Recent Insights into Magneto-Structural Properties of Co(II) Dicyanamide Coordination Compounds †
Abstract
:1. Introduction
2. Synthetic Methods of Dicyanamide Co(II) Complexes
- -
- Saturation MethodThe synthesis is carried out by mixing cobalt(II) salts with the appropriate amount of the ligand, and then a dicyanamide solution is added. The resulting solution is kept for evaporation at room temperature and X-ray-quality crystals grow in saturated solutions, usually few days.
- -
- Diffusion MethodThis method is especially dedicated to those compounds that precipitate during the reaction in the form of poorly soluble or non-soluble precipitates. Generally, two approaches can be used. The first technique involves dissolving the reactants in two different solvents. Then, the layers of these two solutions should be dropped on top of each other and separated by a layer of pure solvent. The second one assumes that the compound was obtained using the traditional method. Then, the impurities from the reaction solution have to be filtered off and the obtained filtrate should be placed under a layer of precipitating solvent. This type of crystallization is most often carried out in a narrow vial, i.e., a test tube or an H-tube, and requires some skill because the boundary between the two solutions must be clear and distinct. Crystals most often form at the phase boundary after a few weeks. The following examples of compounds can serve as representatives of these two approaches: [Co(L1)(dca)2] [20], [Co(phen)(dca)2] [21], [Co(bpp)(dca)2]n [22], [Co(4-bpmp)2(dca)2(H2O)2]n [23], {[Co(dca)2(H2O)2]·(hmt)}n [24], or [Co(HFlu)2(dca)2]n [25].
3. Description of Mononuclear and Dinuclear Complexes
4. Structural Diversity in the Family of Coordination Polymers
- (1)
- (2)
- Flexible, easily bent organic ligands—if the ligand contains an additional spacer between the aromatic rings containing donor atoms, then there is a high probability that the dca anion will not participate in the formation of bridges. Such a situation was observed in [Co(bimb)2(dca)2]n [23] and [Co(4-bpmp)2(dca)2(H2O)2]n [49], where butane in bimb and piperazine in 4-bpmp had separation functions, respectively. Also noteworthy is the compound [Co(bte)2(dca)2]n [47], where the CH2=CH2 group acts as an effective spacer, reducing dca to the role of a co-ligand. Interestingly, replacing this group with a disulfide in [Co(bpds)(dca)2]n [49] causes the dca ion to return to its role as a linker. The reason seems to lie in the bond lengths: the distance between carbon atoms in CH2=CH2 in [Co(bte)2(dca)2]n is 1.520(1) Å, which makes it more rigid in comparison to the disulfide group [1.782(5) Å] in [Co(bpds)(dca)2]n.
- (3)
- Of course, utilizing the geometrical properties of organic ligands is an important and powerful tool in the design of coordination compounds. Therefore, the donor-acceptor strength of organic derivatives is a crucial factor in coordination chemistry and should be taken into consideration.
- -
- Role of the accompanying ligand
- -
- Motifs
Compound | Co–Nligand [Å] | Co–NDCA [Å] | Angles [°] | Co···Co | Ref. | |||
---|---|---|---|---|---|---|---|---|
Co–NC(dca) | C–N–C(dca) | |||||||
µ3 + µ1,5 | ||||||||
[Co(pzdo)(dca)2]n | Co1 2.138 2.138 | Co1 µ1,5 2.099 2.099 2.099 2.099 | Co(2) µ1,5 2.089 2.089 2.089 2.089 µ3 2.179 2.179 | µ1,5 149.5 149.5 µ3 160.5 160.5 | 119.9 120.8 | Co1···Co1 7.4313 Co2···Co2 7.4313 Co1···Co2 6.0188 | [52] | |
µ3 + µ1,3,5 | ||||||||
[Co(H2O)(dca)2·phz]n | 2.049 | µ1,5 2.080 2.086 µ1,3,5 2.213 2.121 2.163 | µ1,5 159.4 160.4 µ1,3,5 164.4 163.0 120.9 122.5 | 119.5(2) 116.4(2) | 7.4110 | [51] | ||
Single µ1,5 + double µ1,5 | ||||||||
{[Ph4P]{Co[dca]3} | – | Single 2.155 2.155 Double 2.118 2.118 2.114 2.114 | Double 161.8 159.6 Single 161.8 149.5 | 118.8(2) 126.5(6) | Double 7.4426 Single 8.7948 | [57] | ||
Single µ1,5 | ||||||||
[Co(atz)2(dca)2]n | 2.168 2.168 | 2.097 2.097 2.089 2.089 | 8.0415 | [67] | ||||
[Co(bim)2(dca)2]n | 2.128(3) 2.134(3) | 2.190(3) 2.220(3) 2.209(3) 2.219(3) | 169.5(3) 158.3(3) | 125.1(4) 123.8(4) | 8.927(2) 8.968(2) | [28] | ||
Single µ1,5 + ligand | ||||||||
{[Co(btrm)2(dca)]ClO4}n | Co1 2.140(6) 2.146(6) 2.142(6) 2.150(6) | Co2 2.136 2.157 | Co1 single 2.072(5) 2.082(5) | Co2 single 2.085 2.085 | 160.3(6) 164.4 | 122.6(9) | Co1···Co1 8.894(4) Co2···Co2 8.526 | [68] |
Three types of bridges | ||||||||
[Co(3-bpo)(dca)2]n | 2.175(5) 2.160(5) | 2.091(5) 2.136(5) 2.103(4) 2.114(4) | 154.3(4) 164.1(4) 161.6(4) 156.4(4) | 121.8(5) 119.1(4) | 7.383(3) 7.587(2) | [30] | ||
dca as a co-ligand | ||||||||
{[Co(pypypz)2(dca)](OH)(gly)2}n | 2.182 2.163 | 2.163 2.182 2.175 2.175 | 166.3 171.1 173.6 171.1 | 129.0(5) 129.0(5) | 14.537 | [61] |
5. Magnetic Properties in Terms of Structural Relationships
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
atz | 2-amino-1,3,5-triazine | H3daps | 2,6-bis(1-salicyloylhydrazonoethyl) pyridine |
azpyph | N,N′-di-tert-butyl-2,11 diaza[3,3](2,6)pyridinophane | L1 | N,N’-di-tertbutyl-2,11-diaza[3,3](2,6)pyridinophane |
bim | 1-benzylimidazole | nitppy | 2-(4′-pyridyl)-4,4,5,5–tetramethylimidazoline-1-oxyl-3-oxide |
biq | 2,2′-biquinoline | nic | isonicotinamide |
bimb | 1,4-bis(im idazol-1-yl)-butane | NH2pyz | 2-aminopyrazine |
bipy | 4,4′-bipyridine | MeCN | acetonitrile |
bipim | 2,2-bipyrimidine | mpdo | 2-methyl pyrazine dioxide |
bmim | 1-benzyl-2-methylimidazole | phz | phenazine |
bpp | 1,3-bis(4′-pyridyl)propane | phen | 1,10-phenanthroline |
bpm | bis[(3,5-di methyl)pyrazolyl]methane | pybiu | N-(picolinoyl)-biurate |
bte | 1,2-bis(1,2,4-triazol-1-yl)ethane | pydz | pyridazine |
bpds | 4,4′-bipyridyl disulfide | pzdo | pyrazinedioxide |
bpeado | 1,2-bis(4-pyridyl)ethane-N,N’-dioxide | ||
BeTriMe | benzyltrimethylammonium | ptzda | 2,4-diamino-6-pyridyl-1,3,5-triazine |
bdpb | N,N-bis(3,5-dimethyl-1H-pyrazol-1-yl) methyl-N2-phenylethane-1,2-diamine | pypypz | bis[3,5- dimethyl-4-(49-pyridyl)pyrazol-1-yl]methane |
bpe | 1,2-bis(4-pyridyl)ethane | Phpyk | 2-benzoylpyridine |
bte | 1,2-bis(1,2,4-triazol-1-yl)ethane | pypz | 2,6- bis(pyrazol-1-yl)pyridine |
btrm | 1,2-bis(1,2,4-triazole-1-yl)methane | pzda | 2,4-diamino-6-pyridyl-1,3,5-triazine |
bzim | benzimidazole | tmeda | tetra methylethylenediamine |
DAT | 1,5-diaminotetrazole | tptz | 2,4,6-tris(2-pyridyl)-1,3,5-triazine |
dmdpy | 5,5′-dimethyl-2,2′-dipyridine | tppz | 2,3,5,6-tetrakis(2-pyridyl)pyrazine |
dmpzm | bis(3,5-dimethylpyrazolyl)methane | 3-bpo | 2,5-bis(3-pyridyl)-1,3,4-oxadiazole |
deen | N,N-diethyl-ethylenediamine | 3-pyo | 3-hydroxypyridine |
dbtp | 1,3-di(benzotriazol-1 yl)propane | 4-bpo | 2,5-bis(4-pyridyl)-1,3,4-oxadiazole |
etpybzam | (N,N-diethyl,N’-(pyridin-2-yl)benzylidene)ethane-1,2-diamine | 4-bpmp | bis(4-pyridylmethyl)piperazine |
imph | 4-(imidazol 1-yl)phenol | 4,7-dmphen | 4,7-dimethylphenanthroline |
HOpyz | 2-hydroxypyrazine | 4-bpmp | bis(4-pyridylmethyl)piperazine |
hmt | hexamethylenetetramine | 5,6-(Me)2-bzim | 5,6-dimethylbenzimidazole |
HFlu | fluconazole | 5-Mebzim | 5-methyl benzimidazole |
H2biim | 2,2′-biimidazole |
References
- Serna, M.D.; Legaz, E.; Primo-Millo, E. Improvement of the N fertilizer efficiency with dicyandiamide (dcd) in citrus trees. Fertil. Res. 1996, 43, 137–142. [Google Scholar] [CrossRef]
- Boudesocque, S.; Mohamadou, A.; Dupont, L.; Martinez, A.; Déchamps, I. Use of dicyanamide ionic liquids for extraction of metal ions. RSC Adv. 2016, 6, 107894–107904. [Google Scholar] [CrossRef]
- Halder, G.J.; Kepert, C.J.; Moubaraki, B.; Murray, K.S.; Cashion, J.D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 2002, 298, 1762–1765. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.N.; Huang, Y.L.; Jiang, L.; Lu, T.-B. A luminescent microporous metal–organic framework with highly selective CO2 adsorption and sensing of nitro explosives. Inorg. Chem. 2014, 53, 9457–9459. [Google Scholar] [CrossRef] [PubMed]
- Getman, R.B.; Bae, Y.-S.; Wilmer, C.E.; Snurr, R.Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem. Rev. 2012, 112, 703–723. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Ranganathan, A.; Pedireddi, V.R.; Raju, A.R. A novel hybrid layer compound containing silver sheets and an organic spacer. Chem. Commun. 2000, 1, 39–40. [Google Scholar] [CrossRef]
- Ruben, M.; Lehn, J.-M.; Vaughan, G. Synthesis of ionisable [2,2] grid-type metallo-arrays and reversible protonic modulation of the optical properties of the [CoII4L4]8+ species. Chem. Commun. 2003, 12, 1338–1339. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. AgI and ZnII complexes with possible application as NLO materials—Crystal structures and properties. Polyhedron 2011, 30, 241–245. [Google Scholar] [CrossRef]
- Ma, L.-F.; Wang, L.-Y.; Wang, Y.-Y.; Batten, S.R.; Wang, J.-G. Self-assembly of a series of cobalt(II) coordination polymers constructed from H2tbip and dipyridyl-based ligands. Inorg. Chem. 2009, 48, 915–924. [Google Scholar] [CrossRef]
- Wriedt, M.; Sellmer, S.; Näther, C. Coordination polymer changing its magnetic properties and colour by thermal decomposition: Synthesis, structure and properties of new thiocyanato iron(II) coordination polymers based on 4,4′-bipyridine as ligand. Dalton Trans. 2009, 7975–7984. [Google Scholar] [CrossRef]
- Journaux, Y.; Ferrando-Soria, J.; Pardo, E.; Ruiz-Garcia, R.; Julve, M.; Lloret, F.; Cano, J.; Li, Y.; Lisnard, L.; Yu, P.H.; et al. Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story. Eur. J. Inorg. Chem. 2018, 228–247. [Google Scholar] [CrossRef]
- Batten, S.R.; Neville, S.M.; Turner, D.R. Coordination Polymers. Design, Analysis and Application; RSC Publishing: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Madelung, W.; Kern, E. Über Dicyanamid. Ann. Chem. 1922, 427, 1–26. [Google Scholar] [CrossRef]
- Köhler, H. Beitrage zur Chemie des Dicyanamid- und des Tricyanmethanidions. I. Die Bildung von Übergangsmetall-Pyridin-Komplexen. Z. Anorg. Allg. Chem. 1964, 331, 237–248. [Google Scholar] [CrossRef]
- Hvastijová, M.; Kohout, J.; Wusterhausen, H.; Köhler, H. Strukturelle Eigenschaften der Kupfer(II)-dicyanamid- und-tricyanmethanid-Komplexe substituierter Pyridine. Z. Anorg. Allg. Chem. 1984, 510, 37–45. [Google Scholar] [CrossRef]
- Hughes, E.W. The crystal structure of dicyanamide. J. Am. Chem. Soc. 1940, 62, 1259–1267. [Google Scholar] [CrossRef]
- Zhang, S.L.; Shen, B.W.; Song, X.D.; Wang, Y.L.; Li, S.S. Ni-Na Coordination Polymer Bridged by Dicyanamide: Synthesis, Structures, Spectra and Thermal Stability. J. Chem. Crystallogr. 2023, 53, 138–144. [Google Scholar] [CrossRef]
- Merabet, L.; Vologzhanina, A.V.; Setifi, Z.; Kabouba, L.; Setifi, F. Topological motifs in dicyanamides of transition metals. CrystEngComm 2022, 24, 4740–4747. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Ghosh, S.; Selvamani, S.; Mehta, S.; Mondal, A. Reversible thermo-induced spin crossover in a mononuclear cis-dicyanamido-cobalt(II) complex containing a macrocyclic tetradentate ligand. Dalton Trans. 2020, 49, 9208–9212. [Google Scholar] [CrossRef]
- Váhovská, L.; Potocnáka, I.; Vitushkina, S.; Dušek, M.; Titiš, J.; Boca, R. Low-dimensional compounds containing cyanido groups. XXVI. Crystal structure, spectroscopic and magnetic properties of Co(II) complexes with non-linear pseudohalide ligands. Polyhedron 2014, 81, 396–408. [Google Scholar] [CrossRef]
- Gao, E.-Q.; Bai, S.-Q.; Wang, Z.-M.; Yan, C.H. One- and two-dimensional metal–dicyanamido complexes with a f lexible bridging co-ligand: Structural and magnetic properties. Dalton Trans. 2003, 1759–1764. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Y. Six New Coordination Polymers: From Dimer to 2D Network based on the Combination of cis-Bis(imidazole) Spacers with Cobalt(II) Cations. Z. Anorg. Allg. Chem. 2014, 640, 2609–2615. [Google Scholar] [CrossRef]
- Manna, S.C.; Ghosh, A.K.; Ribas, J.; Drew, M.G.B.; Lin, C.-N.; Zangrando, E.; Chaudhuri, N.R. Synthesis, crystal structure, magnetic behavior and thermal property of three polynuclear complexes: [M(dca)2(H2O)2]n(hmt)n [M=Mn(II), Co(II)] and [Co(dca)2(bpds)]n [dca, dicyanamide; hmt, hexamethylenetetramine; bpds, 4,4′-bipyridyl disulfide]. Inorg. Chim. Acta 2006, 359, 1395–1403. [Google Scholar] [CrossRef]
- Zhao, X.J.; Wang, Q.; Du, M. Metal-directed assembly of 1-D and 2-D coordination polymers with fluconazole and dicyanamide co-ligand. Inorg. Chim. Acta 2007, 360, 1970–1976. [Google Scholar] [CrossRef]
- Turner, D.R.; Chesman, A.S.R.; Murray, K.S.; Deacon, G.B.; Batten, S.R. The chemistry and complexes of small cyano anions, Chem. Commun. 2011, 47, 10189–10210. [Google Scholar]
- Marshall, S.R.; Incarvito, C.D.; Shum, W.W.; Rheingold, A.L.; Miller, J.S. Novel coordination of dicyanamide, [N(CN)2]2: Preferential binding of the amide nitrogen. Chem. Commun. 2002, 3006–3007. [Google Scholar] [CrossRef]
- Świtlicka-Olszewska, A.; Palion-Gazda, J.; Klemens, T.; Machura, B.; Vallejo, J.; Cano, J.; Lloret, F.; Julve, M. Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt(II) complexes. Dalton Trans. 2016, 45, 10181–10193. [Google Scholar] [CrossRef]
- Palion-Gazda, J.; Machura, B.; Kruszynski, R.; Grancha, T.; Moliner, N.; Lloret, F.; Julve, M. Spin Crossover in Double Salts Containing Six-and Four-Coordinate Cobalt(II) Ions. Inorg. Chem. 2017, 56, 6281–6296. [Google Scholar] [CrossRef]
- Du, M.; Wang, Q.; Li, C.-P.; Zhao, X.J.; Ribas, J. Coordination Assemblies of CoII/CuII/ZnII/CdII with 2,5-Bipyridyl-1,3,4-Oxadiazole and Dicyanamide Anion: Structural Diversification and Properties. Cryst. Growth Des. 2010, 10, 3285–3296. [Google Scholar] [CrossRef]
- Zhou, H.-B.; Wang, S.-P.; Liu, Z.-Q.; Liao, D.-Z.; Jiang, Z.-H.; Yan, S.-P.; Cheng, P. Supramolecular assemblies of new 2-D complexes: Syntheses, crystal structures, spectroscopic and magnetic properties of {[MnAu2(CN)4(NITpPy)2(H2O)2]}n and {[Co(N(CN)2)2(NITpPy)2(H2O)2]}n. Inorg. Chim. Acta 2006, 359, 533–540. [Google Scholar] [CrossRef]
- Lunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE, version 2.0. Universidad de Barcelona: Barcelona, Spain, 2010. [Google Scholar]
- Shen, W.Z.; Chen, X.Y.; Cheng, P.; Liao, D.Z.; Yan, S.P.; Jiang, Z.H. Cobalt(II) Complexes with Dicyanamide—From Binuclear Entities to Chains. Z. Anorg. Allg. Chem. 2003, 629, 2591–2595. [Google Scholar] [CrossRef]
- Das, A.; Marschner, C.; Cano, J.; Baumgartner, J.; Ribas, J.; El Fallah, M.S.; Mitra, S. Synthesis, crystal structures and magnetic behaviors of two dicyanmide bridged di– and polynuclear complexes of cobalt(II) derived from 2,4,6-tris(2-pyridyl)1,3,5-trizine and imidazole. Polyhedron 2009, 28, 2436–2442. [Google Scholar] [CrossRef]
- Kundu, S.; Roy, S.; Bhar, K.; Ghosh, R.; Lin, C.-H.; Ribas, J.; Ghosh, B.K. Syntheses, structures and magnetic properties of two one-dimensional coordination polymers of cobalt(II) and nickel(II) dicyanamide containing a tridentate N-donor Schiff base. J. Mol. Struct. 2013, 1038, 78–85. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, S.; Zhou, A. Two three-dimensional supramolecular networks built from metallophenols through hydrogen bonds and coordinate bonds. Trans. Met. Chem. 2015, 40, 637–642. [Google Scholar] [CrossRef]
- Banerjee, S.; Halder, S.; Brandão, P.; Gómez García, C.J.; Benmansour, S.; Saha, A. Synthesis and characterization of a novel dicyanamide-bridged Co(II) 1-D coordination polymer with a N4-donor Schiff base ligand. Inorg. Chim. Acta 2017, 464, 65–73. [Google Scholar] [CrossRef]
- Roy, S.; Choubey, S.; Bhar, K.; Sikdar, N.; Costa, J.S.; Mitrad, P.; Ghosh, B.K. Counter anion dependent gradual spin transition in a 1D cobalt(II) coordination polimer. Dalton Trans. 2015, 44, 7774–7776. [Google Scholar] [CrossRef]
- Mautner, F.A.; Traber, M.; Fischer, R.C.; Massoud, S.S.; Vicente, R. Synthesis, crystal structures, spectral and magnetic properties of 1-D polymeric dicyanamido-metal(II) complexes. Polyhedron 2017, 138, 13–20. [Google Scholar] [CrossRef]
- Bhar, K.; Khan, S.; Costa, J.S.; Ribas, J.; Roubeau, O.; Mitra, P.; Ghosh, B.K. Crystallographic Evidence for Reversible Symmetry Breaking in a Spin-Crossover d7 Cobalt(II) Coordination Polymer. Angew. Chem. Int. Ed. 2012, 51, 2142–2145. [Google Scholar] [CrossRef]
- Świtlicka, A.; Bieńko, D.C.; Titiš, J.; Machura, B.; Penkala, M.; Bieńko, A.; Rajnák, C.; Boča, R.; Ozarowski, A. Slow magnetic relaxation in hexacoordinated cobalt(II) field-induced single-ion magnets. Inorg. Chem. Front. 2020, 7, 2637–2650. [Google Scholar] [CrossRef]
- Ghosh, S.; Kamily, S.; Rouzieres, M.; Herchel, R.; Mehta, S.; Mondal, A. Reversible Spin-State Switching and Tuning of Nuclearity and Dimensionality via Nonlinear Pseudohalides in Cobalt(II) Complexes. Inorg. Chem. 2020, 59, 17638–17649. [Google Scholar] [CrossRef]
- Munshi, S.J.; Sadhu, M.H.; Kundu, S.; Savani, C.; Kumar, S.B. Synthesis, characterization and structures of binuclear copper(II) and polynuclear cobalt(II), nickel(II) and cadmium(II) complexes involving N4-donor pyrazolyl based ligand and dicyanamide as bridging ligand. J. Mol. Struct. 2020, 1209, 127984. [Google Scholar] [CrossRef]
- Biswas, M.; Pilet, G.; El Fallah, M.S.; Ribas, J.; Mitra, S. Design of a flexible ligand for the construction of a one-dimensional metal-organic coordination polymer. Inorg. Chim. Acta 2008, 361, 387–392. [Google Scholar] [CrossRef]
- Mondal, A.K.; Mondal, A.; Konar, S. Slow Magnetic Relaxation in a One-Dimensional Coordination Polymer Constructed from Hepta-Coordinate Cobalt(II) Nodes. Magnetochemistry 2020, 6, 45. [Google Scholar] [CrossRef]
- Hsu, G.-Y.; Chen, C.-W.; Cheng, S.C.; Lin, S.-H.; Wei, H.-H.; Lee, C.-J. Structure and magnetic properties of one-dimensional metal complexes constructed from alternating dicyanamide linked through binuclear metal tetra-2-pyridylpyrazine subunits. Polyhedron 2005, 24, 487–494. [Google Scholar] [CrossRef]
- Li, B.L.; Wan, X.-Y.; Zhu, X.; Gao, S.; Zhang, Y. Synthesis, crystal structure and magnetic behavior of two cobalt coordination polymers with 1,2-bis(1,2,4-triazol-1-yl)ethane and dicyanamide. Polyhedron 2007, 26, 5219–5224. [Google Scholar] [CrossRef]
- Kutasi, A.M.; Batten, S.R.; Harris, A.R.; Moubaraki, B.; Murray, K.S. Structure and magnetism of the ladder-like coordination polymer Co3(dca)2(nic)4(H2O)8·2H2O[dca = dicyanamide anion, N(CN)2–; nic = nicotinate anion]. CrystEngComm 2002, 4, 202–204. [Google Scholar] [CrossRef]
- Hardy, A.M.; LaDuca, R.L. Synthesis and structure of a cobalt dicyanamide chain coordination polymer incorporating a long-spanning hydrogen-bonding capable diimine with a novel binodal (4,6)-connected supramolecular topology. Inorg. Chem. Commun. 2009, 12, 308–311. [Google Scholar] [CrossRef]
- Wriedt, M.; Näther, C. Directed synthesis of µ-1,3,5 bridged dicyanamides by thermal decomposition of µ-1,5 bridged precursor compounds. Dalton Trans. 2011, 40, 886–898. [Google Scholar] [CrossRef]
- Kutasi, A.M.; Batten, S.R.; Moubaraki, B.; Murray, K.S. New 2D coordination polymers containing both bi- and tri-dentate dicyanamide bridges and intercalated phenazine. J. Chem. Soc. Dalton Trans. 2002, 819–821. [Google Scholar] [CrossRef]
- Sun, H.L.; Gao, S.; Ma, B.Q.; Su, G. Long-Range Ferromagnetic Ordering in Two-Dimensional Coordination Polymers Co[N(CN)2]2(L) [L = Pyrazine Dioxide (pzdo) and 2-Methyl Pyrazine Dioxide (mpdo)] with Dual µ– and µ3-[N(CN)2] Bridges. Inorg. Chem. 2003, 42, 5399–5404. [Google Scholar] [CrossRef]
- Lopes, L.B.; Correa, C.C.; Guedes, G.P.; Vaz, M.G.F.; Diniz, R.; Machado, F.C. Two new coordination polymers involving Mn(II), Co(II), dicyanamide anion and the nitrogen ligand 5,5′-dimethyl-2,2′-dipyridine: Crystal structures and magnetic properties. Polyhedron 2013, 50, 16–21. [Google Scholar] [CrossRef]
- Armentano, D.; De Munno, G.; Guerra, F.; Julve, M.; Lloret, F. Ligand Effects on the Structures of Extended Networks of Dicyanamide-Containing Transition-Metal Ions. Inorg. Chem. 2006, 45, 4626–4636. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Zhang, W.H.; Li, H.X.; Tang, X.Y.; Lang, J.P.; Zhang, Y.; Wang, X.Y.; Gao, S. Construction of a Novel 2D Polymer [Co(dmpzm)(dca)2]∞ from Reaction of a Mononuclear Complex [Co(dmpzm)Cl2] with Sodium Dicyanamide (dca) [dmpzm=bis(3,5-dimethylpyrazolyl)methane]. Chin. J. Chem. 2006, 24, 1716–1720. [Google Scholar] [CrossRef]
- Li, J.Y.; Xie, M.J.; Jiang, J.; Chang, Q.W.; Ye, Q.S.; Liu, W.P.; Chen, J.L.; Ning, P. Synthesis and Crystal Structure of Two Polydimensional Molecular Architectures from Cobalt(II), Copper(II) Complexes of 2,4-Diamino-6-pyridyl-1,3,5-triazine. Asian J. Chem. 2014, 26, 419–422. [Google Scholar] [CrossRef]
- van der Werff, P.M.; Batten, S.R.; Jensen, P.; Moubaraki, B.; Murray, K.S.; Tan, E.H.-K. Structure and magnetism of anionic dicyanamidometallate extended networks of types (Ph4As)[MII(dca)3] and (Ph4As)2[M2II(dca)6(H2O)]·H2O·xCH3OH, where dca=N(CN)2− and MII=Co, Ni). Polyhedron 2001, 20, 1129–1136. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Li, B.; Zhang, Y. Synthesis, Structure and Magnetic Properties of a New Two-dimensional (4,4) Network Cobalt Coordination Polymer with Dicyanamide and Benzimidazole Ligands. J. Chem. Crystallogr. 2009, 39, 221–224. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Zhong, Y.; Lei, G.; Li, Z.; Zhang, J.; Zhang, T. High-Energy Metal−Organic Frameworks with a Dicyanamide Linker for Hypergolic Fuels. Inorg. Chem. 2021, 60, 5100–5106. [Google Scholar] [CrossRef]
- Sun, H.L.; Ma, B.Q.; Gao, S.; Su, G. Pyrazine dioxide bridged two-dimensional antiferromagnets [M(NCS)2(pzdo)2] (M = Mn, Co; pzdo = pyrazine dioxide). Chem. Commun. 2001, 2586–2587. [Google Scholar] [CrossRef]
- Du, M.; Wang, X.-G.; Zhang, Z.-H.; Tang, L.-F.; Zhao, X.-J. Solvent-directed layered Co(II) coordination polymers with unusual solid-state properties: From a nanoporous framework to the dense polythreading 3-D aggregation. CrystEngComm 2006, 8, 788–793. [Google Scholar] [CrossRef]
- Xu, W.-J.; Chen, K.-P.; Zhang, Y.; Ma, Y.; Li, Q.-W.; Wang, Q.-L. Two new Co(II) coordination polymers based on redox-active ligands: Structure, Chromism and Magnetism. J. Mol. Struct. 2021, 1231, 129948. [Google Scholar] [CrossRef]
- Khan, S.; Roy, S.; Bhar, K.; Ghosh, R.; Lin, C.-H.; Ribas, J.; Ghosh, B.K. Syntheses, structures and magnetic properties of two neutral coordination polymers of cobalt(II) containing a tailored aromatic diamine and pseudohalides as bridging units: Control of dimensionality by varying pseudohalide. Inorg. Chim. Acta 2013, 398, 40–45. [Google Scholar] [CrossRef]
- Jensen, P.; Batten, S.R.; Moubaraki, B.; Murray, K.S. Syntheses, crystal structures, and magnetic properties of first row transition metal coordination polymers containing dicyanamide and 4,4-bipyridine. J. Chem. Soc. Dalton Trans. 2002, 3712–3722. [Google Scholar] [CrossRef]
- Palion-Gazda, J.; Świtlicka, A.; Choroba, K.; Machura, B.; Kruszynski, R.; Julve, M. Influence of the pyrazine substituent on the structure and magnetic properties of dicyanamide-bridged cobalt(II) complexes. Dalton Trans. 2019, 48, 17266–17280. [Google Scholar] [CrossRef] [PubMed]
- Mączka, M.; Gągor, A.; Stroppa, A.; Gonçalves, J.N.; Zaręba, J.K.; Stefańska, D.; Pikul, A.; Drozd, M.; Sieradzki, A. Two-dimensional metal dicyanamide frameworks of BeTriMe[M(dca)3(H2O)] (BeTriMe = benzyltrimethylammonium; dca = dicyanamide; M = Mn2+, Co2+, Ni2+): Coexistence of polar and magnetic orders and nonlinear optical threshold temperature sensing. J. Mat. Chem. C 2020, 8, 11735–11747. [Google Scholar] [CrossRef]
- Palion-Gazda, J.; Klemens, T.; Machura, B.; Vallejo, J.; Lloret, F.; Julve, M. Single ion magnet behaviour in a two-dimensional network of dicyanamide-bridged cobalt(II) ions. Dalton Trans. 2015, 44, 2989–2992. [Google Scholar] [CrossRef]
- Chen, X.Y.; Cheng, P.; Yan, S.-P.; Liao, D.-Z.; Jiang, Z.-H. Grid-like Cobalt(II) Layered Complex with an Unprecedented Double 1,2-Bis(1,2,4-triazole-1-yl)methane Bridges. Z. Anorg. Allg. Chem. 2005, 631, 3104–3107. [Google Scholar] [CrossRef]
- Batten, S.R.; Murray, K.S. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide ions. Coord. Chem. Rev. 2003, 246, 103–130. [Google Scholar] [CrossRef]
- Jensen, P.; Batten, S.R.; Fallon, G.D.; Moubaraki, B.; Murray, K.S.; Price, D.J. Structural isomers of M(dca)2 molecule-based magnets. Crystal structure of tetrahedrally coordinated sheet-like β-Zn(dca)2 and β-Co/Zn(dca)2, and the octahedrally coordinated rutile-like α-Co(dca)2, where dca– = dicyanamide, N(CN)2–, and magnetism of β-Co(dca)2. Chem. Commun. 1999, 177–178. [Google Scholar] [CrossRef]
- Kurmoo, M.; Kepert, C.J. Hard magnets based on transition metal complexes with the dicyanamide anion, {N(CN)2}–. N. J. Chem. 1998, 1515–1524. [Google Scholar] [CrossRef]
- Wu, L.N.; He, M.Q.; Li, M.X.; Nfor, E.N.; Wang, Z.X. Inorganic-organic hybrid materials with methylviologen dication confined in magnetic hosts: Synthesis, crystal structures and magnetic properties. Inorg. Chem. Commun. 2020, 116, 107908. [Google Scholar] [CrossRef]
- van der Werff, P.M.; Martinez-Ferrero, E.; Batten, S.R.; Jensen, P.; Ruiz-Perez, C.; Almeida, M.; Waerenborgh, J.C.; Cashion, J.D.; Moubaraki, B.; Gal’an-Mascaros, J.R.; et al. Hybrid materials containing organometallic cations and 3-D anionic metal dicyanamide networks of type [Cp*2M][M′(dca)3]. Dalton Trans. 2005, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Garcia, J.M.; Sanchez-Andujar, M.; Yanez-Vilar, S.; Castro-Garcia, S.; Artiaga, R.; Lopez-Beceiro, J.; Botana, L.; Alegriade, A.; Senaris-Rodriguez, M.A. Multiple phase and dielectric transitions on a novel multi-sensitive [TPrA][M(dca)3] (M: Fe2+,Co2+ and Ni2+) hybrid inorganic–organic perovskite family. J. Mater. Chem. C 2016, 4, 4889–4898. [Google Scholar] [CrossRef]
- Tong, M.L.; Ru, J.; Wu, Y.M.; Chen, X.-M.; Chang, H.-C.; Mochizuki, K.; Kitagawa, S. Cation-templated construction of three-dimensional α-Po cubic-type [M(dca)3] networks. Syntheses, structures and magnetic properties of A[M(dca)3] (dca = dicyanamide; for A = benzyltributylammonium, M = Mn2+,Co2+; for A = benzyltriethylammonium, M = Mn2+,Fe2+). N. J. Chem. 2003, 27, 779–782. [Google Scholar]
- van der Werff, P.M.; Batten, S.R.; Jensen, P.; Moubaraki, B.; Murray, K.S.; Cashion, J.D. Structure and Magnetism of 3D Anionic Metal Dicyanamide (MePh3P)[M(dca)3](M = Fe, Co, Ni) and (EtPh3P)[M(dca)3](M = Mn, Co, Ni) Networks. Cryst. Growth Des. 2004, 4, 503–508. [Google Scholar] [CrossRef]
- Ghosh, T.; Chattopadhyay, T.; Das, S.; Mondal, S.; Suresh, E.; Zangrando, E.; Das, D. Thiocyanate and Dicyanamide Anion Controlled Nuclearity in Mn, Co, Ni, Cu, and Zn Metal Complexes with Hemilabile Ligand 2-Benzoylpyridine. Cryst. Growth Des. 2011, 11, 3198–3205. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.G.; Gao, S.; Weng, L.H.; Shao, Z.H.; Zhang, C.M.; Li, Y.R.; Zhang, J.; Cai, R.F. Syntheses, structures and magnetic properties of two novel 3D helical dicyanamide complexes containing polyamine ligand. Inorg. Chem. Commun. 2004, 7, 669–672. [Google Scholar] [CrossRef]
- Mal, D.; Sen, R.; Rentschler, E.; Okamoto, K.; Miyashita, Y.; Koner, S. Fully interlocked three-dimensional molecular scaffolding: Synthesis, X-ray structure, magnetic and nitrogen sorption study. Inorg. Chim. Acta 2012, 385, 27–30. [Google Scholar] [CrossRef]
- Haldar, R.; Maji, T.K. Selective carbon dioxide uptake and crystal-to-crystal transformation: Porous 3D framework to 1D chain triggered by conformational change of the spacer. CrystEngComm 2012, 14, 684–690. [Google Scholar] [CrossRef]
- Sun, H.-L.; Gao, S.; Ma, B.-Q.; Batten, S.R. 3D Self-penetrating coordination network constructed by dicyanamide and 1,2-bis(4-pyridyl)ethane-N,N’-dioxide (bpeado). CrystEngComm 2004, 6, 579–583. [Google Scholar] [CrossRef]
- Sun, B.-W.; Gao, S.; Ma, B.-Q.; Wang, Z.-M.N. A two-fold interpenetrated three-dimensional cobalt(II) complex with dual dicyanamide and 4,4′-bipyridine bridges. N. J. Chem. 2000, 24, 953–954. [Google Scholar] [CrossRef]
- Jones, L.F.; O’Dea, L.; Offermann, D.A.; Jensen, P.; Moubaraki, B.; Murray, K.S. Benzotriazole based 1-D, 2-D and 3-D metal dicyanamide and tricyanomethanide coordination networks. Polyhedron 2006, 25, 360–372. [Google Scholar] [CrossRef]
- Chen, C.W.; Wei, H.H.; Lee, C.J. Two New 3D Networks Co(II) Complexes Constructed via the Bridging Dicyanamide and 2,2-Bipyrimidine Ligands: Structures and Magnetic Properties. J. Chin. Chem. Soc. 2006, 53, 1291–1296. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Z.; Zhang, H. Syntheses, Structures, and Magnetic Properties of Two Novel Three-Dimensional Frameworks Built from M4O4 Cubanes and Dicyanamide Bridges. Cryst. Growth. Des. 2007, 7, 589–591. [Google Scholar] [CrossRef]
- Lloret, F.; Julve, M.; Cano, J.; Ruiz-García, R.; Pardo, E. Magnetic properties of six-coordinated high-spin cobalt(II) complexes: Theoretical background and its application. Inorg. Chim. Acta 2008, 361, 3432–3445. [Google Scholar] [CrossRef]
- Cui, H.-H.; Zhang, Y.-Q.; Xue, Z.-L. Magnetic anisotropy and slow magnetic relaxation processes of cobalt(II)-pseudohalide complexes. Dalton Trans. 2019, 48, 10743–10752. [Google Scholar] [CrossRef]
- Colacio, E.; Lloret, F.; Maimoun, I.B.; Kiveka, R.; Sillanpa, R.; Suarez-Varela, J. A New Type of Anionic Metal Dicyanamide Extended Networks through [Cu(N4-macrocycle)]2+ Cation Templation. Structure and Magnetic Propertie. Inorg. Chem. 2003, 42, 2720–2724. [Google Scholar] [CrossRef]
- Fisher, M.E. Perpendicular Susceptibility of the Ising Model. J. Math. Phys. 1963, 4, 124–135. [Google Scholar] [CrossRef]
- Fisher, M.E. Magnetism in One-Dimensional Systems—The Heisenberg Model for Infinite Spin. Am. J. Phys. 1964, 32, 343–346. [Google Scholar] [CrossRef]
- Rueff, J.-M.; Masciocchi, N.; Rabu, P.; Sironi, A.; Skoulios, A. Structure and Magnetism of a Polycrystalline Transition Metal Soap − CoII[OOC(CH2)10COO](H2O)2. Eur. J. Inorg. Chem. 2001, 2843–2848. [Google Scholar] [CrossRef]
- Świtlicka, A.; Bieńko, D.C.; Machura, B.; Rajnák, C.; Bieńko, A.; Kozieł, S.; Boča, R.; Ozarowski, A.; Ozerov, M. Non-traditional thermal behavior of Co(II) coordination networks showing slow magnetic relaxation. Inorg. Chem. Front. 2021, 8, 4356–4366. [Google Scholar] [CrossRef]
- Váhovská, L.; Bukrynov, O.; Potočňák, I.; Čižmár, E.; Kliuikov, A.; Vitushkina, S.; Dušek, M.; Herchel, R. New Cobalt(II) Field-Induced Single-Molecule Magnet and the First Example of a Cobalt(III) Complex with Tridentate Binding of a Deprotonated 4-Amino-3,5-bis(pyridin-2-yl)-1,2,4-Triazole Ligand. Eur. J. Inorg. Chem. 2019, 2019, 250–261. [Google Scholar] [CrossRef]
- Titiš, J.; Boča, R. Magnetostructural D Correlations in Hexacoordinated Cobalt(II)Complexes. Inorg. Chem. 2011, 50, 11838–11845. [Google Scholar] [CrossRef] [PubMed]
- Craig, G.A.; Murrie, M. 3d single-ion magnets. Chem. Soc. Rev. 2015, 44, 2135–2147. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-L.; Wang, Z.-M.; Gao, S. Synthesis, Crystal Structures, and Magnetism of Cobalt Coordination Polymers Based on Dicyanamide and Pyrazine-dioxide Derivatives. Inorg. Chem. 2005, 44, 2169–2176. [Google Scholar] [CrossRef]
- Ma, B.Q.; Sun, H.L.; Gao, S.; Su, G. A Novel Azido and Pyrazine-Dioxide Bridged Three-Dimensional Manganese(II) Network with Antiferromagnetic Ordering (TN = 62 K) and a Spin Flop State. Chem. Mater. 2001, 13, 1946–1948. [Google Scholar] [CrossRef]
- Sun, H.L.; Gao, S.; Ma, B.Q.; Su, G.; Batten, S.R. Structures and Magnetism of a Series Mn(II) Coordination Polymers Containing Pyrazine-Dioxide Derivatives and Different Anions. Cryst. Growth Des. 2005, 5, 269–277. [Google Scholar] [CrossRef]
- Herrera, J.M.; Bleuzen, A.; Dromzée, Y.; Julve, M.; Lloret, F.; Verdaguer, M. Crystal Structures and Magnetic Properties of Two Octacyanotungstate(IV) and (V)-Cobalt(II) Three-Dimensional Bimetallic Frameworks. Inorg. Chem. 2003, 42, 7052–7059. [Google Scholar] [CrossRef]
- Banci, L.; Bencini, A.; Gatteschi, D.; Zanchini, C. Spectral Structural Correlations in High Spin Cobalt(II) Complexes Struct. Bond. 1982, 52, 37. [Google Scholar]
- Kliuikov, A.; Bukrynov, O.; Čižmár, E.; Váhovská, L.; Vitushkina, S.; Samoľová, E.; Potočňák, I. Syntheses, structures and magnetic properties of two isostructural dicyanamide-bridged 2D polymers. New J. Chem. 2021, 45, 7117–7128. [Google Scholar] [CrossRef]
- Batten, S.R.; Jensen, P.; Moubaraki, B.; Murray, K.S.; Robson, R. Structure and molecular magnetism of the rutile-related compounds M(dca)2, M = CoII, NiII, CuII, dca = dicyanamide, N(CN)2–. Chem. Commun. 1998, 439–440. [Google Scholar] [CrossRef]
- Manson, J.L.; Kmety, C.R.; Huang, Q.-Z.; Lynn, J.W.; Bendele, G.M.; Pagola, S.; Stephens, P.W.; Liable-Sands, L.M.; Rheingold, A.L.; Epstein, A.J.; et al. Structure and Magnetic Ordering of MII[N(CN)2]2 (M = Co, Ni), Chem. Mater. 1998, 10, 2552–2560. [Google Scholar]
- Mukherjee, S.; Ranganathan, R.; Roy, S.B. Linear and nonlinear ac susceptibility of the canted-spin system: Ce(Fe0.96Al0.04)2. Phys. Rev. B 1994, 50, 1084. [Google Scholar] [CrossRef] [PubMed]
- Mydosh, J.A. Spin Glasses: An Experimental Introduction; Taylor &Francis: London, UK; Washington, DC, USA, 1993. [Google Scholar]
- Tang, S.F.; Smetana, V.; Mishra, M.K.; Kelley, S.P.; Renier, O.; Rogers, R.D.; Mudring, A.V. Forcing Dicyanamide Coordination to f-Elements by Dissolution in Dicyanamide-Based Ionic Liquids. Inorg. Chem. 2020, 59, 7227–7237. [Google Scholar] [CrossRef] [PubMed]
- Hunger, J.; Roy, S.; Grechko, M.; Bonn, M. Dynamics of Dicyanamide in Ionic Liquids is Dominated by Local Interactions. J. Phys. Chem. B 2019, 123, 1831–1839. [Google Scholar] [CrossRef]
- Qiao, X.; Corkett, A.J.; Muller, P.C.; Wu, X.; Zhang, L.; Wu, D.; Wang, Y.; Cai, G.; Wang, C.; Yin, Y.; et al. Zinc Dicyanamide: A Potential High-Capacity Negative Electrode for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 43574–43581. [Google Scholar] [CrossRef]
Compound | Co–Nligand [Å] | Co–NDCA [Å] | Angles [°] | Co···Co [Å] | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Co–NC(dca) | C–N–C(dca) | ||||||||||
Monodentate ligands | |||||||||||
[Co(bim)4(dca)2] | 2.1546(15) 2.1489(15) | 2.1575(18) | 155.32(18) | 122.8(3) | 9.686(2) | [28] | |||||
Bidentate ligands | |||||||||||
[Co(H2biim)2(dca)2] | 2.1435(12) 2.1268(12) 2.1435(12) 2.1258(12) | 2.1912(13) 2.1912(13) | 118.82(10) 120.47(10) | 119.27(13) | 7.162(1) | [27] | |||||
[Co(phen)2(dca)2] Crystal 1a | 193 K 2.149(1) 2.147(1) 2.145(1) 2.173(2) | 293 K 2.142(2) 2.142(2) 2.141(2) 2.166(2) | 193 K 2.093(2) 2.070(2) | 293 K 2.092(2) 2.066(2) | 173.8(1) 169.4(2) | 121.4(2) 122.4(2) | 8.6007(5) | [21] | |||
[Co(phen)2(dca)2] Crystal 1b | 293 K 2.139(3) 2.175(3) 2.132(3) 2.157(3) | 293 K 2.071(3) 2.069(3) | 171.3(3) 168.3(3) | 124.6(4) 125.8(4) | 8.2645(8) | [21] | |||||
Tridentate organic ligand | |||||||||||
[Co(tppz)2](dca)2] | 125 K 1.855(5) 1.917(5) 1.977(4) 2.155(4) | 330 K 1.870(3) 1.912(3) 2.003(2) 2.128(2) | – uncoordinated dca | – | 125 K 120.5(6) 330 K 123.2(7) | 125 K 8.9361(7) 330 K 9.0081(4) Å | [29] | ||||
Tetradentate organic ligand | |||||||||||
[Co(L1)(dca)2] | 100 K 2.340(2) 1.920(2) 2.315(2) 1.909(2) | 280 K 2.002(2) 2.351(2) 1.999(3) 2.324(2) | 100 K 1.927(2) 1.942(2) | 280 K 2.003(3) 2.024(3) | 100 K 173.7(2) 166.5(2) | 280 K 170.4(3) 164.3(3) | 100 K 117.8(2) 116.2(1) | 280 K 121.9(4) 118.0(3) | 100 K 8.9101(6) | 280 K 9.0233(8) | [20] |
Compound | Co–Nligand [Å] | Co–NDCA [Å] | Angles [°] | Co···Co in Chain or (Between Chains) | Ref. | |
---|---|---|---|---|---|---|
Co–NC(dca) | C–N–C(dca) | |||||
Single µ1,5-dca bridge | ||||||
{[Co(H2BiIm)2(dca)2]Cl}n | 2.1386(18) 2.1593(18) 2.1372(18) 2.1325(18) | 2.1900(19) 2.1133(19) | 124.4(2) 172.3(2) | 120.4(2) | 7.2860(5) 7.9690(6) | [27] |
{[Co(pypz)(dca)(H2O)]·dca}n | 2.1082(18) 2.1891(19) 2.1685(18) | 2.057(2) 2.096(2) | 155.6(2) 165.03(19) | 121.7(2) | 7.447(6) 8.4287(7) | [41] |
[Co(pybiu)(dca)]n | 1.986(3) 1.952(4) 1.966(3) | 2.330(4) 1.956(5) | 121.3(4) 158.1(4) | 120.6(5) | [44] | |
Double µ1,5-dca bridge | ||||||
{[Co(azpyph)(dca)](BF4)·MeOH}n | 2.309(2) 2.041(2) 2.346(3) 2.045(2) | 2.070(3) 2.100(3) | 156.3(2) 177.2(2) | 125.3(3) | 8.3790(9) 9.276(1) | [42] |
{[Co(dca)2(H2O)2]·(hmt)}n | 2.082 2.082 | 2.123 2.118 2.123 2.118 | 162.0 162.6 | 118.2(2) 118.2(2) | 7.3617 7.1243 | [24] |
Double bridges (ligand + dca) | ||||||
[Co2(tppz)(dca)4]n | 2.156(2) 2.156(2) 2.114(2) 2.114(2) 2.140(2) 2.140(2) | 2.044(2) 2.044(2) 2.141(2) 2.141(2) | 168.9(2) 152.3(2) | 119.1(2) | 7.377 A 5.9262(5) | [46] |
dca as a co-ligand | ||||||
[Co(bimb)2(dca)2]n | 2.168 2.154 2.168 2.154 | 2.139 2.139 | 169.9 169.9 | 124.1(2) 124.1(2) | 10.146 7.583 | [23] |
[Co(bte)2(dca)2]n | 2.165 2.165 2.124 2.124 | 2.132 2.132 | 157.0 | 119.4(3) | 8.345 9.597 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świtlicka, A. Recent Insights into Magneto-Structural Properties of Co(II) Dicyanamide Coordination Compounds. Magnetochemistry 2024, 10, 90. https://doi.org/10.3390/magnetochemistry10110090
Świtlicka A. Recent Insights into Magneto-Structural Properties of Co(II) Dicyanamide Coordination Compounds. Magnetochemistry. 2024; 10(11):90. https://doi.org/10.3390/magnetochemistry10110090
Chicago/Turabian StyleŚwitlicka, Anna. 2024. "Recent Insights into Magneto-Structural Properties of Co(II) Dicyanamide Coordination Compounds" Magnetochemistry 10, no. 11: 90. https://doi.org/10.3390/magnetochemistry10110090
APA StyleŚwitlicka, A. (2024). Recent Insights into Magneto-Structural Properties of Co(II) Dicyanamide Coordination Compounds. Magnetochemistry, 10(11), 90. https://doi.org/10.3390/magnetochemistry10110090