Strong Antiferromagnetic Interactions in the Binuclear Cobalt(II) Complex with a Bridged Nitroxide Diradical
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumental and Physical Measurements
2.2. Theoretical Calculations
2.3. Preparations
Synthesis of {(hfac)2CoII(BN)CoII(hfac)2}
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Crystal and Molecular Structure
3.3. Magnetic Studies
3.3.1. SQUID Magnetometry at 2–300 K
3.3.2. Micro-SQUID Magnetic Measurements at Extremely Low Temperatures
3.4. Magnetic Behavior Modeling and Theoretical Calculations
3.4.1. Theoretical Model and Exhaustive Parameter Set Required for Magnetic Data Simulation
3.4.2. Description of Spin–Hamiltonians Used in Theoretical Calculations
3.4.3. Estimation of the Exchange Integral JN
3.4.4. Initial Parameters Calculation for Fitting Experimental Magnetic Data Using Model Molecular Complexes
- Set 1 – B2(0) = 293, B2(2) = −173, JCoN = −31, JN = −122;
- Set 2 – B2(0) = −302, B2(2) = −11, JCoN = −54; JN = −186.
3.4.5. Experimental Magnetic Data Simulations for {(hfac)2CoII(BN)CoII(hfac)2} Using PHI Program
3.4.6. The Direct Ab Initio Calculation of Magnetic Dependences χT(T) and M(H)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caneschi, A.; Gatteschi, D.; Sessoli, R.; Rey, P. Toward Molecular Magnets: The Metal-Radical Approach. Acc. Chem. Res. 1989, 22, 392–398. [Google Scholar] [CrossRef]
- Malrieu, J.P.; Caballol, R.; Calzado, C.J.; de Graaf, C.; Guihéry, N. Magnetic Interactions in Molecules and Highly Correlated Materials: Physical Content, Analytical Derivation, and Rigorous Extraction of Magnetic Hamiltonians. Chem. Rev. 2014, 114, 429–492. [Google Scholar] [CrossRef] [PubMed]
- Caneschi, A.; Gatteschi, D.; Laugier, J.; Rey, P.; Sessoli, R.; Zanchini, C. Preparation, Crystal Structure, and Magnetic Properties of an Oligonuclear Complex with 12 Coupled Spins and an S = 12 Ground State. J. Am. Chem. Soc. 1988, 110, 2795–2799. [Google Scholar] [CrossRef]
- Luneau, D.; Rey, P.; Laugier, J.; Belorizky, E.; Cogne, A. Ferromagnetic Behavior of Nickel(II)-Imino Nitroxide Derivatives. Inorg. Chem. 1992, 31, 3578–3584. [Google Scholar] [CrossRef]
- Caneschi, A.; Gatteschi, D.; Laugier, J.; Rey, P. Ferromagnetic Alternating Spin Chains. J. Am. Chem. Soc. 1987, 109, 2191–2192. [Google Scholar] [CrossRef]
- Caneschi, A.; Gatteschi, D.; Rey, P.; Sessoli, R. Structure and Magnetic Properties of Ferrimagnetic Chains Formed by Manganese(II) and Nitronyl Nitroxides. Inorg. Chem. 1988, 27, 1756–1761. [Google Scholar] [CrossRef]
- Ovcharenko, V.I.; Vostrikova, K.E.; Ikorskii, V.N.; Larionov, S.V.; Sagdeev, R.Z. The Low Temperature Ferromagnet Dimethanol-Bis-[2,2,5,5-Tetramethyl-1-Oxyl-3-Imidazoline-4-(3′,3′,3′-Tri Fluoromethyl-1′-Propenyl-2′-Oxyato)] Cobalt(II), CoL2(CH3OH)2. Dokl. Akad. Nauk SSSR 1989, 306, 660–662. [Google Scholar]
- Vostrikova, K.E. High-Spin Molecules Based on Metal Complexes of Organic Free Radicals. Coord. Chem. Rev. 2008, 252, 1409–1419. [Google Scholar] [CrossRef]
- Demir, S.; Jeon, I.-R.; Long, J.R.; Harris, T.D. Radical Ligand-Containing Single-Molecule Magnets. Coord. Chem. Rev. 2015, 289–290, 149–176. [Google Scholar] [CrossRef]
- Shao, D.; Wang, X. Development of Single-Molecule Magnets. Chin. J. Chem. 2020, 38, 1005–1018. [Google Scholar] [CrossRef]
- Liu, X.; Feng, X.; Meihaus, K.R.; Meng, X.; Zhang, Y.Y.-Q.Y.; Li, L.; Liu, J.J.-L.; Pedersen, K.S.; Keller, L.; Shi, W.; et al. Coercive Fields Above 6 T in Two Cobalt(II)–Radical Chain Compounds. Angew. Chem. Int. Ed. 2020, 59, 10610–10618. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Shi, W.; Cheng, P. Magnetism in One-Dimensional Metal–Nitronyl Nitroxide Radical System. Coord. Chem. Rev. 2019, 378, 134–150. [Google Scholar] [CrossRef]
- Maryunina, K.; Nigomedyanova, D.; Morozov, V.; Smirnova, K.; Letyagin, G.; Romanenko, G.; Efimov, N.; Bogomyakov, A.; Ovcharenko, V. Ferrocenyl-Substituted Nitronyl Nitroxide in the Design of One-Dimensional Magnets. Dalt. Trans. 2024, 53, 1714–1721. [Google Scholar] [CrossRef]
- Moreno-Pineda, E.; Wernsdorfer, W. Measuring Molecular Magnets for Quantum Technologies. Nat. Rev. Phys. 2021, 3, 645–659. [Google Scholar] [CrossRef]
- Swain, A.; Sharma, T.; Rajaraman, G. Strategies to Quench Quantum Tunneling of Magnetization in Lanthanide Single Molecule Magnets. Chem. Commun. 2023, 59, 3206–3228. [Google Scholar] [CrossRef]
- Kahn, O. Molecular Magnetism; VCH: New York, NY, USA, 1993; ISBN 978-1-56081-566-2. [Google Scholar]
- Fujita, J.; Tanaka, M.; Suemune, H.; Koga, N.; Matsuda, K.; Iwamura, H. Antiferromagnetic Exchange Interaction among the Three Spins Placed in an Isosceles Triangular Configuration in 2,4-Dimethoxy-1,3,5-Benzenetriyltris(N-Tert-Butyl Nitroxide). J. Am. Chem. Soc. 1996, 118, 9347–9351. [Google Scholar] [CrossRef]
- Furui, T.; Suzuki, S.; Kozaki, M.; Shiomi, D.; Sato, K.; Takui, T.; Okada, K.; Tretyakov, E.V.; Tolstikov, S.E.; Romanenko, G.V.; et al. Preparation and Magnetic Properties of Metal-Complexes from N-t-Butyl-N-Oxidanyl-2-Amino-(Nitronyl Nitroxide). Inorg. Chem. 2014, 53, 802–809. [Google Scholar] [CrossRef]
- Barclay, T.M.; Hicks, R.G.; Lemaire, M.T.; Thompson, L.K. Synthesis, Structure, and Magnetism of Bimetallic Manganese or Nickel Complexes of a Bridging Verdazyl Radical. Inorg. Chem. 2001, 40, 5581–5584. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.-N.; Zhang, S.-L.; Zhao, X.-H.; Shao, D.; Wang, X.-Y. Syntheses and Magnetic Properties of a Pyrimidyl-Substituted Nitronyl Nitroxide Radical and Its Cobalt(II) Complexes. Chem. Commun. 2016, 52, 5033–5036. [Google Scholar] [CrossRef]
- Xia, C.-C.; Zhang, X.-Y.; Zhang, C.-C.; Li, G.; Wei, H.-Y.; Wang, X.-Y. Syntheses and Magnetic Properties of a Bis-Bidentate Nitronyl Nitroxide Radical Based on Triazolopyrimidine and Its Metal Complexes. Dalt. Trans. 2023, 52, 8964–8974. [Google Scholar] [CrossRef]
- Caneschi, A.; Gatteschi, D.; Rey, P. The Chemistry and Magnetic Properties of Metal Nitronyl Nitroxide Complexes. In Progress in Inorganic Chemistry; Lippard, S.J., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1991; pp. 331–429. ISBN 9780470166406. [Google Scholar]
- Yoshioka, N.; Irisawa, M.; Mochizuki, Y.; Kato, T.; Inoue, H.; Ohba, S. Unusually Large Magnetic Interactions Observed in Hydrogen-Bonded Nitronyl Nitroxides. Chem. Lett. 1997, 26, 251–252. [Google Scholar] [CrossRef]
- Iwamura, H.; Inoue, K.; Hayamizu, T. High-Spin Polynitroxide Radicals as Versatile Bridging Ligands for Transition Metal Complexes with High Ferri/Ferromagnetic Tc. Pure Appl. Chem. 1996, 68, 243–252. [Google Scholar] [CrossRef]
- Luneau, D.; Laugier, J.; Rey, P.; Ulrich, G.; Ziessel, R.; Legoll, P.; Drillon, M. Synthesis, Coordination and Magnetic Properties of a Novel Family of Stable Chelate Based Biradicals: Molecular Structure of a 2,2′-Bipyridine N-Oxide N-Oxyl Biradical and Its Copper(II) Complex. J. Chem. Soc. Chem. Commun. 1994, 6, 741–742. [Google Scholar] [CrossRef]
- Sanfui, S.; Usman, M.; Roychowdhury, A.; Pramanik, S.; Garribba, E.; Gómez García, C.J.; Chen, P.P.-Y.; Rath, S.P. Bridge vs Terminal Cyano-Coordination in Binuclear Cobalt Porphyrin Dimers: Interplay of Electrons between Metal and Ligand and Spin-Coupling via Bridge. Inorg. Chem. 2024, 63, 15619–15633. [Google Scholar] [CrossRef]
- Titiš, J.; Rajnák, C.; Boča, R. Magnetostructural D-Correlations and Their Impact on Single-Molecule Magnetism. Inorganics 2023, 11, 452. [Google Scholar] [CrossRef]
- Sakamoto, A.; Harada, T.; Tonegawa, N. A New Approach to the Spectral Study of Unstable Radicals and Ions in Solution by the Use of an Inert Gas Glovebox System: Observation and Analysis of the Infrared Spectra of the Radical Anion and Dianion of p-Terphenyl. J. Phys. Chem. A 2008, 112, 1180–1187. [Google Scholar] [CrossRef]
- Audier, H.E.; Milliet, A.; Leblanc, D.; Morton, T.H. Unimolecular Decompositions of the Radical Cations of Ethylene Glycol and Its Monomethyl Ether in the Gas Phase. Distonic Ions versus Ion-Neutral Complexes. J. Am. Chem. Soc. 1992, 114, 2020–2027. [Google Scholar] [CrossRef]
- Luneau, D.; Rey, P. Magnetism of Metal-Nitroxide Compounds Involving Bis-Chelating Imidazole and Benzimidazole Substituted Nitronyl Nitroxide Free Radicals. Coord. Chem. Rev. 2005, 249, 2591–2611. [Google Scholar] [CrossRef]
- Vaz, M.G.F.; Andruh, M. Molecule-Based Magnetic Materials Constructed from Paramagnetic Organic Ligands and Two Different Metal Ions. Coord. Chem. Rev. 2021, 427, 213611. [Google Scholar] [CrossRef]
- Luneau, D. Coordination Chemistry of Nitronyl Nitroxide Radicals Has Memory. Eur. J. Inorg. Chem. 2020, 2020, 597–604. [Google Scholar] [CrossRef]
- Ullman, E.F.; Boocock, D.G.B. “Conjugated” Nitronyl-Nitroxide and Imino-Nitroxide Biradicals. J. Chem. Soc. D Chem. Commun. 1969, 20, 1161–1162. [Google Scholar] [CrossRef]
- Alies, F.; Luneau, D.; Laugier, J.; Rey, P. Ullmann’s Nitroxide Biradicals Revisited. Structural and Magnetic Properties. J. Phys. Chem. 1993, 97, 2922–2925. [Google Scholar] [CrossRef]
- Maekawa, K.; Shiomi, D.; Ise, T.; Sato, K.; Takui, T. Experimental Evidence for the Triplet-Like Spin State Appearing in Ground-State Singlet Biradicals as a Key Feature for Generalized Ferrimagnetic Spin Alignment. J. Phys. Chem. B 2006, 110, 2102–2107. [Google Scholar] [CrossRef]
- Tanaka, M.; Matsuda, K.; Itoh, T.; Iwamura, H. A Spin-Frustrated System Composed of Organic Radicals and Magnetic Metal Ions. Angew. Chem. Int. Ed. 1998, 37, 810–812. [Google Scholar] [CrossRef]
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532. [Google Scholar] [CrossRef]
- Wernsdorfer, W. Classical and Quantum Magnetization Reversal Studied in Nanometer-Sized Particles and Clusters. In Advances in Chemical Physics; Wiley: Hoboken, NJ, USA, 2001; pp. 99–190. ISBN 9780470141786. [Google Scholar] [CrossRef]
- Shoji, M.; Koizumi, K.; Kitagawa, Y.; Kawakami, T.; Yamanaka, S.; Okumura, M.; Yamaguchi, K. A General Algorithm for Calculation of Heisenberg Exchange Integrals J in Multispin Systems. Chem. Phys. Lett. 2006, 432, 343–347. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A Powerful New Program for the Analysis of Anisotropic Monomeric and Exchange-coupled Polynuclear d- and f-block Complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef]
- Tominaga, T.; Mochida, T. Trans-Diaquabis(1,1,1,5,5,5-Hexafluoropentane-2,4-Dionato-κ 2O,O′)Cobalt(II) Dihydrate. IUCrData 2017, 2, x170002. [Google Scholar] [CrossRef]
- Catala, L.; Wurst, K.; Amabilino, D.B.; Veciana, J. Polymorphs of a Pyrazole Nitronyl Nitroxide and Its Complexes with Metal(Ii) Hexafluoroacetylacetonates. J. Mater. Chem. 2006, 16, 2736. [Google Scholar] [CrossRef]
- Vostrikova, K.E.; Belorizky, E.; Pécaut, J.; Rey, P. New Chelating Nitroxide Free Radical Ligands for Heterospin-Magnetic Engineering. Eur. J. Inorg. Chem. 1999, 7, 1181–1187. [Google Scholar] [CrossRef]
- Ostrovsky, S.M.; Falk, K.; Pelikan, J.; Brown, D.A.; Tomkowicz, Z.; Haase, W. Orbital Angular Momentum Contribution to the Magneto-Optical Behavior of a Binuclear Cobalt(II) Complex. Inorg. Chem. 2006, 45, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Boeer, A.B.; Barra, A.-L.; Chibotaru, L.F.; Collison, D.; McInnes, E.J.L.; Mole, R.A.; Simeoni, G.G.; Timco, G.A.; Ungur, L.; Unruh, T.; et al. A Spectroscopic Investigation of Magnetic Exchange Between Highly Anisotropic Spin Centers. Angew. Chem. Int. Ed. 2011, 50, 4007–4011. [Google Scholar] [CrossRef]
- Zorina, E.N.; Zauzolkova, N.V.; Sidorov, A.A.; Aleksandrov, G.G.; Lermontov, A.S.; Kiskin, M.A.; Bogomyakov, A.S.; Mironov, V.S.; Novotortsev, V.M.; Eremenko, I.L. Novel Polynuclear Architectures Incorporating Co2+ and K+ Ions Bound by Dimethylmalonate Anions: Synthesis, Structure, and Magnetic Properties. Inorg. Chim. Acta 2013, 396, 108–118. [Google Scholar] [CrossRef]
- Domínguez, S.; Mederos, A.; Gili, P.; Rancel, A.; Rivero, A.E.; Brito, F.; Lloret, F.; Solans, X.; Ruíz-Pérez, C.; Rodríguez, M.L.; et al. Dimer Complexes of 2,4-Toluenediamine-N,N,N′,N′-Tetraacetic Acid (2,4-TDTA) with Copper(II), Nickel(II), Cobalt(II), Zinc(II) and Manganese(II). Studies in Aqueous Solution and Solid State. X-Ray Crystal Structures of Na4[Ni2(2,4-TDTA)2]·15H2O and Na4[Cu2(2,4-TDTA)2]·20H2O. Inorg. Chim. Acta 1997, 255, 367–380. [Google Scholar] [CrossRef]
- Sakiyama, H.; Ito, R.; Kumagai, H.; Inoue, K.; Sakamoto, M.; Nishida, Y.; Yamasaki, M. Dinuclear Cobalt(II) Complexes of an Acyclic Phenol-Based Dinucleating Ligand with Four Methoxyethyl Chelating Arms—First Magnetic Analyses in an Axially Distorted Octahedral Field. Eur. J. Inorg. Chem. 2001, 2001, 2027–2032. [Google Scholar] [CrossRef]
- Clemente, J.M.; Andres, H.; Aebersold, M.; Borrás-Almenar, J.J.; Coronado, E.; Güdel, H.U.; Büttner, H.; Kearly, G. Magnetic Excitations in Tetrameric Clusters of Polyoxometalates Observed by Inelastic Neutron Scattering. Evidence for Anisotropic Exchange Interactions in Cobalt(II) Clusters. Inorg. Chem. 1997, 36, 2244–2245. [Google Scholar] [CrossRef]
- Hossain, M.J.; Yamasaki, M.; Mikuriya, M.; Kuribayashi, A.; Sakiyama, H. Synthesis, Structure, and Magnetic Properties of Dinuclear Cobalt(II) Complexes with a New Phenol-Based Dinucleating Ligand with Four Hydroxyethyl Chelating Arms. Inorg. Chem. 2002, 41, 4058–4062. [Google Scholar] [CrossRef]
- Griffith, J.S. The Theory of Transition Metal Ions; Reissue; University Press: Cambridge, UK, 2009; ISBN 978-0521115995. [Google Scholar]
- Figgis, B.N. Introduction to Ligand Fields; John Wiley & Sons Ltd., Interscience Publication: London, UK; New York, NY, USA, 1966; ISBN 9780898748192. [Google Scholar]
- Palii, A.V.; Korchagin, D.V.; Yureva, E.A.; Akimov, A.V.; Misochko, E.Y.; Shilov, G.V.; Talantsev, A.D.; Morgunov, R.B.; Aldoshin, S.M.; Tsukerblat, B.S. Single-Ion Magnet Et4N[CoII(Hfac)3] with Nonuniaxial Anisotropy: Synthesis, Experimental Characterization, and Theoretical Modeling. Inorg. Chem. 2016, 55, 9696–9706. [Google Scholar] [CrossRef]
DFT Level | TPSSh | B3LYP | LC-BLYP | wB97m-v | cam-B3LYP |
---|---|---|---|---|---|
JN, cm−1 | −334 | −419 | −727 | −732 | −790 |
CAS/Multiplets/Roots | JCAS, cm−1 | JCAS/NEVPT2, cm−1 |
---|---|---|
(10,8)/(3,1)/(10,10) | −282 | −227 |
(14,10)/(3,1)/(10,10) | −272 | −228 |
Complex | Data Set | B2(0) | B2(2) | JCoN | JN | σ 1 | zJ |
---|---|---|---|---|---|---|---|
[(hfac)2Co(DD)] | 1 | 293 | −173 | ||||
2 | −302 | −11 | |||||
[(hfac)2Co(DP)] | 1 | 293 | −173 | −53 | |||
2 | −302 | −11 | −95 | ||||
[(hfac)2Co(BN)] | 1 | 293 | −173 | −31 | −122 | ||
2 | −302 | −11 | −54 | −186 | |||
[(hfac)4Co2(BN)] | 1 | 322 | −126 | −47 | −125 | 0.07 | −0.011 |
2 | −380 | −13 | −68 | −203 | 0.07 | −0.019 |
λ | B2(0) | B2(2) | σ 1 | JCoN | JN | zJ |
---|---|---|---|---|---|---|
−110 | 549 | –205 | –0.98 | –93 | −171 | –0.328 |
−130 2 | 817 2 | –265 2 | –0.55 2 | –62 2 | −120 2 | –0.254 2 |
−150 | 1012 | –223 | −1.14 | –52 | –77 | –0.256 |
−170 | 1216 | 190 | −1.4 | –81 | −156 | –0.249 |
−110 3 | −188 3 | −11 3 | −1.33 3 | −121 3 | –231 3 | |
−130 | –236 | −12 | −1.38 | −146 | −192 | |
−150 | –288 | −12 | −1.41 | −161 | −166 | |
−170 | –357 | −11 | −1.4 | −166 | −162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozov, V.A.; Peresypkina, E.V.; Wernsdorfer, W.; Vostrikova, K.E. Strong Antiferromagnetic Interactions in the Binuclear Cobalt(II) Complex with a Bridged Nitroxide Diradical. Magnetochemistry 2024, 10, 82. https://doi.org/10.3390/magnetochemistry10110082
Morozov VA, Peresypkina EV, Wernsdorfer W, Vostrikova KE. Strong Antiferromagnetic Interactions in the Binuclear Cobalt(II) Complex with a Bridged Nitroxide Diradical. Magnetochemistry. 2024; 10(11):82. https://doi.org/10.3390/magnetochemistry10110082
Chicago/Turabian StyleMorozov, Vitaly A., Eugenia V. Peresypkina, Wolfgang Wernsdorfer, and Kira E. Vostrikova. 2024. "Strong Antiferromagnetic Interactions in the Binuclear Cobalt(II) Complex with a Bridged Nitroxide Diradical" Magnetochemistry 10, no. 11: 82. https://doi.org/10.3390/magnetochemistry10110082
APA StyleMorozov, V. A., Peresypkina, E. V., Wernsdorfer, W., & Vostrikova, K. E. (2024). Strong Antiferromagnetic Interactions in the Binuclear Cobalt(II) Complex with a Bridged Nitroxide Diradical. Magnetochemistry, 10(11), 82. https://doi.org/10.3390/magnetochemistry10110082