zeng, X. Chemical composition of essential oil obtained from Artemisia absinthium L. Grown under the climatic condition of Skardu Baltistan of Pakistan. Pak. J. Bot 2018, 50, 599–604. [Google Scholar]
- Silva, J.A.; Hall, D.G.; Gottwald, T.R.; Andrade, M.S.; Maldonado, W.; Alessandro, R.T.; Lapointe, S.L.; Andrade, E.C.; Machado, M.A. Repellency of selected Psidium guajava cultivars to the Asian citrus psyllid, Diaphorina citri. Crop Prot. 2016, 84, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Barman, J.C.; Campbell, S.A.; Zeng, X. Exposure to Guava affects citrus olfactory cues and attractiveness to Diaphorina citri (Hemiptera: Psyllidae). Environ. Entomol. 2016, 45, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zheng, R.; Feng, X.; Kuang, F.; Chun, J.; Xu, H.; Chen, T.; Lu, J.; Li, W.; Zhang, N. Emergence inhibition, repellent activity and antifeedant responds of mineral oils against Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). Int. J. Pest Manag. 2023, 69, 27–34. [Google Scholar] [CrossRef]
- Tiwari, S.; Stelinski, L.L.; Rogers, M.E. Biochemical basis of organophosphate and carbamate resistance in Asian citrus psyllid. J. Econ. Entomol. 2012, 105, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Walthall, W.K.; Stark, J.D. Comparison of two population-level ecotoxicological endpoints: The intrinsic (rm) and instantaneous (ri) rates of increase. Environ. Toxicol. Chem. Int. J. 1997, 16, 1068–1073. [Google Scholar]
- Bowles, S.; Gintis, H. The evolution of strong reciprocity: Cooperation in heterogeneous populations. Theor. Popul. Biol. 2004, 65, 17–28. [Google Scholar] [CrossRef]
- Anwar, M.I.; Sadiq, N.; Aljedani, D.M.; Iqbal, N.; Saeed, S.; Khan, H.A.A.; Naeem-Ullah, U.; Aslam, H.M.F.; Ghramh, H.A.; Khan, K.A. Toxicity of different insecticides against the dwarf honey bee, Apis florea Fabricius (Hymenoptera: Apidae). J. King Saud Univ. Sci. 2022, 34, 101712. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.C.; Li, W. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotoxicol. Environ. Saf. 2020, 190, 110100. [Google Scholar] [CrossRef]
- Jaleel, W.; Yin, J.; Wang, D.; He, Y.; Lu, L.; Shi, H. Using two-sex life tables to determine fitness parameters of four Bactrocera species (Diptera: Tephritidae) reared on a semi-artificial diet. Bull. Entomol. Res. 2018, 108, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.A.H.; Ling, S.; Tian, F.; Xie, F.; Zeng, X. Toxicity and enzyme inhibition activities of the essential oil and dominant constituents derived from Artemisia absinthium L. against adult Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Ind. Crops Prod. 2018, 121, 468–475. [Google Scholar] [CrossRef]
- Suladze, T.; Kintsurashvili, L.; Mshvildadze, V.; Todua, N.; Chincharadze, D.; Legault, J.; Vachnadze, N. Study of the Cytotoxic Activity of Alkaloid-Containing Fractions Isolated from Certain Plant Species Growing and Introduced in Georgia. Exp. Clin. Med. Ga. 2023. [Google Scholar] [CrossRef]
- da Silva Sa, G.C.; Bezerra, P.V.V.; da Silva, M.F.A.; da Silva, L.B.; Barra, P.B.; de Fátima Freire de Melo Ximenes, M.; Uchoa, A.F. Arbovirus vectors insects: Are botanical insecticides an alternative for its management? J. Pest Sci. 2023, 96, 1–20. [Google Scholar] [CrossRef]
- Yang, Y.; Aghbashlo, M.; Gupta, V.K.; Amiri, H.; Pan, J.; Tabatabaei, M.; Rajaei, A. Chitosan nanocarriers containing essential oils as a green strategy to improve the functional properties of chitosan: A review. Int. J. Biol. Macromol. 2023, 23, 123954. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Kainulainen, P.; Aflatuni, A. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests. Agric. Food Sci. 2008, 10, 243–259. [Google Scholar] [CrossRef]
- Park, J.-H.; Jeon, Y.-J.; Lee, C.-H.; Chung, N.; Lee, H.-S. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci. Rep. 2017, 7, 40902. [Google Scholar]
- Karabörklü, S.; Ayvaz, A. A comprehensive review of effective essential oil components in stored-product pest management. J. Plant Dis. Prot. 2023, 13, 449–481. [Google Scholar] [CrossRef]
- Ben Abada, M.; Soltani, A.; Tahri, M.; Haoual Hamdi, S.; Boushih, E.; Fourmentin, S.; Greige-Gerges, H.; Mediouni Ben Jemâa, J. Encapsulation of Rosmarinus officinalis essential oil and of its main components in cyclodextrin: Application to the control of the date moth Ectomyelois ceratoniae (Pyralidae). Pest Manag. Sci. 2023, 79, 2433–2442. [Google Scholar] [CrossRef]
- Xie, F.; Rizvi, S.A.H.; Zeng, X. Fumigant toxicity and biochemical properties of (α+ β) thujone and 1, 8-cineole derived from Seriphidium brevifolium volatile oil against the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae). Rev. Bras. Farmacogn. 2020, 29, 720–727. [Google Scholar] [CrossRef]
- Karalija, E.; Šamec, D.; Dahija, S.; Ibragić, S. Plants strike back: Plant volatiles and their role in indirect defence against aphids. Physiol. Plant. 2023, 175, e13850. [Google Scholar] [CrossRef]
- Silva, M.S.; Patt, J.M.; de Jesus Barbosa, C.; Fancelli, M.; Mesquita, P.R.R.; de Medeiros Rodrigues, F.; Schnadelbach, A.S. Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae) responses to plant-associated volatile organic compounds: A mini-review. Crop Prot. 2023, 169, 106242. [Google Scholar] [CrossRef]
- Ling, S.; Rizvi, S.A.H.; Xiong, T.; Liu, J.; Gu, Y.; Wang, S.; Zeng, X. Volatile signals from guava plants prime defense signaling and increase jasmonate-dependent herbivore resistance in neighboring citrus plants. Front. Plant Sci. 2022, 13, 833562. [Google Scholar] [CrossRef] [PubMed]
- Gallinger, J.; Rid-Moneta, M.; Becker, C.; Reineke, A.; Gross, J. Altered volatile emission of pear trees under elevated atmospheric CO2 levels has no relevance to pear psyllid host choice. Environ. Sci. Pollut. Res. 2023, 30, 43740–43751. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.-Q.; Hall, D.G.; Liu, B.; Duan, Y.-P.; Li, T.; Hu, H.-Q.; Fan, G.-C. Host-choice behavior of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) under laboratory conditions. J. Insect Behav. 2015, 28, 138–146. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, X.; Srivastava, A.K.; Tan, Q.; Low, W.; Yan, X.; Wu, S.; Sun, X.; Hu, C. Boron deficiency mediates plant-insect (Diaphorima citri) interaction by disturbing leaf volatile organic compounds and cell wall functions. Tree Physiol. 2023, 43, 597–610. [Google Scholar] [CrossRef]
- Hall, D.; Gottwald, T.; Nguyen, N.; Ichinose, K.; Le, Q.; Beattie, G.; Stover, E. Refereed manuscript. In Proceedings of the Florida State Horticultural Society; pp. 104–109.
- Mann, R.; Rouseff, R.; Smoot, J.; Castle, W.; Stelinski, L. Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), response to citrus volatiles. Bull. Entomol. Res. 2011, 101, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.S.; Rouseff, R.L.; Smoot, J.; Rao, N.; Meyer, W.L.; Lapointe, S.L.; Robbins, P.S.; Cha, D.; Linn, C.E.; Webster, F.X. Chemical and behavioral analysis of the cuticular hydrocarbons from Asian citrus psyllid, Diaphorina citri. Insect Sci. 2013, 20, 367–378. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, J.; Li, Y.; Liu, Y.; Liang, J.; Wang, C.; Fang, F.; Deng, X.; Zheng, Z. Pathogenicity and Transcriptomic Analyses of Two “Candidatus Liberibacter asiaticus” Strains Harboring Different Types of Phages. Microbiol. Spectr. 2023, 11, e00754-23. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Heck, M. Variations on a theme: Factors regulating interaction between Diaphorina citri and “Candidatus Liberibacter asiaticus” vector and pathogen of citrus huanglongbing. Curr. Opin. Insect Sci. 2023, 56, 101025. [Google Scholar] [CrossRef]
- Tiwari, S.; Stelinski, L.L. Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus psyllid under laboratory and field conditions. Pest Manag. Sci. 2013, 69, 1066–1072. [Google Scholar] [CrossRef]
- Assadpour, E.; Can Karaça, A.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Kharazmi, M.S.; Rehman, A.; Jafari, S.M. Application of essential oils as natural biopesticides; recent advances. Crit. Rev. Food Sci. Nutr. 2023, 1–21. [Google Scholar] [CrossRef]
- Wuryantini, S.; Yudistira, R. The toxicity of the extract of tobacco leaf Nicotiana tabacum L, marigold leaf Tithonia diversifolia (HAMSLEY) and Citrus japansche citroen peel Citrus limonia against citrus psyllid (Diaphorina citri Kuwayama), the vector of citrus HLB disease. IOP Conf. Ser. Earth Environ. Sci. 2020, 457, 012039. [Google Scholar] [CrossRef]
- Hall, D.G.; Borovsky, D.; Chauhan, K.R.; Shatters, R.G. An evaluation of mosquito repellents and essential plant oils as deterrents of Asian citrus psyllid. Crop Prot. 2018, 108, 87–94. [Google Scholar] [CrossRef]
- Tian, F.; Li, C.; Wang, Z.; Liu, J.; Zeng, X. Identification of detoxification genes in imidacloprid-resistant Asian citrus psyllid (Hemiptera: Lividae) and their expression patterns under stress of eight insecticides. Pest Manag Sci 2019, 75, 1400–1410. [Google Scholar] [CrossRef]
- Lee, S.; Peterson, C.J.; Coats, J. Fumigation toxicity of monoterpenoids to several stored product insects. J. Stored Prod. Res. 2003, 39, 77–85. [Google Scholar] [CrossRef]
- Tak, J.-H.; Isman, M.B. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Sci. Rep. 2015, 5, 12690. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R. Limitation of plant biopesticides. In Advances in Plant Biopesticides; Springer: Berlin/Heidelberg, Germany, 2014; pp. 347–359. [Google Scholar]
- Bandi, S.M.; Mishra, P.; Venkatesha, K.; Aidbhavi, R.; Singh, B. Insecticidal, residual and sub-lethal effects of some plant essential oils on Callosobruchus analis (F.) infesting stored legumes. Int. J. Trop. Insect Sci. 2023, 43, 383–395. [Google Scholar] [CrossRef]
- Ciobanu, A.; Landy, D.; Fourmentin, S. Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res. Int. 2013, 53, 110–114. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Freitas, B.C.B.; Cruz, C.G.; Silveira, J.; Morais, M.G. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J. Environ. Sci. Health Part B 2019, 54, 366–375. [Google Scholar] [CrossRef]
Peak # | Compounds Name b | Relative % | RT a | KI (Exp) c |
---|---|---|---|---|
1 | β-myrcene | 0.86 | 12.351 | 1147 |
2 | Pinocarvone | 0.62 | 13.291 | 1172 |
3 | α-Gurjunene | 1.68 | 21.838 | 1416 |
4 | α-Humulene | 0.94 | 22.976 | 1452 |
5 | α-Copaene | 3.51 | 23.811 | 1478 |
6 | g-Curcumene | 0.45 | 24.054 | 1486 |
7 | epi-Cubenol | 2.67 | 24.754 | 1508 |
8 | β -Calacorene | 2.10 | 26.599 | 1570 |
9 | (-)-Spathulenol | 1.94 | 26.737 | 1575 |
10 | Germacrene-D-4-ol | 3.48 | 26.861 | 1579 |
11 | Guaiol | 19.34 | 27.559 | 1602 |
12 | Thujol | 2.69 | 27.837 | 1620 |
13 | 4-epi-Cubedol | 1.68 | 28.356 | 1631 |
14 | Cubenol | 1.89 | 28.64 | 1641 |
15 | γ-Eudesmol | 1.19 | 29.011 | 1654 |
16 | 8-epi-γ-Eudesmol | 1.14 | 29.113 | 1657 |
17 | a-Cadinol | 2.76 | 29.269 | 1663 |
18 | Geranial | 8.83 | 29.844 | 1686 |
19 | Chamazulene | 5.94 | 31.067 | 1728 |
20 | 1,3-Dicyclopentylcyclopentane | 0.93 | 31.455 | 1746 |
21 | Fraganol | 0.95 | 32.355 | 1769 |
22 | Tetrakis(1-methyl)-Pyrazine | 2.26 | 32.92 | 1797 |
24 | Cubedol | 1.16 | 36.568 | 1941 |
25 | Geranyl-p-Cymene | 1.63 | 36.748 | 1948 |
26 | Nerolidol-epoxyacetate | 1.12 | 37.999 | 1999 |
27 | Geranyl-α-terpinene | 5.64 | 38.176 | 2007 |
28 | Spathulenol | 0.83 | 39.549 | 2066 |
29 | Heneicosane | 1.60 | 40.341 | 2100 |
30 | Eugenol | 1.21 | 40.507 | 2102 |
31 | Carvacrol | 5.47 | 41.557 | 2147 |
32 | α-Bisabolol | 6.17 | 41.721 | 2166 |
33 | 1-ethyl-4-methoxy-benzene | 0.53 | 43.784 | 2256 |
34 | Tricosane | 1.48 | 44.735 | 2300 |
35 | 1-Heptatriacotanol | 1.03 | 44.931 | 2309 |
36 | Pentacosane | 2.20 | 48.786 | 2500 |
37 | Heptacosane | 1.28 | 52.539 | 2700 |
38 | Nonacosane | 0.80 | 56.106 | 2899 |
Total identified | 99.9 | |||
Oil yield (%) | 0.46 | |||
Monoterpenes | 20.42 | |||
Sesquiterpenes | 52.69 | |||
Others | 26.89 |
Traits | Treated | Untreated |
---|---|---|
r (per day) | 0.07 | 0.10 |
ʎ (per day) | 1.07 | 1.11 |
GRR (offspring) | 7.53 | 16.02 |
R0 (offspring/individual) | 6.40 | 14.21 |
Concentration (mg/mL) | Exposed a | % Mortality ± SD b | LC50 c (95% CL d) | LC90 e (95% CL) | X² (df) f | p-Value |
---|---|---|---|---|---|---|
24 | 64 | 21.65 ± 0.87 | 35.05 (25.58–34.69) | 55.86 (46.01–67.81) | 0.94 (2) | 0.23 |
36 | 60 | 35.32 ± 0.59 | ||||
48 | 67 | 52.01 ± 0.87 | ||||
60 | 67 | 65.34 ± 0.60 | ||||
72 | 63 | 84.32 ± 0.51 | ||||
Control | 65 | 4.11 ± 0.11 | ||||
Imidacloprid (ug/mL) | ||||||
5 | 66 | 20.22 ± 0.23 | 13.49 (9.45–19.34) | 47.87 (33.32–55.31) | 4.41 (3) | 0.49 |
10 | 58 | 29.11 ± 0.35 | ||||
15 | 69 | 48.04 ± 0.45 | ||||
20 | 61 | 65.21 ± 0.32 | ||||
25 | 56 | 81.00 ± 0.13 | ||||
Control | 62 | 7.12 ± 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizvi, S.A.H.; Al-Shuraym, L.A.; Al-Ghamdi, M.S.; Al Galil, F.M.A.; Al-Mekhlafi, F.A.; Wadaan, M.; Jaleel, W. Evaluation of Artemisia absinthium L. Essential Oil as a Potential Novel Prophylactic against the Asian Citrus Psyllid Diaphorina citri Kuwayama. Horticulturae 2023, 9, 758. https://doi.org/10.3390/horticulturae9070758
Rizvi SAH, Al-Shuraym LA, Al-Ghamdi MS, Al Galil FMA, Al-Mekhlafi FA, Wadaan M, Jaleel W. Evaluation of Artemisia absinthium L. Essential Oil as a Potential Novel Prophylactic against the Asian Citrus Psyllid Diaphorina citri Kuwayama. Horticulturae. 2023; 9(7):758. https://doi.org/10.3390/horticulturae9070758
Chicago/Turabian StyleRizvi, Syed Arif Hussain, Laila A. Al-Shuraym, Mariam S. Al-Ghamdi, Fahd Mohammed Abd Al Galil, Fahd A. Al-Mekhlafi, Mohamed Wadaan, and Waqar Jaleel. 2023. "Evaluation of Artemisia absinthium L. Essential Oil as a Potential Novel Prophylactic against the Asian Citrus Psyllid Diaphorina citri Kuwayama" Horticulturae 9, no. 7: 758. https://doi.org/10.3390/horticulturae9070758
APA StyleRizvi, S. A. H., Al-Shuraym, L. A., Al-Ghamdi, M. S., Al Galil, F. M. A., Al-Mekhlafi, F. A., Wadaan, M., & Jaleel, W. (2023). Evaluation of Artemisia absinthium L. Essential Oil as a Potential Novel Prophylactic against the Asian Citrus Psyllid Diaphorina citri Kuwayama. Horticulturae, 9(7), 758. https://doi.org/10.3390/horticulturae9070758