A Bifurcated Reconnecting Current Sheet in the Turbulent Magnetosheath
Abstract
:1. Introduction
2. Database
3. Observations
3.1. Event Overview
3.2. Evidence for Reconnection in a Bifurcated Magnetosheath Current Sheet
3.3. Nonideal Ion and Electron Behaviors
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Q.M.; Wang, R.S.; Xie, J.L.; Huang, C.; Lu, S.; Wang, S. Electron dynamics in collisionless magnetic reconnection. Chin. Sci. Bull. 2011, 56, 1174–1181. [Google Scholar] [CrossRef]
- Yamada, M.; Kulsrud, R.; Ji, H.T. Magnetic reconnection. Rev. Mod. Phys. 2010, 82, 603–664. [Google Scholar] [CrossRef]
- Wang, R.S.; Lu, S.; Wang, S.M.; Li, X.M.; Lu, Q.M. Recent progress on magnetic reconnection by in situ measurements. Rev. Mod. Plasma Phys. 2023, 7, 27. [Google Scholar] [CrossRef]
- Burch, J.L.; Torbert, R.B.; Phan, T.D.; Chen, L.J.; Moore, T.E.; Ergun, R.E.; Eastwood, J.P.; Gershman, D.J.; Cassak, P.A.; Argall, M.R.; et al. Electron-scale measurements of magnetic reconnection in space. Science 2016, 352, aaf2939. [Google Scholar] [CrossRef]
- Chen, L.J.; Hesse, M.; Wang, S.; Gershman, D.; Ergun, R.E.; Burch, J.; Bessho, N.; Torbert, R.B.; Giles, B.; Webster, J.; et al. Electron diffusion region during magnetopause reconnection with an intermediate guide field: Magnetospheric multiscale observations. J. Geophys. Res.-Space 2017, 122, 5235–5246. [Google Scholar] [CrossRef]
- Fu, H.S.; Peng, F.Z.; Liu, C.M.; Burch, J.L.; Gershman, D.G.; Le Contel, O. Evidence of Electron Acceleration at a Reconnecting Magnetopause. Geophys. Res. Lett. 2019, 46, 5645–5652. [Google Scholar] [CrossRef]
- Guo, J.; Wang, B.Y.; Lu, S.; Lu, Q.M.; Lin, Y.; Wang, X.Y.; Wang, R.S.; Zhang, Q.H.; Xing, Z.Y.; Nishimura, Y.; et al. Azimuthal Motion of Poleward Moving Auroral Forms. Geophys. Res. Lett. 2022, 49, e2022GL099753. [Google Scholar] [CrossRef]
- Wang, R.S.; Nakamura, R.; Lu, Q.M.; Baumjohann, W.; Ergun, R.E.; Burch, J.L.; Volwerk, M.; Varsani, A.; Nakamura, T.; Gonzalez, W.; et al. Electron-Scale Quadrants of the Hall Magnetic Field Observed by the Magnetospheric Multiscale spacecraft during Asymmetric Reconnection. Phys. Rev. Lett. 2017, 118, 175101. [Google Scholar] [CrossRef]
- Dai, L.; Zhu, M.H.; Ren, Y.; Gonzalez, W.; Wang, C.; Sibeck, D.; Samsonov, A.; Escoubet, P.; Tang, B.B.; Zhang, J.J.; et al. Global-scale magnetosphere convection driven by dayside magnetic reconnection. Nat. Commun. 2024, 15, 639. [Google Scholar] [CrossRef]
- Dungey, J.W. Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 1961, 6, 47. [Google Scholar] [CrossRef]
- Gosling, J.T.; Thomsen, M.F.; Bame, S.J.; Elphic, R.C.; Russell, C.T. Observations of reconnection of interplanetary and lobe magnetic field lines at the high-latitude magnetopause. J. Geophys. Res.-Space 1991, 96, 14097–14106. [Google Scholar] [CrossRef]
- Guo, J.; Lu, S.; Lu, Q.M.; Lin, Y.; Wang, X.Y.; Zhang, Q.H.; Xing, Z.Y.; Huang, K.; Wang, R.S.; Wang, S. Three-Dimensional Global Hybrid Simulations of High Latitude Magnetopause Reconnection and Flux Ropes During the Northward IMF. Geophys. Res. Lett. 2021, 48, e2021GL095003. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, R.S.; Lu, Q.M.; Hwang, Y.O.O.; Zong, Q.G.; Russell, C.T.; Wang, S. Observation of Nongyrotropic Electron Distribution Across the Electron Diffusion Region in the Magnetotail Reconnection. Geophys. Res. Lett. 2019, 46, 14263–14273. [Google Scholar] [CrossRef]
- Øieroset, M.; Phan, T.D.; Fujimoto, M.; Lin, R.P.; Lepping, R.P. In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature 2001, 412, 414–417. [Google Scholar] [CrossRef]
- Torbert, R.B.; Burch, J.L.; Phan, T.D.; Hesse, M.; Argall, M.R.; Shuster, J.; Ergun, R.E.; Alm, L.; Nakamura, R.; Genestreti, K.J.; et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 2018, 362, 1391. [Google Scholar] [CrossRef]
- Zhou, M.; Deng, X.H.; Zhong, Z.H.; Pang, Y.; Tang, R.X.; El-Alaoui, M.; Walker, R.J.; Russell, C.T.; Lapenta, G.; Strangeway, R.J.; et al. Observations of an Electron Diffusion Region in Symmetric Reconnection with Weak Guide Field. Astrophys. J. 2019, 870, 34. [Google Scholar] [CrossRef]
- Hubbert, M.; Russell, C.T.; Qi, Y.; Lu, S.; Burch, J.L.; Giles, B.L.; Moore, T.E. Electron-Only Reconnection as a Transition Phase From Quiet Magnetotail Current Sheets to Traditional Magnetotail Reconnection. J. Geophys. Res.-Space 2022, 127, e2021JA029584. [Google Scholar] [CrossRef]
- Lu, S.; Wang, R.S.; Lu, Q.M.; Angelopoulos, V.; Nakamura, R.; Artemyev, A.V.; Pritchett, P.L.; Liu, T.Z.; Zhang, X.J.; Baumjohann, W.; et al. Magnetotail reconnection onset caused by electron kinetics with a strong external driver. Nat. Commun. 2020, 11, 5049. [Google Scholar] [CrossRef]
- Wang, R.S.; Lu, Q.M.; Lu, S.; Russell, C.T.; Burch, J.L.; Gershman, D.J.; Gonzalez, W.; Wang, S. Physical Implication of Two Types of Reconnection Electron Diffusion Regions With and Without Ion-Coupling in the Magnetotail Current Sheet. Geophys. Res. Lett. 2020, 47, e2020GL088761. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, R.S.; Lu, Q.M.; Russell, C.T.; Lu, S.; Cohen, I.J.; Ergun, R.E.; Wang, S. Three-dimensional network of filamentary currents and super-thermal electrons during magnetotail magnetic reconnection. Nat. Commun. 2022, 13, 3241. [Google Scholar] [CrossRef]
- Lu, S.; Lu, Q.M.; Wang, R.S.; Li, X.M.; Gao, X.L.; Huang, K.; Sun, H.M.; Yang, Y.; Artemyev, A.V.; An, X.; et al. Kinetic Scale Magnetic Reconnection with a Turbulent Forcing: Particle-in-cell Simulations. Astrophys. J. 2023, 943, 100. [Google Scholar] [CrossRef]
- Wang, R.S.; Lu, Q.M.; Nakamura, R.; Huang, C.; Du, A.M.; Guo, F.; Teh, W.; Wu, M.Y.; Lu, S.; Wang, S. Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat. Phys. 2016, 12, 263–267. [Google Scholar] [CrossRef]
- Phan, T.D.; Eastwood, J.P.; Shay, M.A.; Drake, J.F.; Sonnerup, B.U.Ö.; Fujimoto, M.; Cassak, P.A.; Øieroset, M.; Burch, J.L.; Torbert, R.B.; et al. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature 2018, 557, 202. [Google Scholar] [CrossRef] [PubMed]
- Retinò, A.; Sundkvist, D.; Vaivads, A.; Mozer, F.; Andre, M.; Owen, C.J. In-situ evidence of magnetic reconnection in turbulent plasma. Nat. Phys. 2007, 3, 235–238. [Google Scholar] [CrossRef]
- Vörös, Z.; Yordanova, E.; Varsani, A.; Genestreti, K.J.; Khotyaintsev, Y.V.; Li, W.; Graham, D.B.; Norgren, C.; Nakamura, R.; Narita, Y.; et al. MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath. J. Geophys. Res-Space 2017, 122, 11442–11467. [Google Scholar] [CrossRef]
- Wang, S.M.; Wang, R.S.; Lu, Q.M.; Russell, C.T.; Ergun, R.E.; Wang, S. Large-Scale Parallel Electric Field Colocated in an Extended Electron Diffusion Region During the Magnetosheath Magnetic Reconnection. Geophys. Res. Lett. 2021, 48, e2021GL094879. [Google Scholar] [CrossRef]
- Yordanova, E.; Vörös, Z.; Varsani, A.; Graham, D.B.; Norgren, C.; Khotyaintsev, Y.V.; Vaivads, A.; Eriksson, E.; Nakamura, R.; Lindqvist, P.A.; et al. Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath. Geophys. Res. Lett. 2016, 43, 5969–5978. [Google Scholar] [CrossRef]
- Chen, X.H.; Fu, H.S.; Liu, C.M.; Cao, D.; Wang, Z.; Dunlop, M.W.; Chen, Z.Z.; Peng, F.Z. Magnetic Nulls in the Reconnection Driven by Turbulence. Astrophys. J. 2018, 852, 17. [Google Scholar] [CrossRef]
- He, J.S.; Marsch, E.; Tu, C.Y.; Zong, Q.G.; Yao, S.; Tian, H. Two-dimensional correlation functions for density and magnetic field fluctuations in magnetosheath turbulence measured by the Cluster spacecraft. J. Geophys. Res.-Space 2011, 116, A06207. [Google Scholar] [CrossRef]
- Huang, S.Y.; Sahraoui, F.; Deng, X.H.; He, J.S.; Yuan, Z.G.; Zhou, M.; Pang, Y.; Fu, H.S. Kinetic turbulence in the terrestrial magnetosheath: Cluster observations. Astrophys. J. Lett. 2014, 789, L28. [Google Scholar] [CrossRef]
- Karimabadi, H.; Roytershteyn, V.; Vu, H.X.; Omelchenko, Y.A.; Scudder, J.; Daughton, W.; Dimmock, A.; Nykyri, K.; Wan, M.; Sibeck, D.; et al. The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys. Plasmas 2014, 21, 062308. [Google Scholar] [CrossRef]
- Guo, Z.F.; Lin, Y.; Wang, X.Y. Global Hybrid Simulations of Interaction Between Interplanetary Rotational Discontinuity and Bow Shock/Magnetosphere: Can Ion-Scale Magnetic Reconnection be Driven by Rotational Discontinuity Downstream of Quasi-Parallel Shock? J. Geophys. Res-Space 2021, 126, e2020JA028853. [Google Scholar] [CrossRef]
- Phan, T.D.; Paschmann, G.; Twitty, C.; Mozer, F.S.; Gosling, J.T.; Eastwood, J.P.; Øieroset, M.; Rème, H.; Lucek, E.A. Evidence for magnetic reconnection initiated in the magnetosheath. Geophys. Res. Lett. 2007, 34, L14104. [Google Scholar] [CrossRef]
- Lu, Q.M.; Guo, A.; Yang, Z.W.; Wang, R.S.; Lu, S.; Chen, R.; Gao, X.L. Upstream Plasma Waves and Downstream Magnetic Reconnection at a Reforming Quasi-parallel Shock. Astrophys. J. 2024, 964, 33. [Google Scholar] [CrossRef]
- Lu, Q.M.; Wang, H.Y.; Wang, X.Y.; Lu, S.; Wang, R.S.; Gao, X.L.; Wang, S. Turbulence-Driven Magnetic Reconnection in the Magnetosheath Downstream of a Quasi-Parallel Shock: A Three-Dimensional Global Hybrid Simulation. Geophys. Res. Lett. 2020, 47, e2019GL085661. [Google Scholar] [CrossRef]
- Eriksson, E.; Vaivads, A.; Graham, D.B.; Khotyaintsev, Y.V.; Yordanova, E.; Hietala, H.; Andre, M.; Avanov, L.A.; Dorelli, J.C.; Gershman, D.J.; et al. Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration. J. Geophys. Res.-Space 2016, 121, 9608–9618. [Google Scholar] [CrossRef]
- Wang, S.M.; Wang, R.S.; Lu, Q.M.; Burch, J.L.; Cohen, I.J.; Jaynes, A.N.; Ergun, R.E. Electron Acceleration by Interaction of Two Filamentary Currents Within a Magnetopause Magnetic Flux Rope. Geophys. Res. Lett. 2023, 50, e2023GL103203. [Google Scholar] [CrossRef]
- Wang, S.M.; Lu, S.; Lu, Q.M.; Wang, R.S.; Ren, J.Y.; Gao, X.L.; Guo, J. Origin of reconnecting current sheets in shocked turbulent plasma. Sci. Adv. 2024, 10, 33. [Google Scholar] [CrossRef]
- Chasapis, A.; Matthaeus, W.H.; Parashar, T.N.; LeContel, O.; Retinò, A.; Breuillard, H.; Khotyaintsev, Y.; Vaivads, A.; Lavraud, B.; Eriksson, E.; et al. Electron Heating at Kinetic Scales in Magnetosheath Turbulence. Astrophys. J. 2017, 836, 247. [Google Scholar] [CrossRef]
- Sundkvist, D.; Retinò, A.; Vaivads, A.; Bale, S.D. Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys. Rev. Lett. 2007, 99, 025004. [Google Scholar] [CrossRef]
- Wang, S.M.; Wang, R.S.; Lu, Q.M.; Burch, J.L.; Wang, S. Energy Dissipation via Magnetic Reconnection Within the Coherent Structures of the Magnetosheath Turbulence. J. Geophys. Res.-Space 2021, 126, e2020JA028860. [Google Scholar] [CrossRef]
- Stawarz, J.E.; Eastwood, J.P.; Phan, T.D.; Gingell, I.L.; Shay, M.A.; Burch, J.L.; Ergun, R.E.; Giles, B.L.; Gershman, D.J.; Le Contel, O.; et al. Properties of the Turbulence Associated with Electron-only Magnetic Reconnection in Earth’s Magnetosheath. Astrophys. J. Lett. 2019, 877, L37. [Google Scholar] [CrossRef]
- Huang, S.Y.; Xiong, Q.Y.; Song, L.F.; Nan, J.; Yuan, Z.G.; Jiang, K.; Deng, X.H.; Yu, L. Electron-only Reconnection in an Ion-scale Current Sheet at the Magnetopause. Astrophys. J. 2021, 922, 54. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, R.S.; Lu, Q.M. Division of Magnetic Flux Rope via Magnetic Reconnection Observed in the Magnetotail. Geophys. Res. Lett. 2023, 50, e2022GL101084. [Google Scholar] [CrossRef]
- Man, H.Y.; Zhou, M.; Yi, Y.Y.; Zhong, Z.H.; Tian, A.M.; Deng, X.H.; Khotyaintsev, Y.; Russell, C.T.; Giles, B.L. Observations of Electron-Only Magnetic Reconnection Associated With Macroscopic Magnetic Flux Ropes. Geophys. Res. Lett. 2020, 47, e2020GL089659. [Google Scholar] [CrossRef]
- Wang, R.S.; Lu, Q.M.; Nakamura, R.; Baumjohann, W.; Huang, C.; Russell, C.T.; Burch, J.L.; Pollock, C.J.; Gershman, D.; Ergun, R.E.; et al. An Electron-Scale Current Sheet Without Bursty Reconnection Signatures Observed in the Near-Earth Tail. Geophys. Res. Lett. 2018, 45, 4542–4549. [Google Scholar] [CrossRef]
- Wang, S.M.; Wang, R.S.; Lu, Q.M.; Fu, H.S.; Wang, S. Direct evidence of secondary reconnection inside filamentary currents of magnetic flux ropes during magnetic reconnection. Nat. Commun. 2020, 11, 3964. [Google Scholar] [CrossRef]
- Guan, Y.D.; Lu, Q.M.; Lu, S.; Huang, K.; Wang, R.S. Reconnection Rate and Transition from Ion-coupled to Electron-only Reconnection. Astrophys. J. 2023, 958, 172. [Google Scholar] [CrossRef]
- Pyakurel, P.S.; Shay, M.A.; Phan, T.D.; Matthaeus, W.H.; Drake, J.F.; TenBarge, J.M.; Haggerty, C.C.; Klein, K.G.; Cassak, P.A.; Parashar, T.N.; et al. Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence. Phys. Plasmas 2019, 26, 082307. [Google Scholar] [CrossRef]
- Liu, D.K.; Lu, S.; Lu, Q.M.; Ding, W.X.; Wang, S. Spontaneous Onset of Collisionless Magnetic Reconnection on an Electron Scale. Astrophys. J. Lett. 2020, 890, L15. [Google Scholar] [CrossRef]
- Lu, S.; Lu, Q.M.; Wang, R.S.; Pritchett, P.L.; Hubbert, M.; Qi, Y.; Huang, K.; Li, X.M.; Russell, C.T. Electron-Only Reconnection as a Transition From Quiet Current Sheet to Standard Reconnection in Earth’s Magnetotail: Particle-In-Cell Simulation and Application to MMS Data. Geophys. Res. Lett. 2022, 49, e2022GL098547. [Google Scholar] [CrossRef]
- Vega, C.; Roytershteyn, V.; Delzanno, G.L.; Boldyrev, S. Electron-only Reconnection in Kinetic-Alfven Turbulence. Astrophys. J. Lett. 2020, 893, L10. [Google Scholar] [CrossRef]
- Burch, J.L.; Moore, T.E.; Torbert, R.B.; Giles, B.L. Magnetospheric Multiscale Overview and Science Objectives. Space Sci. Rev. 2016, 199, 5–21. [Google Scholar] [CrossRef]
- Plaschke, F.; Hietala, H.; Archer, M.; Blanco-Cano, X.; Kajdic, P.; Karlsson, T.; Lee, S.H.; Omidi, N.; Palmroth, M.; Roytershteyn, V.; et al. Jets Downstream of Collisionless Shocks. Space Sci. Rev. 2018, 214, 81. [Google Scholar] [CrossRef]
- Ren, J.Y.; Lu, Q.M.; Guo, J.; Gao, X.L.; Lu, S.; Wang, S.M.; Wang, R.S. Two-Dimensional Hybrid Simulations of High-Speed Jets Downstream of Quasi-Parallel Shocks. J. Geophys. Res.-Space 2023, 128, e2023JA031699. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Shen, C.; Pu, Z.Y.; Dunlop, M.W.; Zong, Q.G.; Zhang, H.; Xiao, C.J.; Liu, Z.X.; Balogh, A. Dimensional analysis of observed structures using multipoint magnetic field measurements: Application to Cluster. Geophys. Res. Lett. 2005, 32, L12105. [Google Scholar] [CrossRef]
- Sonnerup, B.U.; Cahill, L.J. Magnetopause Structure and Attitude from Explorer 12 Observations. J. Geophys. Res. 1967, 72, 171–183. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Shen, C.; Dunlop, M.W.; Pu, Z.Y.; Zong, Q.G.; Liu, Z.X.; Lucek, E.; Balogh, A. Motion of observed structures calculated from multi-point magnetic field measurements: Application to Cluster. Geophys. Res. Lett. 2006, 33, L08109. [Google Scholar] [CrossRef]
- Cassak, P.A.; Shay, M.A. Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Phys. Plasmas 2007, 14, 102114. [Google Scholar] [CrossRef]
- Huang, C.; Lu, Q.M.; Wu, M.Y.; Lu, S.; Wang, S. Out-of-plane electron currents in magnetic islands formed during collisionless magnetic reconnection. J. Geophys. Res.-Space 2013, 118, 991–996. [Google Scholar] [CrossRef]
- Jiang, K.; Huang, S.Y.; Yuan, Z.G.; Deng, X.H.; Wei, Y.Y.; Xiong, Q.Y.; Xu, S.B.; Zhang, J.; Zhang, Z.H.; Lin, R.T.; et al. Sub-Structures of the Separatrix Region During Magnetic Reconnection. Geophys. Res. Lett. 2022, 49, e2022GL097909. [Google Scholar] [CrossRef]
- Lu, Q.M.; Huang, C.; Xie, J.L.; Wang, R.S.; Wu, M.Y.; Vaivads, A.; Wang, S. Features of separatrix regions in magnetic reconnection: Comparison of 2-D particle-in-cell simulations and Cluster observations. J. Geophys. Res.-Space 2010, 115, A11208. [Google Scholar] [CrossRef]
- Yu, X.C.; Wang, R.S.; Lu, Q.M.; Russell, C.T.; Wang, S. Nonideal Electric Field Observed in the Separatrix Region of a Magnetotail Reconnection Event. Geophys. Res. Lett. 2019, 46, 10744–10753. [Google Scholar] [CrossRef]
- Wang, R.S.; Lu, Q.M.; Huang, C.; Wang, S. Multispacecraft observation of electron pitch angle distributions in magnetotail reconnection. J. Geophys. Res-Space 2010, 115, A01209. [Google Scholar] [CrossRef]
- Eastwood, J.P.; Shay, M.A.; Phan, T.D.; Oieroset, M. Asymmetry of the Ion Diffusion Region Hall Electric and Magnetic Fields during Guide Field Reconnection: Observations and Comparison with Simulations. Phys. Rev. Lett. 2010, 104, 205001. [Google Scholar] [CrossRef]
- Peng, F.Z.; Fu, H.S.; Cao, J.B.; Graham, D.B.; Chen, Z.Z.; Cao, D.; Xu, Y.; Huang, S.Y.; Wang, T.Y.; Khotyaintsev, Y.V.; et al. Quadrupolar pattern of the asymmetric guide-field reconnection. J. Geophys. Res.-Space 2017, 122, 6349–6356. [Google Scholar] [CrossRef]
- Sang, L.L.; Lu, Q.M.; Wang, R.S.; Huang, K.; Wang, S. A Parametric Study of the Structure of Hall Magnetic Field Based on Kinetic Simulations. II. Asymmetric Magnetic Reconnection with a Guide Field. Astrophys. J. 2019, 882, 126. [Google Scholar] [CrossRef]
- Wang, S.M.; Wang, R.S.; Lu, Q.M.; Lu, S.; Huang, K. Direct Observation of Magnetic Reconnection Resulting From Interaction Between Magnetic Flux Rope and Magnetic Hole in the Earth’s Magnetosheath. Geophys. Res. Lett. 2024, 51, e2023GL107968. [Google Scholar] [CrossRef]
- Zhong, Z.H.; Zhou, M.; Tang, R.X.; Deng, X.H.; Khotyaintsev, Y.V.; Giles, B.L.; Paterson, W.R.; Pang, Y.; Man, H.Y.; Russell, C.T.; et al. Extension of the Electron Diffusion Region in a Guide Field Magnetic Reconnection at Magnetopause. Astrophys. J. Lett. 2020, 892, L5. [Google Scholar] [CrossRef]
- Øieroset, M.; Phan, T.D.; Haggerty, C.; Shay, M.A.; Eastwood, J.P.; Gershman, D.J.; Drake, J.F.; Fujimoto, M.; Ergun, R.E.; Mozer, F.S.; et al. MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause. Geophys. Res. Lett. 2016, 43, 5536–5544. [Google Scholar] [CrossRef]
- Wang, R.S.; Lu, Q.M.; Du, A.M.; Wang, S. In Situ Observations of a Secondary Magnetic Island in an Ion Diffusion Region and Associated Energetic Electrons. Phys. Rev. Lett. 2010, 104, 175003. [Google Scholar] [CrossRef]
- Wang, R.S.; Lu, Q.M.; Li, X.; Huang, C.; Wang, S. Observations of energetic electrons up to 200 keV associated with a secondary island near the center of an ion diffusion region: A Cluster case study. J. Geophys. Res. Space 2010, 115. [Google Scholar] [CrossRef]
- Drake, J.F.; Swisdak, M.; Che, H.; Shay, M.A. Electron acceleration from contracting magnetic islands during reconnection. Nature 2006, 443, 553–556. [Google Scholar] [CrossRef]
- Fu, X.R.; Lu, Q.M.; Wang, S. The process of electron acceleration during collisionless magnetic reconnection. Phys. Plasmas 2006, 13, 012309. [Google Scholar] [CrossRef]
- Swisdak, M. Quantifying gyrotropy in magnetic reconnection. Geophys. Res. Lett. 2016, 43, 43–49. [Google Scholar] [CrossRef]
- Guo, A.; Lu, Q.M.; Lu, S.; Wang, S.M.; Wang, R.S. Properties of Electron-scale Magnetic Reconnection at a Quasi-perpendicular Shock. Astrophys. J. 2023, 955, 14. [Google Scholar] [CrossRef]
- Karimabadi, H.; Roytershteyn, V.; Wan, M.; Matthaeus, W.H.; Daughton, W.; Wu, P.; Shay, M.; Loring, B.; Borovsky, J.; Leonardis, E.; et al. Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 2013, 20, 012303. [Google Scholar] [CrossRef]
- Wan, M.; Matthaeus, W.H.; Karimabadi, H.; Roytershteyn, V.; Shay, M.; Wu, P.; Daughton, W.; Loring, B.; Chapman, S.C. Intermittent Dissipation at Kinetic Scales in Collisionless Plasma Turbulence. Phys. Rev. Lett. 2012, 109, 195001. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Fu, H.S.; Wang, Z.; Guo, Z.Z.; Xu, Y.; Liu, C.M. First Observation of Magnetic Flux Rope Inside Electron Diffusion Region. Geophys. Res. Lett. 2021, 48, e2020GL089722. [Google Scholar] [CrossRef]
- Daughton, W.; Roytershteyn, V.; Karimabadi, H.; Yin, L.; Albright, B.J.; Bergen, B.; Bowers, K.J. Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 2011, 7, 539–542. [Google Scholar] [CrossRef]
- Zhong, Z.H.; Tang, R.X.; Zhou, M.; Deng, X.H.; Pang, Y.; Paterson, W.R.; Giles, B.L.; Burch, J.L.; Tobert, R.B.; Ergun, R.E.; et al. Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region. Phys. Rev. Lett. 2018, 120, 075101. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, R.; Baumjohann, W.; Runov, A.; Volwerk, M.; Zhang, T.L.; Klecker, B.; Bogdanova, Y.; Roux, A.; Balogh, A.; Rème, H.; et al. Fast flow during current sheet thinning. Geophys. Res. Lett. 2002, 29, 55-1–55-4. [Google Scholar] [CrossRef]
- Runov, A.; Nakamura, R.; Baumjohann, W.; Zhang, T.L.; Volwerk, M.; Eichelberger, H.U.; Balogh, A. Cluster observation of a bifurcated current sheet. Geophys. Res. Lett. 2003, 30, 1036. [Google Scholar] [CrossRef]
- Wang, R.S.; Nakamura, R.; Lu, Q.M.; Du, A.M.; Zhang, T.L.; Baumjohann, W.; Khotyaintsev, Y.V.; Volwerk, M.; André, M.; Fujimoto, M.; et al. Asymmetry in the current sheet and secondary magnetic flux ropes during guide field magnetic reconnection. J. Geophys. Res-Space 2012, 117. [Google Scholar] [CrossRef]
- Hwang, K.J.; Dokgo, K.; Choi, E.; Burch, J.L.; Sibeck, D.G.; Giles, B.L.; Norgren, C.; Nakamura, T.K.M.; Graham, D.B.; Khotyaintsev, Y.; et al. Bifurcated Current Sheet Observed on the Boundary of Kelvin-Helmholtz Vortices. Front. Astron. Space 2021, 8, 782924. [Google Scholar] [CrossRef]
- Gosling, J.T.; Szabo, A. Bifurcated current sheets produced by magnetic reconnection in the solar wind. J. Geophys. Res-Space 2008, 113, A10103. [Google Scholar] [CrossRef]
- Phan, T.D.; Gosling, J.T.; Davis, M.S.; Skoug, R.M.; Øieroset, M.; Lin, R.P.; Lepping, R.P.; McComas, D.J.; Smith, C.W.; Reme, H.; et al. A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 2006, 439, 175–178. [Google Scholar] [CrossRef]
- Asano, Y.; Mukai, T.; Hoshino, M.; Saito, Y.; Hayakawa, H.; Nagai, T. Current sheet structure around the near-Earth neutral line observed by Geotail. J. Geophys. Res.-Space 2004, 109, A02212. [Google Scholar] [CrossRef]
- Mistry, R.; Eastwood, J.P.; Phan, T.D.; Hietala, H. Development of bifurcated current sheets in solar wind reconnection exhausts. Geophys. Res. Lett. 2015, 42, 10513–10520. [Google Scholar] [CrossRef]
- Jiang, L.X.Y.; Lu, S. Externally driven bifurcation of current sheet: A particle-in-cell simulation. Aip Adv. 2021, 11, 015001. [Google Scholar] [CrossRef]
- Sitnov, M.I.; Guzdar, P.N.; Swisdak, M. A model of the bifurcated current sheet. Geophys. Res. Lett. 2003, 30, 1712. [Google Scholar] [CrossRef]
- La Belle-Hamer, A.L.; Otto, A.; Lee, L.C. Magnetic reconnection in the presence of sheared flow and density asymmetry: Applications to the Earth’s magnetopause. J. Geophys. Res. Space Phys. 1995, 100, 11875–11889. [Google Scholar]
- Eriksson, S.; Gosling, J.T.; Phan, T.D.; Blush, L.M.; Simunac, K.D.C.; Krauss-Varban, D.; Szabo, A.; Luhmann, J.G.; Russell, C.T.; Galvin, A.B.; et al. Asymmetric shear flow effects on magnetic field configuration within oppositely directed solar wind reconnection exhausts. J. Geophys. Res.-Space 2009, 114, A07103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, R.; Huang, K.; Guo, J. A Bifurcated Reconnecting Current Sheet in the Turbulent Magnetosheath. Magnetochemistry 2024, 10, 89. https://doi.org/10.3390/magnetochemistry10110089
Wang S, Wang R, Huang K, Guo J. A Bifurcated Reconnecting Current Sheet in the Turbulent Magnetosheath. Magnetochemistry. 2024; 10(11):89. https://doi.org/10.3390/magnetochemistry10110089
Chicago/Turabian StyleWang, Shimou, Rongsheng Wang, Kai Huang, and Jin Guo. 2024. "A Bifurcated Reconnecting Current Sheet in the Turbulent Magnetosheath" Magnetochemistry 10, no. 11: 89. https://doi.org/10.3390/magnetochemistry10110089
APA StyleWang, S., Wang, R., Huang, K., & Guo, J. (2024). A Bifurcated Reconnecting Current Sheet in the Turbulent Magnetosheath. Magnetochemistry, 10(11), 89. https://doi.org/10.3390/magnetochemistry10110089