Mesoxalate-Bridged Heptanuclear Copper(II) Complexes: Structure and Magnetic Properties †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of (NH4)4[Cu7(Hmesox)6(H2O)8]∙10H2O (1)
2.4. Synthesis of [Ru(bpy)3]4[Cu7(Hmesox)6Cl2]Cl2 ∙2CH3CN∙12H2O (2)
2.5. X-Ray Data Collection and Structure Refinement
3. Results and Discussion
3.1. Crystal Structures of Compounds 1 and 2
3.1.1. Crystal Structure of (NH4)4[Cu7(Hmesox)6(H2O)8]∙10 H2O (1)
3.1.2. Crystal Structure of [Ru(bpy)3]4[Cu7(Hmesox)6Cl2]Cl2∙2CH3CN∙12H2O (2)
3.2. Magnetic Properties of Compounds 1 and 2
3.3. Spectroscopic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Julve, M.; Verdaguer, M.; Kahn, O.; Gleizes, A.; Philoche-Levisalles, M. Tunable exchange interaction in. mu.-oxalato copper(II) dinuclear complexes. Inorg. Chem. 1983, 22, 368–370. [Google Scholar] [CrossRef]
- Julve, M.; Gleizes, A.; Chamoreau, L.M.; Ruiz, E.; Verdaguer, M. Antiferromagnetic Interactions in Copper(II) µ-Oxalato Dinuclear Complexes: The Role of the Counterion. Eur. J. Inorg. Chem. 2017, 2018, 509–516. [Google Scholar] [CrossRef]
- Julve, M.; Faus, J.; Verdaguer, M.; Gleizes, A. Copper(II), a chemical Janus: Two different (oxalato)(bipyridyl)copper(II) complexes in one single crystal. Structure and magnetic properties. J. Am. Chem. Soc. 2002, 106, 8306–8308. [Google Scholar] [CrossRef]
- Castro, I.; Calatayud, M.L.; Orts-Arroyo, M.; Marino, N.; De Munno, G.; Lloret, F.; Ruiz-García, R.; Julve, M. Oxalato as polyatomic coordination center and magnetic coupler in copper(II)-polypyrazole inverse polynuclear complexes and coordination polymers. Coord. Chem. Rev. 2022, 471, 214730. [Google Scholar] [CrossRef]
- Sletten, J.; Soerensen, A.; Julve, M.; Journaux, Y. A tetranuclear hydroxo-bridged copper(II) cluster of the cubane type. Preparation and structural and magnetic characterization of tetrakis [(2,2′-bipyridyl)hydroxocopper(II)] hexafluorophosphate. Inorg. Chem. 1990, 29, 5054–5058. [Google Scholar] [CrossRef]
- Ruiz-Perez, C.; Sanchiz, J.; Molina, M.H.; Lloret, F.; Julve, M. Ferromagnetism in malonato-bridged copper(II) complexes. synthesis, crystal structures, and magnetic properties of {[Cu(H2O)3][Cu(mal)2(H2O)]}n and {[Cu(H2O)4]2[Cu(mal)2(H2O)]}[Cu(mal)2(H2O)2]{[Cu(H2O)4][Cu(mal)2(H2O)2]} (H2mal = malonic Acid). Inorg. Chem. 2000, 39, 1363–1370. [Google Scholar] [CrossRef]
- Sanchiz, J.; Pasán, J.; Fabelo, O.; Lloret, F.; Julve, M.; Ruiz-Pérez, C. [Cu3(Hmesox)3]3−: A Precursor for the Rational Design of Chiral Molecule-Based Magnets (H4mesox = 2-dihydroxymalonic acid). Inorg. Chem. 2010, 49, 7880–7889. [Google Scholar] [CrossRef]
- Gil-Hernández, B.; Gili, P.; Sanchiz, J. A ferromagnetically coupled copper(II) trinuclear secondary building unit as precursor for the preparation of molecule-based magnets. Inorg. Chim. Acta 2011, 371, 47–52. [Google Scholar] [CrossRef]
- Gil-Hernández, B.; Gili, P.; Vieth, J.K.; Janiak, C.; Sanchiz, J. Magnetic ordering in two molecule-based (10,3)-a nets prepared from a copper(II) trinuclear secondary building unit. Inorg. Chem. 2010, 49, 7478–7490. [Google Scholar] [CrossRef]
- Gil-Hernández, B.; Savvin, S.; Makhloufi, G.; Núñez, P.; Janiak, C.; Sanchiz, J. Proton conduction and long-range ferrimagnetic ordering in two isostructural copper(II) mesoxalate metal-organic frameworks. Inorg. Chem. 2015, 54, 1597–1605. [Google Scholar] [CrossRef]
- Mistry, S.; Sutter, J.P.; Natarajan, S. Stabilization of Cu7 clusters in azide networks: Syntheses, structures and magnetic behaviour. Dalton Trans. 2016, 45, 5140–5150. [Google Scholar] [CrossRef]
- Ferrer, S.; Aznar, E.; Lloret, F.; Castineiras, A.; Liu-Gonzalez, M.; Borras, J. One-dimensional metal-organic framework with unprecedented heptanuclear copper units. Inorg. Chem. 2007, 46, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Bromhead, J.A.; Young, C.G. Tris(2,2′-Bipyridine)Ruthenium(II) Dichloride Hexahydrate. Inorg. Synth. 1982, 21, 127. [Google Scholar] [CrossRef]
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
- Bruker AXS. APEX2; Bruker: Billerica, MA, USA, 2012. [Google Scholar]
- Sheldrick, G.M. Program SADABS: Area-Detector Absorption Correction; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Hubschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef]
- Hooft, R.W.W. Collect; Nonius BV: Delft, The Netherlands, 1998. [Google Scholar]
- Sheldrick, G.M. SADABS, Program for Area Detector Adsorption Correction; Institute for Inorganic Chemistry, University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. SHELXL-97, Program for the Refinement of Crystal Structure from Diffraction Data; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. [Google Scholar] [CrossRef]
- Gil-Hernández, B.; Calahorro, A.J.; Gili, P.; Sanchiz, J. Effect of the apical ligand on the geometry and magnetic properties of copper(II)/mesoxalate trinuclear units. Dalton Trans. 2017, 46, 5260–5268. [Google Scholar] [CrossRef]
- Gil-Hernández, B.; Gili, P.; Pasán, J.; Sanchiz, J.; Ruiz-Pérez, C. Two-dimensional (6,3) networks obtained with the {Cu3(Hmesox)3}3− secondary building unit (H4mesox = mesoxalic acid). CrystEngComm 2012, 14, 4289–4297. [Google Scholar] [CrossRef]
- Harrowfield, J.M.; Sobolev, A.N. The Crystal Structure of Tris(2,2′-bipyridine)ruthenium(II) Perchlorate. Aust. J. Chem. 1994, 47, 763. [Google Scholar] [CrossRef]
- Rillema, D.P.; Jones, D.S. Structure of tris(2,2′-bipyridyl)ruthenium(II) hexafluorophosphate, [Ru(bipy)3][PF6]2; X-ray crystallographic determination. J. Chem. Soc. Chem. Commun. 1979, 849–851. [Google Scholar] [CrossRef]
- Kahn, O. Molecular Magnetism; VCH: New York, NY, USA, 1993. [Google Scholar]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Pasán, J.; Delgado, F.S.; Rodríguez-Martín, Y.; Hernández-Molina, M.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. Malonate-based copper(II) coordination compounds: Ferromagnetic coupling controlled by dicarboxylates. Polyhedron 2003, 22, 2143–2153. [Google Scholar] [CrossRef]
- Rodríguez-Martín, Y.; Hernández-Molina, M.; Delgado, F.S.; Pasán, J.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. Structural versatility of the malonate ligand as a tool for crystal engineering in the design of molecular magnets. CrystEngComm 2002, 4, 522–535. [Google Scholar] [CrossRef]
- Delgado, F.S.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. Versatile supramolecular self-assembly Part II. Network formation and magnetic behaviour of copper(II) malonate anions in ammonium derivatives. CrystEngComm 2006, 8, 530–544. [Google Scholar] [CrossRef]
- Julve, M.; Verdaguer, M.; Gleizes, A.; Philoche-Levisalles, M.; Kahn, O. Design of .mu.-oxalato copper(II) binuclear complexes exhibiting expected magnetic properties. Inorg. Chem. 1984, 23, 3808–3818. [Google Scholar] [CrossRef]
- Calatayud, M.L.; Orts-Arroyo, M.; Julve, M.; Lloret, F.; Marino, N.; De Munno, G.; Ruiz-García, R.; Castro, I. Magneto-structural correlations in asymmetric oxalato-bridged dicopper(II) complexes with polymethyl-substituted pyrazole ligands. J. Coord. Chem. 2018, 71, 657–674. [Google Scholar] [CrossRef]
- Ferrer, S.; Lloret, F.; Bertomeu, I.; Alzuet, G.; Borrás, J.; García-Granda, S.; Liu-González, M.; Haasnoot, J.G. Cyclic Trinuclear and Chain of Cyclic Trinuclear Copper(II) Complexes Containing a Pyramidal Cu3O(H) Core. Crystal Structures and Magnetic Properties of [Cu3(μ3-OH)(aaat)3(H2O)3](NO3)2·H2O [aaat = 3-Acetylamino-5-amino-1,2,4-triazolate] and {[Cu3(μ3-OH)(aat)3(μ3-SO4)]·6H2O}n [aat = 3-Acetylamino-1,2,4-triazolate]: New Cases of Spin-Frustrated Systems. Inorg. Chem. 2002, 41, 5821–5830. [Google Scholar] [CrossRef]
- Ferrer, S.; Lloret, F.; Pardo, E.; Clemente-Juan, J.M.; Liu-Gonzalez, M.; Garcia-Granda, S. Antisymmetric exchange in triangular tricopper(II) complexes: Correlation among structural, magnetic, and electron paramagnetic resonance parameters. Inorg. Chem. 2012, 51, 985–1001. [Google Scholar] [CrossRef]
- Lytle, F.E.; Hercules, D.M. Luminescence of tris (2, 2′-bipyridine) ruthenium (II) dichloride. J. Am. Chem. Soc. 1969, 91, 253–257. [Google Scholar] [CrossRef]
Compound | 1 | 2 |
---|---|---|
Empirical formula | C18H58Cu7N4O54 | C142H132Cl4Cu7N26O48Ru4 |
M (g mol−1) | 1639.46 | 3955.55 |
Temperature (K) | 296 | 296 |
λ (Å) | 1.54178 | 0.71073 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/c | P21/c |
a (Å) | 10.1046(5) | 13.6168(2) |
b (Å) | 32.7505(16) | 22.0785(3) |
c (Å) | 7.8273(4) | 24.6442(5) |
β (°) | 104.742(2) | 90.395(1) |
V (Å3) | 2505.0(2) | 7408.8(2) |
Z | 2 | 2 |
Dcalc (g cm−3) | 2.174 | 1.762 |
μ (mm−1) | 4.56 | 1.55 |
Theta range (°) | 4.5–67.2 | 4.4–21.2 |
Unique reflections | 26,616 | 27,089 |
Rint | 0.043 | 0.029 |
GOF on F2 | 1.07 | 1.05 |
R1 [I > 2σ(I)] a | 0.0663 | 0.044 |
wR2 [I > 2σ(I)] b | 0.193 | 0.110 |
CCDC number | 1909005 | 1909004 |
Atoms | Distance (Å) | Atoms | Distance (Å) | Atoms | Angle (°) |
---|---|---|---|---|---|
Cu1–O5 | 1.940(5) | Cu3–O9 | 1.935(4) | Cu4–O4–Cu2 | 139.4(2) |
Cu1–O1 | 1.952(5) | Cu3–O15 | 1.948(4) | Cu2–O9–Cu3 | 118.8(2) |
Cu1–O3W | 2.427(5) | Cu3–O4W | 2.437(5) | Cu3–O15–Cu4 | 119.2(2) |
Cu2–O9 | 1.926(4) | Cu4–O4 | 1.953(4) | ||
Cu2–O2 | 1.933(5) | Cu4–O17 | 1.935(5) | ||
Cu2–O7 | 1.939(5) | Cu4–O6 | 1.945(4) | ||
Cu2–O4 | 1.957(4) | Cu4–O15 | 1.949(4) | ||
Cu3–O11 | 1.930(4) | Cu1–Cu2 | 5.514(6) | ||
Cu3–O13 | 1.930(4) | Cu1–Cu4 | 5.528(6) |
D–H∙∙∙A | D∙∙∙A | D–H∙∙∙A | D∙∙∙A | D–H∙∙∙A | D∙∙∙A |
---|---|---|---|---|---|
O1W∙∙∙O9W | 2.835 | O2W∙∙∙N2 iii | 2.779 | O12∙∙∙N1 vi | 2.866 |
O2∙∙∙N2 | 2.803 | O7∙∙∙O3W iv | 2.723 | O18∙∙∙N1 iii | 2.836 |
O2W∙∙∙O5W ii | 2.554 | O12∙∙∙N1 v | 2.818 | O18∙∙∙N1 vii | 2.865 |
Atoms | Distance (Å) | Atoms | Distance (Å) | Atoms | Angle (°) |
---|---|---|---|---|---|
Cu1–O5 | 1.954(4) | Cu4–Cl1 | 2.728(2) | Cu2–Cl1–Cu4 | 74.46(5) |
Cu1–O1 | 1.984(4) | Ru1–N4 | 2.056(3) | Cu2–O9–Cu3 | 113.18(19) |
Cu2–O7 | 1.925(5) | Ru1–N6 | 2.059(3) | Cu4–O4–Cu2 | 111.39(18) |
Cu2–O9 | 1.932(4) | Ru1–N1 | 2.063(3) | Cu4–O4–Cu2 | 111.39(18) |
Cu1–O3 | 2.459(4) | Ru1–N5 | 2.067(2) | Cu4–O15–Cu3 | 112.34(19) |
Cu2–O2 | 1.966(4) | Ru1–N2 | 2.070(3) | Cu4–O15–Cu3 | 112.34(19) |
Cu2–O4 | 1.981(4) | Ru1–N3 | 2.070(3) | ||
Cu2–Cl1 | 2.643(2) | Ru2–N12 | 2.053(5) | ||
Cu3–O13 | 1.914(5) | Ru2–N11 | 2.055(5) | ||
Cu3–O11 | 1.914(5) | Ru2–N8 | 2.055(5) | ||
Cu3–O15 | 1.946(4) | Ru2–N9 | 2.056(5) | ||
Cu3–O9 | 1.947(4) | Ru2–N7 | 2.062(5) | ||
Cu3–Cl1 | 2.821(2) | Ru2–N10 | 2.067(5) | ||
Cu4–O17 | 1.903(4) | Cu1–Cu2 | 5.3078(7) | ||
Cu4–O15 | 1.946(4) | Cu1–Cu4 | 5.2820(7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Hernández, B.; Millan, S.; Gruber, I.; Janiak, C.; Gómez-García, C.J.; Sanchiz, J. Mesoxalate-Bridged Heptanuclear Copper(II) Complexes: Structure and Magnetic Properties. Magnetochemistry 2024, 10, 93. https://doi.org/10.3390/magnetochemistry10120093
Gil-Hernández B, Millan S, Gruber I, Janiak C, Gómez-García CJ, Sanchiz J. Mesoxalate-Bridged Heptanuclear Copper(II) Complexes: Structure and Magnetic Properties. Magnetochemistry. 2024; 10(12):93. https://doi.org/10.3390/magnetochemistry10120093
Chicago/Turabian StyleGil-Hernández, Beatriz, Simon Millan, Irina Gruber, Christoph Janiak, Carlos J. Gómez-García, and Joaquín Sanchiz. 2024. "Mesoxalate-Bridged Heptanuclear Copper(II) Complexes: Structure and Magnetic Properties" Magnetochemistry 10, no. 12: 93. https://doi.org/10.3390/magnetochemistry10120093
APA StyleGil-Hernández, B., Millan, S., Gruber, I., Janiak, C., Gómez-García, C. J., & Sanchiz, J. (2024). Mesoxalate-Bridged Heptanuclear Copper(II) Complexes: Structure and Magnetic Properties. Magnetochemistry, 10(12), 93. https://doi.org/10.3390/magnetochemistry10120093