Influence of Magnetic Field on Calcium Carbonate Precipitation: A Critical Review
Abstract
:1. Introduction
2. Magnetic Antiscaling Treatments
- -
- -
- Physical processes based on the use of one or more physical techniques (electric field, magnetic field, ultrasound, etc.) [9,10,11,12,13,14] such as electrochemical softening and treatments by applying a magnetic field. The magnetic field is a fundamental physical measure that is crucial for the manipulation of various systems [15,16] found in research laboratories (nuclear magnetic resonance, mass spectroscopy, etc.) and hospitals (magnetic resonance imaging).
2.1. Magnetic Device Configuration
2.2. Permanent Magnetic Field
2.3. Alternating Magnetic Fields
- -
- The processing time required to reach the maximum effect in alternating or pulsed mode is much lower than in static mode.
- -
- The magnetic field frequency has a remarkable effect on the size and morphology of the formed calcium carbonate crystals.
- -
- Compared to static magnetic fields, the pulsed and alternating magnetic fields induce the formation of more stable crystals.
2.4. Effect of Dissolved Gases on Magnetic Treatment
2.5. Magnetic Treatment of Natural Waters
2.6. Effect of Magnetic Field on Seawater
2.7. Effect of Flow Rate on the Efficiency of Magnetic Treatment
2.8. Effect of Walls
2.9. Persistence of the Magnetic Field
3. Magnetic Treatment and Crystallization of Calcium Carbonate
3.1. Crystal Growth
- -
- Direct incorporation of the ions into the crystal formed;
- -
- Germination on the surface of the crystallite, also known as secondary germination;
- -
- Agglomeration of particles.
3.2. CaCO3 Precipitation Models
- -
- Formation of the ion pairs by electrostatic interactions between the cations and the anions dissolved in the solution;
- -
- Aggregation of these ion pairs to form pregermination entities which are in dynamic equilibrium with the solution;
- -
- Growth of aggregate size to critical size. These aggregates are the result of the germination of the solid-state particles.
3.3. Effect of Magnetic Treatment on Precipitation Kinetics
3.4. Effect of Magnetic Treatment on the Crystallinity of CaCO3
3.5. Influence of Foreign Ions
4. Mechanisms of the Magnetic Field Action
- -
- -
- -
4.1. The Magnetohydrodynamic Phenomenon (MHD)
4.2. Hydration Effect
4.3. Effect on Gas/Liquid Interface
4.4. Interaction Between Mechanisms
4.5. Mechanisms of Action of the Magnetic Field Action on Calcium Carbonate Precipitation
- The magnetohydrodynamic effect is the change in water flow from laminar to turbulent under magnetic field, where the boundary layer existing under laminar flow decreases or disappears after the flow change. This creates turbulence in the circulation of water, and the nature of the pipe materials greatly influences the precipitation of calcium carbonate.
- Hydration effect: The process by which a positive or negative ion attracts water molecules towards its immediate vicinity is called hydration. In this process, oxygen with the negatively charged side of the dipolar water molecule attracts and is attracted to the calcium ion in solution. Because of this ionic dipole force, water molecules cluster around calcium ions. Similarly, hydrogen, with the negative ends of water molecules, is attracted to HCO3- ions. Under the influence of the magnetic field, the polar water molecule changes its direction depending on the applied magnetic field, and, therefore, the ions present in the water will be released, which favors the probability of the formation of a stable seed of calcium carbonate. Thus, nucleation will predominate, and a precipitate containing many small particles will result.
- The chemical composition of water.
- The physical properties of treated water: In fact, the physical properties of water can influence the movement of particles and precipitation. Temperature variations, for example, modify these properties. The concentration of oxygen and other dissolved gases can also influence the chemistry of precipitation.
- Magnetic field intensity and configuration: The direction and configuration of the magnetic field (linear, uniform, or pulsed) can affect the way suspended particles interact, thereby changing the effectiveness of the treatment. Also, the intensity must be optimized for each system.
- Exposure time: Insufficient exposure time may fail to observe significant effects, while excessive time may result in undesirable effects or unexpected variations.
- Experimental methodology: Variations in experimental protocols, sample handling or instruments used may introduce inconsistencies. Additionally, the precision of measuring instruments and analysis methods may affect results, leading to inconsistencies in reported data.
5. Conclusions and Perspective
- Test the effectiveness of magnetic treatment on wastewater from various industries (textiles, food processing, chemicals) to evaluate its decontamination potential.
- Develop mathematical models to simulate the interaction of magnetic fields with suspended particles, to identify optimal configurations for different types of treatments.
- Design and test prototypes of modular equipment that allow easy adjustment of magnetic field intensity and configuration according to specific treatment needs.
- Research the use of advanced magnetic materials (nanomaterials, composites) to improve the efficiency of treatment devices and reduce the manufacturing cost.
- Evaluate whether repeated treatments or combinations with other methods can improve or prolong the memory effect.
Funding
Data Availability Statement
Conflicts of Interest
References
- Boluda-Botella, N.; Saquete, M.D.; Martínez-Moya, S.; Morales-Paredes, C.A.; Rodríguez-Díaz, J.M. Analysis of Calcium Carbonate Scales in Water Distribution Systems and Influence of the Electromagnetic Treatment. Water 2024, 16, 1554. [Google Scholar] [CrossRef]
- Chibowski, E.; Szcześ, A. Magnetic water treatment—A review of the latest approaches. Chemosphere 2018, 203, 54–67. [Google Scholar] [CrossRef]
- Piyadasa, C.; Ridgway, H.F.; Yeager, T.R.; Stewart, M.B.; Pelekani, C.; Gray, S.R.; Orbell, J.D. The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes. Desalination 2017, 418, 19. [Google Scholar] [CrossRef]
- Esmaeilnezhad, E.; Choi, H.J.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. Characteristics and applications of magnetized water as a green technology. J. Clean. Prod. 2017, 161, 908. [Google Scholar] [CrossRef]
- Alabi, A.; Chiesa, M.; Garlisi, C.; Palmisano, G. Advances in anti-scale magnetic water treatment. Environ. Sci. Water Res. Technol. 2015, 1, 408. [Google Scholar] [CrossRef]
- de Morais Stéphanie, C.; de Lima Djalan, F.; Thuany, M.F.; Josiel, B.D.; de Souza Miguel Angelo, F.; Bruno, B.C.; Rosangela, C.B. Effect of pH on the efficiency of sodium hexametaphosphate as calcium carbonate scale inhibitor at high temperature and high pressure. Desalination 2020, 491, 114548. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, J.; Tian, D.; Chang, M.; Zhao, X.; Lu, M. Experimental and theoretical studies of fluorescent-tagged scale inhibitors for calcium scale inhibition. J. Mol. Struct. 2023, 1272, 134157. [Google Scholar] [CrossRef]
- Vaskina, I.; Roi, I.; Plyatsuk, L.; Vaskin, R.; Yakhnenko, O. Study of the Magnetic Water Treatment Mechanism. J. Ecol. Eng. 2020, 21, 251. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Jian, H.; Yinhui, L.; Jianxin, C.; Yingying, Z.; Chadwick, K. Ultrasonic Crystallization of Calcium Carbonate in Presence of Seawater Ions. Desalination 2015, 369, 85. [Google Scholar] [CrossRef]
- Njegi, B.; Kontrec, J.; Ukrainczyk, M.; Sviben, S.; Kralj, D. Polymorphic composition and morphology of calcium carbonate as a function of ultrasonic irradiation. Cryst. Res. Technol. 2014, 49, 244. [Google Scholar] [CrossRef]
- Myasnikov, S.K.; Chipryakova, A.P.; Kulov, N.N. Kinetics, energy characteristics, and intensification of crystallization processes in chemical precipitation of hardness ions. Theor. Found. Chem. Eng. 2013, 47, 505. [Google Scholar] [CrossRef]
- Myasnikov, S.K.; Chipryakova, A.P.; Kulov, N.N. Intensification of reagent water softening by heterogeneous crystallization and ultrasound irradiation. Water Chem. Ecol. 2010, 2, 11. [Google Scholar]
- Wang, Y.; Wei, H.; Li, Z. Effect of magnetic field on the physical properties of water. Results Phys. 2018, 8, 262. [Google Scholar] [CrossRef]
- Sakhnini, L. Influence of Ca2+ in biological stimulating effects of AC magnetic fields on germination of bean seeds. J. Magn. Magn. Mater. 2007, 310, 1032. [Google Scholar] [CrossRef]
- Carbonell, M.V.; Martinez, E.; Amaya, J.M. Stimulation of germination in rice (Oryza satival L.) by a static magnetic field. Electromagn. Biol. Med. 2000, 19, 121. [Google Scholar] [CrossRef]
- Ghiringhelli, F.; Schmitt, E. Tri par billes magnétiques Technique et exemple du tri des lymphocytes T régulateurs CD25+ chez le rat. Ann. Biol. Clin. 2004, 62, 73. [Google Scholar]
- Piyadasa, C.; Yeager, T.R.; Gray, S.R.; Stewart, M.B.; Ridgway, H.F.; Pelekani, C.; Orbell, J.D. The influence of electromagnetic fields from two commercially available water-treatment devices on calcium carbonate precipitation. Environ. Sci. Water Res. Technol. 2017, 3, 566. [Google Scholar] [CrossRef]
- Dobersek, D.; Goricanec, D. An experimentally evaluated magnetic device’s efficiency for water-scale reduction on electric heaters. Energy 2014, 77, 271. [Google Scholar] [CrossRef]
- Gilart, F.; Deas, D.; Ferrer, D.; López, P.; Ribeaux, G.; Castillo, J. High flow capacity devices for anti-scale magnetic treatment of water. Chem. Eng. Process. 2013, 70, 211. [Google Scholar] [CrossRef]
- Salman, M.A.; Al-Nuwaibit, G.; Safar, M.; Al-Mesri, A. Performance of physical treatment method and different commercial antiscalants to control scaling deposition in desalination plan. Desalination 2015, 369, 18. [Google Scholar] [CrossRef]
- Lipus, L.C.; Acko, B.; Neral, B. Influence of magnetic water treatment on fabrics’ characteristics. J. Clean. Prod. 2013, 52, 374. [Google Scholar] [CrossRef]
- Alimi, F.; Tlili, M.; Gabrielli, C.; Maurin, G.; Amor, M.B. Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Res. 2006, 40, 1941. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, Y.; Jia, M.; Wang, J. Experimental study on the influence of an alternating magnetic field on the CaCO3 fouling of a heat transfer surface. Int. J. Heat Mass Transf. 2022, 183, 122156. [Google Scholar] [CrossRef]
- Szczes, A.; Chibowski, E.; Hołysz, L.; Rafalski, P. Effects of static magnetic field on water at kinetic condition. J. Chem. Eng. Process. Process Intensif. 2011, 50, 124. [Google Scholar] [CrossRef]
- Salah, S.I.B.; Sistat, P.; Tlili, M.M. Assess of physical antiscale-treatments on conventional electrodialysis pilot unit during brackish water desalination. Chem. Eng. Process. Process Intensif. 2015, 88, 47. [Google Scholar] [CrossRef]
- Gryta, M. The influence of magnetic water treatment on CaCO3 scale formation in membrane distillation process. Sep. Purif. Technol. 2011, 80, 293. [Google Scholar] [CrossRef]
- Martti, L.; Jenni, I.; Jaakko, R.; Tuija, K.; Riika, M.; Merja, A.; Jaana, M.; Simo, P. Studies on the magnetic water treatment in new pilot scale drinking water system and in old existing real-life water system. J. Water Process Eng. 2016, 9, 215. [Google Scholar] [CrossRef]
- Stuyven, B.; Vanbutsele, G.; Nuyens, J.; Vermant, J.; Martens, J.A. Natural suspended particle fragmentation in magnetic scale prevention device. Chem. Eng. Sci. 2009, 64, 1904. [Google Scholar] [CrossRef]
- Sevim, O.; Demir, I.; Alakara, E.H.; Guzelkucuk, S.; Bayer, I.R. The Effect of Magnetized Water on the Fresh and Hardened Properties of Slag/Fly Ash-Based Cementitious Composites. Buildings 2023, 13, 271. [Google Scholar] [CrossRef]
- Hachicha, M.; Kahlaoui, B.; Khamassi, N.; Misle, E.; Jouzdan, O. Effect of electromagnetic treatment of saline water on soil and crops. J. Saudi Soc. Agric. Sci. 2016, 17, 154. [Google Scholar] [CrossRef]
- Surendran, U.; Sandeep, O.; Joseph, E.J. The impacts of magnetic treatment of irrigation water on plant, waterand soil characteristics. Agric. Water Manag. 2016, 178, 21. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, L.; Chen, X.; Sitan, Y.; Peng, Y.; Liang, C. Effect of magnetic water irrigation on the improvement of salinized soil and cotton growth in Xinjiang. Agric. Water Manag. 2021, 248, 106784. [Google Scholar] [CrossRef]
- Selim, A.F.; El-Nady, M.F. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astron. 2011, 69, 387–396. [Google Scholar] [CrossRef]
- Selim, D.A.-F.H.; Nassar, R.M.A.; Boghdady, M.S.; Bonfill, M. Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiol. Biochem. 2019, 135, 480–488. [Google Scholar] [CrossRef]
- Maheshwari, B.L.; Grewal, H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agric. Water Manag. 2009, 96, 1229. [Google Scholar] [CrossRef]
- Khaled, A.A.; Abdoulmajid, L.; Hossein, D. The effect of acidification and magnetic field on emitter clogging under saline water application. J. Agric. Sci. 2009, 1, 132. [Google Scholar] [CrossRef]
- Bogatin, J.; Bondarenki, N.P.; Gak, E.Z.; Rokhinson, E.E.; Ananyev, I. Magnetic treatment of irrigation water: Experimental results and application conditions. Environ. Sci. Technol. 1999, 33, 1280. [Google Scholar] [CrossRef]
- Yusuf, K.O.; Olorunkunle, I.O. Effects of magnetic treatment of water on the growth, yield and quality of maize. Niger. J. Technol. Res. 2016, 11, 71–74. [Google Scholar] [CrossRef]
- Al-Mashhadani, I.I.H.; Rasheed, K.A.; Ismail, E.N.; Hassan, S.M. Effect of Magnetic Water Treatment on Salt Tolerance of Selected Wheat Cultivars. J. Int. Environ. Appl. Sci. 2016, 11, 105. [Google Scholar]
- Trueba, A.; García, S.; Otero, F.M. Mitigation of biofouling using electromagnetic fields in tubular heat exchangers–condensers cooled by seawater. J. Bioadhes. Biofilm Res. 2014, 30, 95. [Google Scholar] [CrossRef]
- Khoshrevesh-Miangoleh, M.; Kiani, A.R. Effect of magnetized water on infiltration capacity of different soil textures. Soil Use Manag. 2014, 30, 588. [Google Scholar] [CrossRef]
- Al-Ogaidi, A.A.M.; Wayayok, A.; Rowshon, M.K.; Abdullah, A.F. The influence of magnetized water on soil water dynamics under drip irrigation systems. Agric. Water Manag. 2017, 180, 70. [Google Scholar] [CrossRef]
- Alkassab, A.T.; Albach, D.C. Response of Mexican aster Cosmos bipinnatus and field mustard Sinapis arvensis to irrigation with magnetically treated water (MTW). Biol. Agric. Hortic. 2014, 30, 62. [Google Scholar]
- Castelo-Grande, T.; Augusto, A.P.; Rico, J.; Marcos, J.; Iglesias, R.; Hernandez, L.; Barbosa, D. Magnetic water treatment in a wastewater treatment plant: Part I—Sorption and magnetic particles. J. Environ. Manag. 2021, 281, 111872. [Google Scholar] [CrossRef]
- Castelo-Grande, T.; Augusto, A.P.; Rico, J.; Marcos, J.; Iglesias, R.; Hernandez, L.; Barbosa, D. Magnetic water treatment in a wastewater treatment plant: Part II—Processing waters and kinetic study. J. Environ. Manag. 2021, 285, 112177. [Google Scholar] [CrossRef]
- Al-Qahtani, H. Effect of magnetic treatment on Gulf seawater. Desalination 1996, 107, 75. [Google Scholar] [CrossRef]
- Trueba, A.; García, S.; Otero, F.M.; Vegaa, L.M.; Madariaga, E. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater Alfredo. J. Bioadhes. Biofilm Res. 2015, 31, 19. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, X.; Yu, H.; Hou, X.; Zou, Z.; Shen, F.; Li, C. Effect of permanent magnetic field on scale inhibition property of circulating water. Water Sci. Technol. 2017, 76, 1981. [Google Scholar] [CrossRef]
- Xuefei, M.; Lan, X.; Jiapeng, C.; Zikang, Y.; Wei, H. Experimental study on calcium carbonate precipitation using electromagnetic field treatment. Water Sci. Technol. 2013, 67, 2784. [Google Scholar] [CrossRef]
- Rouina, M.; Kariminia, H.R.; Mousavi, S.A.; Shahryari, E. Effect of electromagnetic field on membrane fouling in reverse osmosis process. Desalination 2016, 395, 41. [Google Scholar] [CrossRef]
- Alimi, F.; Boubakri, A.; Tlili, M.; Amor, M.B. A comprehensive factorial design study of variables affecting CaCO3 scaling under magnetic water treatment Study. Water Sci. Technol. 2014, 70, 1355. [Google Scholar] [CrossRef]
- Alimi, F.; Tlili, M.; Amor, M.B.; Gabrielli, C.; Maurin, G. Influence of magnetic field on calcium carbonate precipitation. Desalination 2007, 206, 163–168. [Google Scholar] [CrossRef]
- Alimi, F.; Tlili, M.; Ben Amor, M.; Maurin, G.; Gabrielli, C. Influence of magnetic field in the precipitation of calcium carbonate in presence of foreign ions. Surf. Eng. Appl. Electectrochem. 2009, 45, 56. [Google Scholar] [CrossRef]
- Alimi, F.; Tlili, M.; Gabrielli, C.; Maurin, G.; Amor, M.B. Effect of magnetic field on calcium carbonate precipitation. Influence of the pipe material. Chem. Eng. Process. Process Intensif. 2009, 48, 1327. [Google Scholar] [CrossRef]
- Oshitani, J.; Uehara, R.; Higashitani, K. Magnetic effects on eletrolyte solutions in pulse and alternation field. J. Colloid Interface Sci. 1999, 209, 374. [Google Scholar] [CrossRef]
- Vallée, P.; Lafait, J. Effect of pulsed low frequency electromagnetic fields on water using photoluminescence spectroscopy: Role of bubble/water interface. J. Chem. Phys. 2005, 122, 114513. [Google Scholar] [CrossRef]
- Vallée, P.; Lafait, J.; Legrand, L.; Mentré, P.; Monod, M.O.; Thomas, Y. Effects of Pulsed Low-Frequency Electromagnetic Fields on Water Characterized by Light Scattering Techniques: Role of Bubbles. Langmuir 2005, 21, 2293. [Google Scholar] [CrossRef]
- Otsuka, I.; Ozeki, S. Does Magnetic Treatment of water change its properties? J. Phys. Chem. B 2006, 110, 1509. [Google Scholar] [CrossRef]
- Ozeki, S.; Otsuka, I. Transient Oxygen Clathrate-like Hydrate and Water Networks Induced by Magnetic Fields. J. Phys. Chem. B 2006, 110, 20067. [Google Scholar] [CrossRef]
- Crolet, J.L.; Ledion, J. Evaluation expérimentale de l’efficacité d’un appareil antitartre magnétique. Tech. Sci. Méthodes Génie Urbain Génie Rural. 1988, 9, 435. [Google Scholar]
- Lipus, L.C.; Dobersek, D. Influence of magnetic field on the aragonite precipitation. Chem. Eng. Sci. 2007, 62, 2089. [Google Scholar] [CrossRef]
- Gabrielli, C.; Jaouhari, R.; Maurin, G.; Keddam, M. Magnetic water treatment for scale prevention. Water Res. 2001, 35, 3249. [Google Scholar] [CrossRef] [PubMed]
- Martemianov, S.; Sviridov, A. Study of near Wall Hydrodynamics and Mass Transfer under Magnetic Field Influence. In Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows; Alemany, A., Marty, P., Thibault, J.P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 229–240. [Google Scholar]
- Loureiro, J.B.R.; Martins, A.L.; Gonçalves, A.S.; Souza, B.G.B.; Schluter, H.E.P.; Santos, H.F.L.; Castro, B.B.; Pepe, I.M.; Junior, L.C.S.S.; Demetino, G.G.; et al. Large-Scale Pipe Flow Experiments for the Evaluation of Nonchemical Solutions for Calcium Carbonate Scaling Inhibition and Control. SPE J. 2023, 28, 201–214. [Google Scholar] [CrossRef]
- Amiri, M.C.; Dadkhah, A.A. On reduction in the surface tension of water due to magnetic treatment. Colloids Surf. A Physicochem. Eng. Asp. 2006, 278, 252. [Google Scholar] [CrossRef]
- Busch, K.W.; Busch, M.A. Laboratory studies on magnetic water treatment and their relationship to a possible mechanism for scale reduction. Desalination 1997, 109, 131. [Google Scholar] [CrossRef]
- Busch, K.W.; Busch, M.A.; Parker, D.H.; Darling, R.E.; McAtee, J.L. Studies of a water treatment device that uses magnetic field. Corrosion 1986, 42, 211. [Google Scholar] [CrossRef]
- Chibowski, E.; Hotysz, L.; Szczes, A. Adhesion of in situ precipitated calcium carbonate in the presence and absence of magnetic field in quiescent conditions on different solid surfaces. Water Res. 2003, 37, 4685. [Google Scholar] [CrossRef]
- Colic, M.; Morse, D. Effects of amplitude of the radiofrequency electromagnetic radiation on aqueous suspensions and solutions. J. Colloid Interface Sci. 1998, 200, 265. [Google Scholar] [CrossRef]
- Colic, M.; Morse, D. Mechanism of the long-term effects of electromagnetic radiation on solutions and suspended colloids. Langmuir 1998, 14, 783. [Google Scholar] [CrossRef]
- Zienicke, E.A.; Krasnov, D. Parametric study of streak breakdown mechanism in Hartmann flow. Phys. Fluids 2005, 17, 114101. [Google Scholar] [CrossRef]
- Bayoumi, S.; Moharram, N.A.; Fayed, M.; El-Maghlany, W.M. Assessing the efficacy of magnetic water treatment: A concise review and experimental investigation. Desalin. Water Treat. 2024, 318, 100369. [Google Scholar] [CrossRef]
- Highashitani, K.; Kage, A.; Katamura, S.; Imai, K.; Hatade, S. Effects of magnetic field on formation of CaCO3 particles. J. Colloid Interface Sci. 1993, 156, 90. [Google Scholar] [CrossRef]
- Baker, J.; Judd, S. Magnetic amelioration of scale formation. Water Res. 1996, 30, 247. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Cass, S. Magnetic water treatment. J. Magn. Magn. Mater. 2000, 209, 71. [Google Scholar] [CrossRef]
- Lv, Z.; Liang, Y.; Jia, M.; Wang, J.; Zhang, X. Analysis of Factors Affecting Magnetic Memory Time of CaCO3 Solutions Based on Orthogonal Experiment. Sens. Mater. 2020, 32, 1339. [Google Scholar] [CrossRef]
- Sudmalis, M.; Sheikholeslami, R. Coprecipitation of CaCO3 and CaSO4. Can. J. Chem. Eng. 2000, 78, 21. [Google Scholar] [CrossRef]
- Söhnel, O.; Mullin, J.W. Interpretation of crystallisation induction periods. J. Colloid Interface Sci. 1988, 123, 43. [Google Scholar] [CrossRef]
- Söhnel, O.; Mullin, J.W. Precipitation of calcium carbonate. J. Cryst. Growth 1982, 60, 239. [Google Scholar] [CrossRef]
- Ostwald, W. Studies on formation and transformation of solid materials. J. Phys. Chem. 1897, 22, 289. [Google Scholar]
- Lédion, J.; Mabrouk, S.; Seznec, C.; Julien, H. Modification of the scaling properties of water by microwave heating. Eur. J. Water Qual. 1999, 30, 13. [Google Scholar] [CrossRef]
- Gal, J.Y.; Fovet, Y.; Gache, N. Mechanisms of scale formation and carbon dioxide partial pressure influence. Part I: Elaboration of an experimental method and a scaling model. Water Res. 2002, 36, 755. [Google Scholar] [CrossRef]
- Elfil, H.; Roque, H. Contribution à l’étude des mécanismes de l’entartrage. Etude de la signification physique de la droite limite de precipitation (Contribution to studies of scale formation phenomena. X: Studies of the physical significance of the limit line of precipitation). La Trib. De L’eau 1999, 52, 29. [Google Scholar]
- Tlili, M.M.; Amor, M.B.; Gabrielli, C.; Joiret, S.; Maurin, G.; Rousseau, P. Characterization of CaCO3 hydrates by micro-Raman spectroscopy. J. Raman Spectrosc. 2002, 33, 10. [Google Scholar] [CrossRef]
- Tlili, M.M.; Korchef, A.; Amor, M.B. Effect of scalant and antiscalant concentrations on fouling. J. Chem. Eng. Process. Process Intensif. 2006, 46, 1243. [Google Scholar] [CrossRef]
- Hotysz, L.; Chibowski, M.; Chibowski, E. Time-dependent changes of zeta potential and other parameters of in situ calcium carbonate due to magnetic field treatment. Colloids Surf. A Physicochem. Eng. Asp. 2002, 208, 231. [Google Scholar] [CrossRef]
- Chibowski, E.; Holysz, L.; Szczes, A.; Chibowski, M. Some magnetic field effects on in situ precipitated calcium carbonate. Water Sci. Technol. 2004, 49, 169. [Google Scholar] [CrossRef]
- Chibowski, E.; Hotysz, L.; Szczes, A. Time dependent changes in Zeta potential of freshly precipitated calcium carbonate. Colloids Surf. A Physicochem. Eng. Asp. 2003, 222, 41. [Google Scholar] [CrossRef]
- Chibowski, E.; Hotysz, L.; Szczes, A.; Chibowski, M. Precipitation of calcium carbonate from magnetically treated sodium carbonate solution. Colloids Surf. A Physicochem. Eng. Asp. 2003, 225, 63. [Google Scholar] [CrossRef]
- Knez, S.; Pohar, C. The magnetic field influence on the polymorph composition of CaCO3 precipitation from carbonized aqueous solutions. J. Colloid Interface Sci. 2005, 281, 377. [Google Scholar] [CrossRef]
- Barrett, R.A.; Parsons, S.A. The influence of magnetic fields on calcium carbonate precipitation. Water Res. 1998, 32, 609. [Google Scholar] [CrossRef]
- Du, X.; Jiang, W.; Wang, Y.; Shu, F.; Wang, H.; Vazquez, D.; Yuan, K.; Anovitz, L.M.; Ishai, P.B.; Xu, P. Numerical modeling of electromagnetic field spatiotemporal evolution to evaluate the effects on calcium carbonate crystallization. Desalination 2024, 592, 118128. [Google Scholar] [CrossRef]
- Highashitani, K.; Iseri, H.; Okuhara, K.; Kage, A.; Hatade, S. Magnetic effects on Zeta Potential and Diffusivity of nonmagnetic colloidal particles. J. Colloid Interface Sci. 1995, 172, 383. [Google Scholar] [CrossRef]
- Madsen, H.E.L. Crystallization of calcium carbonate in magnetic field ordinary and heavy water. J. Cryst. Growth 2004, 267, 251. [Google Scholar] [CrossRef]
- Madsen, H.E.L. Influence of magnetic field on the precipitation of some inorganic salts. J. Cryst. Growth 1995, 152, 94. [Google Scholar] [CrossRef]
- Parsons, S.A.; Judd, S.J.; Stephenson, T.; Udol, S.; Wang, B.L. Magnetically augmented water treatment. Process Saf. Environ. Prot. 1997, 75, 98. [Google Scholar] [CrossRef]
- Parsons, S.A.; Wang, B.L.; Judd, S.J.; Stephenson, T. Magnetic treatment of calcium carbonate scale-effect of pH control. Water Res. 1997, 31, 339. [Google Scholar] [CrossRef]
- Tai, C.Y.; Chang, M.C.; Shieh, R.J.; Chen, T.G. Magnetic effects on crystal growth rate of calcite in a constant-composition environment. J. Cryst. Growth 2008, 310, 3690. [Google Scholar] [CrossRef]
- Tai, C.Y.; Wu, C.K.; Chang, M.C. Effects of magnetic field on the crystallization of CaCO3 using permanent magnets. Chem. Eng. Sci. 2008, 63, 5606. [Google Scholar] [CrossRef]
- Kobe, S.; Drazic, G.; Cefalas, A.C.; Sarantopoulou, E.; Strazisar, J. Nucleation and crystallization of CaCO3 in applied magnetic fields. Cryst. Eng. 2002, 5, 243. [Google Scholar] [CrossRef]
- Cefalas, A.C.; Kobe, S.; Drazic, G.; Sarantopoulou, E.; Kollia, Z.; Strazisar, J.; Meden, A. Nanocrystallization of CaCO3 at solid/liquid interfaces in magnetic field: A quantum approach. Appl. Surf. Sci. 2008, 254, 6715. [Google Scholar] [CrossRef]
- Beruto, D.; Giordani, M. Calcite and aragonite formation from aqueous calcium hydrogencarbonate solutions: Effect of induced electromagnetic field on the activity of CaCO3 nuclei precursors. J. Chem. Soc. Faraday Trans. 1993, 89, 2457. [Google Scholar] [CrossRef]
- Saban, K.V.; Jini, T.; Varghese, G. Impact of magnetic field on the nucleation and morphology of calcium carbonate crystals. Cryst. Res. Technol. 2005, 40, 748. [Google Scholar] [CrossRef]
- Mascolo, M.C. Effect of magnetic field on calcium carbonate precipitated in natural waters with prevalent temporary hardness. J. Water Process Eng. 2021, 41, 102087. [Google Scholar] [CrossRef]
- Amer, L.; Ouhenia, S.; Chateigner, D.; Gascoin, S.; Belabbas, I. The effect of a magnetic field on the precipitation of calcium carbonate. Appl. Phys. A 2021, 127, 716. [Google Scholar] [CrossRef]
- Hotysz, L.; Chibowski, E.; Szczes, A. Influence of impurity and magnetic field on the properties of freshly precipitated calcium carbonate. Water Res. 2003, 37, 3351. [Google Scholar] [CrossRef]
- Hotysz, L.; Szczes, A.; Chibowski, E. Effect of a static magnetic field on water and electrolyte solutions. J. Colloid Interface Sci. 2007, 316, 996. [Google Scholar] [CrossRef]
- Herzog, R.E.; Shi, Q.; Patil, J.N.; Katz, J.L. Magnetic Water Treatment: The Effect of Iron on Calcium Carbonate Nucleation and Growth. Langmuir 1989, 5, 861. [Google Scholar] [CrossRef]
- Szkatula, A.; Balandaa, M.; Kopec, M. Magnetic treatment of industrial water. Silica activation. Eur. Phys. J. Appl. Phys. 2002, 18, 41. [Google Scholar] [CrossRef]
- Hartmann, J.; Lazarus, F. Hg-dynamics II: Experimental investigations on the flow of mercury in a homogeneous magnetic field. Math. Fys. Meddelelser 1937, 15, 7393662. [Google Scholar]
- Hartmann, J. Hg-dynamics I: Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Math. Fys. Meddelelser 1937, 15, 19940447. [Google Scholar]
- Busch, K.W.; Gopalakrishnan, S.; Busch, M.A.; Tombacz, E. Magnetohydrodynamic aggregation of cholesterol and polystyrene latex suspensions. J. Colloid Interface Sci. 1996, 183, 528. [Google Scholar] [CrossRef] [PubMed]
- Sohaili, J.; Shi, H.S.; Baloo, L.; Zardari, N.H.; Ahmad, N.; Muniyandi, S.K. Removal of scale deposition on pipe walls by using magnetic field treatment and the effects of magnetic strength. J. Clean. Prod. 2016, 139, 1393. [Google Scholar] [CrossRef]
- Daltin, A.-L.; Chopart, J.-P. Influence of a Constant Perpendicular High Magnetic Field on the Electrodeposition of Calcium Phosphate Coating. Magnetochemistry 2022, 8, 62. [Google Scholar] [CrossRef]
- Tacken, R.A.; Janssen, L.J.J. Applications of magnetoelectrolysis. J. Appl. Electrochem. 1995, 25, 1–5. [Google Scholar] [CrossRef]
- Lipus, L.C.; Krope, J.; Crepinsek, L. Dispersion Destabilization in Magnetic Water Treatment. J. Colloid Interface Sci. 2001, 236, 60. [Google Scholar] [CrossRef] [PubMed]
- Higashitani, K.; Oshitani, J. Magnetic effects on thickness of adsorbed layer in aqueous solutions evaluated directly by atomic force microscope. J. Colloid Interface Sci. 1998, 204, 363. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Hao, Z.; Wang, X.; Qiao, J.; Li, X. Study on effect of magnetization on wetting characteristics of water with different ions to coal dust. Fuel 2024, 367, 131441. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y. Anti-fouling effect of axial alternating electromagnetic field on calcium carbonate fouling in U-shaped circulating cooling water heat exchange tube. Int. J. Heat Mass Transf. 2017, 115, 774. [Google Scholar] [CrossRef]
- Latifa, S.B.; Cheap-Charpentier, H.; Perrot, H.; Amor, Y.B. Effects of Magnetic Field on Homogeneous and Heterogeneous Precipitation of Calcium Carbonate. ChemElectroChem 2023, 10, e202300105. [Google Scholar] [CrossRef]
- Naderi, M.; Past, V.; Mahvi, A.H. Magnetic treatment as a suppressive method for CaCO3 scale deposition in hard waters in the presence of air bubbles. Desalin. Water Treat. 2024, 318, 100249. [Google Scholar] [CrossRef]
- Alimi, F. Effect of Magnetic Treatment on Seawater Determined by Quartz Crystal Microbalance: Mechanisms of Crystal Deposition. Eng. Technol. Appl. Sci. Res. 2024, 14, 14894–14898. [Google Scholar] [CrossRef]
- Liu, B.; Guo, X.; Li, Q.; Jia, W.; Sun, H. Effect of Sweep Frequency Electromagnetic Field on CaCO3 Scale Formation in Industrial Circulating Water. Pol. J. Environ. Stud. 2023, 32, 145–153. [Google Scholar] [CrossRef] [PubMed]
References | Water Hardness | MF Intensity (T) | Flow Rate | Time of Treatment | Important Results |
---|---|---|---|---|---|
Boluda-Botella et al. [1] | 500 mg/L | 0.012 T | 800 L/h | - | Magnetic water treatment limits the recristallization of aragonite to calcite and decreases the formation of calcium carbonate on the wall of pipes. |
Wang et al. [13] | Tap water 423 mg/L | 100–400 mT | 0.8 m/s | 5 min | Increase in evaporation amount, decrease in specific heat and boiling point after magnetization; the changes depend on the magnetization effect. |
F. Alimi et al. [22,51,52,53,54] | Synthetic water 30–50 °F | 0.16 T | 0.54, 0.74 and 0.94 L·min−1 | 5, 15 and 30 min |
|
Jiang et al. [48] | 900 mg/L | 0.5 T | 0.17 m/s | 54 h |
|
Rouina et al. [50] | 5.5 mmol/L | 25 A and 50 Hz | 4.3 m·min−1 | 420 min |
|
Lv et al. [76] | Synthetic water 2–8 mmol/L | 100–400 Gauss | 0.2 m/s | 12–48 h | Hydrogen bonds in aqueous solutions are distorted and even broken, and chunks of aggregated water molecules are split into smaller water molecules or monomers, resulting in increased activity of water molecules and increased salt solubility. |
Bayoumi et al. [71] | Tap water 260 ppm | Coil turn to generate MF | 1–6 mL/s | Single passage (less than second) |
|
Knez et al. [90] | 100, 120°F | 0.71 and 1.12 T | 0.1 and 3 L·min−1 | 5.2–8.4 min |
|
Wang and liang [119] | 1000 mg/L | 10–25 mT | 0.4 m/s | The experiment was ended when fouling resistance became stable |
|
Latifa et al. [120] | 25°F | 0.70 T | Static for 18 h | 15 min, 30 min and 2 h |
|
Naderi et al. [121] | 100–1000 mg/L | 0.2 T and 0.5 T | 50 L/h | 10, 20 and 30 min | Increase in turbidity due to the occurrence of nucleation and crystallization in the homogenous phase. |
F. Alimi [122] | Synthetic Seawater | 0.16 T | 0.94 L·min−1 | 30 min | Magnetic treatment enhanced the precipitation of CaCO3 in seawater |
Liu et al. [123] | 1000 ppm of CaCO3 | 65~70 kHz, 70~75 kHz, 75~80 kHz, and 80~85 kHz | 0.6 m·s−1 | 4 h | The frequency of the applied electromagnetic fields stimulate a homogeneous crystallization of calcium carbonate in the solution. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimi, F. Influence of Magnetic Field on Calcium Carbonate Precipitation: A Critical Review. Magnetochemistry 2024, 10, 83. https://doi.org/10.3390/magnetochemistry10110083
Alimi F. Influence of Magnetic Field on Calcium Carbonate Precipitation: A Critical Review. Magnetochemistry. 2024; 10(11):83. https://doi.org/10.3390/magnetochemistry10110083
Chicago/Turabian StyleAlimi, Fathi. 2024. "Influence of Magnetic Field on Calcium Carbonate Precipitation: A Critical Review" Magnetochemistry 10, no. 11: 83. https://doi.org/10.3390/magnetochemistry10110083
APA StyleAlimi, F. (2024). Influence of Magnetic Field on Calcium Carbonate Precipitation: A Critical Review. Magnetochemistry, 10(11), 83. https://doi.org/10.3390/magnetochemistry10110083