Digital Magnetic Sorting for Fractionating Cell Populations with Variable Antigen Expression in Cell Therapy Process Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Samples
2.2. Magnetic Labeling CD4Hi CD4Low Populations
2.3. DMS of High and Low Populations
2.4. Flow Cytometry, Cell Counting, and Viability
2.5. Single-Cell RNA Seq of High and Low Populations
3. Results
3.1. DMS Workflow
3.2. DMS Fractionation of CD4Hi and CD4Low Cell Types
3.3. Single-Cell RNA Seq Confirms Antigen Density Separation
3.4. Cell-Processing Throughput
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jackson, H.J.; Rafiq, S.; Brentjens, R.J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 2016, 13, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Sommermeyer, D.; Hudecek, M.; Kosasih, P.L.; Gogishvili, T.; Maloney, D.G.; Turtle, C.J.; Riddell, S.R. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 2016, 30, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Koehl, U.; Esser, R.; Zimmermann, S.; Tonn, T.; Kotchetkov, R.; Bartling, T.; Sörensen, J.; Grüttner, H.-P.; Bader, P.; Seifried, E.; et al. Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children. Klin. Padiatr. 2005, 217, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Radtke, S.; Pande, D.; Cui, M.; Perez, A.M.; Chan, Y.Y.; Enstrom, M.; Schmuck, S.; Berger, A.; Eunson, T.; Adair, J.E.; et al. Purification of Human CD34+CD90+ HSCs Reduces Target Cell Population and Improves Lentiviral Transduction for Gene Therapy. Mol. Ther. Methods Clin. Dev. 2020, 18, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Zhen, A.; Krutzik, S.R.; Levin, B.R.; Kasparian, S.; Zack, J.A.; Kitchen, S.G. CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances hiv infection. J. Virol. 2014, 88, 9934–9946. [Google Scholar] [CrossRef] [PubMed]
- Kazazi, F.; Mathijs, J.-M.; Foley, P.; Cunningham, A.L. Variations in CD4 expression by human monocytes and macrophages and their relationships to infection with the human immunodeficiency virus. J. Gen. Virol. 1989, 70 Pt 10, 2661–2672. [Google Scholar] [CrossRef]
- Biswas, P.; Mantelli, B.; Sica, A.; Malnati, M.; Panzeri, C.; Saccani, A.; Hasson, H.; Vecchi, A.; Saniabadi, A.; Lusso, P.; et al. Expression of CD4 on human peripheral blood neutrophils. Blood 2003, 101, 4452–4456. [Google Scholar] [CrossRef]
- Ziegler, S.; Weiss, E.; Schmitt, A.-L.; Schlegel, J.; Burgert, A.; Terpitz, U.; Sauer, M.; Moretta, L.; Sivori, S.; Leonhardt, I.; et al. CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells. Sci. Rep. 2017, 7, 6138. [Google Scholar] [CrossRef]
- Majzner, R.G.; Rietberg, S.P.; Sotillo, E.; Dong, R.; Vachharajani, V.T.; Labanieh, L.; Myklebust, J.H.; Kadapakkam, M.; Weber, E.W.; Tousley, A.M.; et al. Tuning the Antigen Density Requirement for CAR T-cell Activity. Cancer Discov. 2020, 10, 702–723. [Google Scholar] [CrossRef]
- Hong, M.; Clubb, J.D.; Chen, Y.Y. Engineering car-T cells for next-generation cancer therapy. Cancer Cell 2020, 38, 473–488. [Google Scholar] [CrossRef]
- Wang, Z.; Ahmed, S.; Labib, M.; Wang, H.; Hu, X.; Wei, J.; Yao, Y.; Moffat, J.; Sargent, E.H.; Kelley, S.O. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nat. Biomed. Eng. 2022, 6, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lyu, X.; Zhou, Z.; Yang, L.; Zeng, J.; Yang, Y.; Zhao, Z.; Chen, R.; Tong, X.; Li, J.; et al. Multifunctional Droplets Formed by Interfacially Self-Assembled Fluorinated Magnetic Nanoparticles for Biocompatible Single Cell Culture and Magnet-Driven Manipulation. ACS Appl. Mater. Interfaces 2023, 15, 17324–17334. [Google Scholar] [CrossRef] [PubMed]
- Abedini-Nassab, R.; Adibi, E.; Ahmadiasl, S. Characterization of AI-enhanced magnetophoretic transistors operating in a tri-axial magnetic field for on-chip bioparticle sorting. Sci. Rep. 2024, 14, 23381. [Google Scholar] [CrossRef]
- Shanehband, N.; Naghib, S.M. Microfluidics-assisted Tumor Cell Separation Approaches for Clinical Applications: An Overview on Emerging Devices. Comb. Chem. High Throughput Screen. 2024, 28, 202–225. [Google Scholar] [CrossRef]
- Hewlin, R.L., Jr.; Edwards, M.; Schultz, C. Design and Development of a Traveling Wave Ferro-Microfluidic Device and System Rig for Potential Magnetophoretic Cell Separation and Sorting in a Water-Based Ferrofluid. Micromachines 2023, 14, 889. [Google Scholar] [CrossRef]
- Bshara-Corson, S.; Vukovic, L.; Verhagen, A.; Tiemann, T.; Murray, C. Rare Cell Purification Using Ferrologix’s Digital Magnetic Sorting. In Proceedings of the Annual Conference of the Society for Laboratory Automation and Screening, Boston, MA, USA, 6 February 2022. [Google Scholar]
- Adeyiga, O.B.; Murray, C.; Muñoz, H.E.; Escobar, A.; Di Carlo, D. Magnetic microparticle concentration and collection using a mechatronic magnetic ratcheting system. PLoS ONE 2021, 16, e0246124. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.; Miwa, H.; Dhar, M.; Park, D.E.; Pao, E.; Martinez, J.; Kaanumale, S.; Loghin, E.; Graf, J.; Rhaddassi, K.; et al. Unsupervised capture and profiling of rare immune cells using multi-directional magnetic ratcheting. Lab Chip 2018, 18, 2396–2409. [Google Scholar] [CrossRef]
- Murray, C.; Pao, E.; Tseng, P.; Aftab, S.; Kulkarni, R.; Rettig, M.; Di Carlo, D. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting. Small 2016, 12, 1891–1899. [Google Scholar] [CrossRef]
- Murray, C.; Pao, E.; Jann, A.; Park, D.E.; Di Carlo, D. Continuous and Quantitative Purification of T-Cell Subsets for Cell Therapy Manufacturing Using Magnetic Ratcheting Cytometry. SLAS Technol. 2018, 23, 326–337. [Google Scholar] [CrossRef]
- Ferrologix, Inc. Digital Magnetic Sorting. synthesia.io. Available online: https://share.synthesia.io/8704ea27-e45b-46e4-ae29-5d36bf204dfe (accessed on 16 October 2024).
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Yang, C.; Rong, R. Discrepant mRNA and Protein Expression in Immune Cells. Curr. Genom. 2020, 21, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Flow Cytometry University of Iowa Helathcare. Cell Sorting|Flow Cytometry. (n.d.). Available online: https://medicine.uiowa.edu/flowcytometry/cell-sorting (accessed on 31 October 2023).
- Miltenyi. (n.d.). autoMACS® Pro Separator User Manual. Available online: https://static.miltenyibiotec.com/asset/150655405641/document_smosus3i9h7jf8mkpdpb52bn0u?content-disposition=inline (accessed on 31 October 2023).
- Miltenyi. (n.d.). CliniMACS Prodigy® User Manual. Available online: https://static.miltenyibiotec.com/asset/150655405641/document_h0fd9i4al17q32uhfuf4h7lu25?content-disposition=inline (accessed on 31 October 2023).
- Valli, H.; Sukhwani, M.; Dovey, S.L.; Peters, K.A.; Donohue, J.; Castro, C.A.; Chu, T.; Marshall, G.R.; Orwig, K.E. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil. Steril. 2014, 102, 566–580.e7. [Google Scholar] [CrossRef] [PubMed]
- Pigeau, G.M.; Csaszar, E.; Dulgar-Tulloch, A. Commercial Scale Manufacturing of Allogeneic Cell Therapy. Front. Med. 2018, 5, 233. [Google Scholar] [CrossRef]
- Ham, R.M.T.; Hövels, A.M.; Hoekman, J.; Frederix, G.W.; Leufkens, H.G.; Klungel, O.H.; Jedema, I.; Veld, S.A.; Nikolic, T.; Van Pel, M.; et al. What does cell therapy manufacturing cost? A framework and methodology to facilitate academic and other small-scale cell therapy manufacturing costings. Cytotherapy 2020, 22, 388–397. [Google Scholar] [CrossRef]
- Ferrologix, Inc. High Throughput & Quantitative Cell Purification for Immunotherapy Manufacture (SBIR Grant No. 5R44CA228844-03); U.S. Department of Health and Human Services: Rockville, MD, USA, 2021. [Google Scholar]
- Song, H.W.; Prochazkova, M.; Shao, L.; Traynor, R.; Underwood, S.; Black, M.; Fellowes, V.; Shi, R.; Pouzolles, M.; Chou, H.-C.; et al. CAR-T cell expansion platforms yield distinct T cell differentiation states. Cytotherapy 2024, 26, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Abdo, L.d.M.; Barros, L.R.C.; Viegas, M.S.; Marques, L.V.C.; Ferreira, P.d.S.; Chicaybam, L.; Bonamino, M.H. Development of CAR-T cell therapy for B-ALL using a point-of-care approach. OncoImmunology 2020, 9, 1752592. [Google Scholar] [CrossRef]
- Ghassemi, S.; Durgin, J.S.; Nunez-Cruz, S.; Patel, J.; Leferovich, J.; Pinzone, M.; Shen, F.; Cummins, K.D.; Plesa, G.; Cantu, V.A.; et al. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 2022, 6, 118–128. [Google Scholar] [CrossRef]
- Poli, A.; Michel, T.; Thérésine, M.; Andrès, E.; Hentges, F.; Zimmer, J. CD56bright natural killer (NK) cells: An important NK cell subset. Immunology 2009, 126, 458–465. [Google Scholar] [CrossRef]
- Wagner, J.A.; Rosario, M.; Romee, R.; Berrien-Elliott, M.M.; Schneider, S.E.; Leong, J.W.; Sullivan, R.P.; Jewell, B.A.; Becker-Hapak, M.; Schappe, T.; et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J. Clin. Investig. 2017, 127, 4042–4058. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bshara-Corson, S.; Burwell, A.; Tiemann, T.; Murray, C. Digital Magnetic Sorting for Fractionating Cell Populations with Variable Antigen Expression in Cell Therapy Process Development. Magnetochemistry 2024, 10, 81. https://doi.org/10.3390/magnetochemistry10110081
Bshara-Corson S, Burwell A, Tiemann T, Murray C. Digital Magnetic Sorting for Fractionating Cell Populations with Variable Antigen Expression in Cell Therapy Process Development. Magnetochemistry. 2024; 10(11):81. https://doi.org/10.3390/magnetochemistry10110081
Chicago/Turabian StyleBshara-Corson, Savannah, Andrew Burwell, Timothy Tiemann, and Coleman Murray. 2024. "Digital Magnetic Sorting for Fractionating Cell Populations with Variable Antigen Expression in Cell Therapy Process Development" Magnetochemistry 10, no. 11: 81. https://doi.org/10.3390/magnetochemistry10110081
APA StyleBshara-Corson, S., Burwell, A., Tiemann, T., & Murray, C. (2024). Digital Magnetic Sorting for Fractionating Cell Populations with Variable Antigen Expression in Cell Therapy Process Development. Magnetochemistry, 10(11), 81. https://doi.org/10.3390/magnetochemistry10110081