Macroscopic and Microscopic Levels of Methylene Blue Adsorption on a Magnetic Bio-Based Adsorbent: In-Depth Study Using Experiments, Advanced Modeling, and Statistical Thermodynamic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ANZ/TC/MNPs Composite
2.3. Characterization of ANZ/TC/MNPs
2.4. MB Adsorption Isotherm Studies on ANZ/TC/MNPs Composite
2.5. Conventional Modeling for MB-ANZ/TC/MNPs Interaction
2.6. Statistical Modeling for ANZ/TC/MNPs Interaction
2.7. Thermodynamic Functions of MB Adsorption
2.8. Effect of NaCl Concentration on Dye Adsorption
2.9. Regeneration of ANZ/TC/MNPs Adsorbent
3. Result and Discussions
3.1. Characterization of ANZ/TC/MNPs Adsorbent
3.2. pH Effect and Zeta Potential Calculation
3.3. Classical Modeling
3.4. Statistical Physics Modeling
3.5. Insights into the MB Uptake Mechanism via Steric Parameters E Interpretation
3.5.1. The n Parameter
3.5.2. The Parameter
3.5.3. The Qsat Parameter
3.5.4. Energetic Parameters (ΔE)
3.6. Thermodynamic Functions
3.6.1. Entropy
3.6.2. Gibbs Free Energy
3.6.3. Internal Energy
3.7. Salinity Effect on MB Adsorption
3.8. Reusability and Stability of ANZ/TC/MNPs Adsorbent
3.9. Comparison with Other Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheikh, M.C.; Hasan, M.M.; Hasan, M.N.; Salman, M.S.; Kubra, K.T.; Awual, M.E.; Waliullah, R.; Rasee, A.I.; Rehan, A.I.; Hossain, M.S. Toxic cadmium (II) monitoring and removal from aqueous solution using ligand-based facial composite adsorbent. J. Mol. Liq. 2023, 389, 122854. [Google Scholar] [CrossRef]
- Rasee, A.I.; Awual, E.; Rehan, A.I.; Hossain, M.S.; Waliullah, R.; Kubra, K.T.; Sheikh, M.C.; Salman, M.S.; Hasan, M.N.; Hasan, M.M. Efficient separation, adsorption, and recovery of Samarium (III) ions using novel ligand-based composite adsorbent. Surf. Interfaces 2023, 41, 103276. [Google Scholar] [CrossRef]
- Waliullah, R.; Rehan, A.I.; Awual, M.E.; Rasee, A.I.; Sheikh, M.C.; Salman, M.S.; Hossain, M.S.; Hasan, M.M.; Kubra, K.T.; Hasan, M.N. Optimization of toxic dye removal from contaminated water using chitosan-grafted novel nanocomposite adsorbent. J. Mol. Liq. 2023, 388, 122763. [Google Scholar] [CrossRef]
- Rehan, A.I.; Rasee, A.I.; Awual, M.E.; Waliullah, R.; Hossain, M.S.; Kubra, K.T.; Salman, M.S.; Hasan, M.M.; Hasan, M.N.; Sheikh, M.C. Improving toxic dye removal and remediation using novel nanocomposite fibrous adsorbent. Colloids Surf. A Physicochem. Eng. Asp. 2023, 673, 131859. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.N.; Hasan, M.M.; Salman, M.S.; Sheikh, M.C.; Kubra, K.T.; Islam, M.S.; Marwani, H.M.; Islam, A.; Khaleque, M.A. Green and robust adsorption and recovery of Europium (III) with a mechanism using hybrid donor conjugate materials. Sep. Purif. Technol. 2023, 319, 124088. [Google Scholar] [CrossRef]
- Hasan, M.M.; Salman, M.S.; Hasan, M.N.; Rehan, A.I.; Awual, M.E.; Rasee, A.I.; Waliullah, R.; Hossain, M.S.; Kubra, K.T.; Sheikh, M.C. Facial conjugate adsorbent for sustainable Pb (II) ion monitoring and removal from contaminated water. Colloids Surf. A Physicochem. Eng. Asp. 2023, 673, 131794. [Google Scholar] [CrossRef]
- Awual, M.R. Novel conjugated hybrid material for efficient lead (II) capturing from contaminated wastewater. Mater. Sci. Eng. C 2019, 101, 686–695. [Google Scholar] [CrossRef]
- Hasan, M.N.; Shenashen, M.; Hasan, M.M.; Znad, H.; Awual, M.R. Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. Chemosphere 2021, 270, 128668. [Google Scholar] [CrossRef]
- Shakly, M.; Saad, L.; Seliem, M.K.; Bonilla-Petriciolet, A.; Shehata, N. New insights into the selective adsorption mechanism of cationic and anionic dyes using MIL-101 (Fe) metal-organic framework: Modeling and interpretation of physicochemical parameters. J. Contam. Hydrol. 2022, 247, 103977. [Google Scholar] [CrossRef]
- Barakat, M.A.; Selim, A.Q.; Mobarak, M.; Kumar, R.; Anastopoulos, I.; Giannakoudakis, D.; Bonilla-Petriciolet, A.; Mohamed, E.A.; Seliem, M.K.; Komarneni, S. Experimental and theoretical studies of methyl orange uptake by Mn–rich synthetic mica: Insights into manganese role in adsorption and selectivity. Nanomaterials 2020, 10, 1464. [Google Scholar] [CrossRef]
- Barakat, M.; Kumar, R.; Lima, E.C.; Seliem, M.K. Facile synthesis of muscovite–supported Fe3O4 nanoparticles as an adsorbent and heterogeneous catalyst for effective removal of methyl orange: Characterisation, modelling, and mechanism. J. Taiwan Inst. Chem. Eng. 2021, 119, 146–157. [Google Scholar] [CrossRef]
- Seliem, M.K.; Barczak, M.; Anastopoulos, I.; Giannakoudakis, D.A. A novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and effective adsorption of hazardous cationic dyes: Kinetics and equilibrium studies. Nanomaterials 2020, 10, 684. [Google Scholar] [CrossRef] [PubMed]
- Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq. 2021, 328, 115468. [Google Scholar] [CrossRef]
- Yeamin, M.B.; Islam, M.M.; Chowdhury, A.-N.; Awual, M.R. Efficient encapsulation of toxic dyes from wastewater using several biodegradable natural polymers and their composites. J. Clean. Prod. 2021, 291, 125920. [Google Scholar] [CrossRef]
- Mobarak, M.; Selim, A.Q.; Mohamed, E.A.; Seliem, M.K. A superior adsorbent of CTAB/H2O2 solution−modified organic carbon rich-clay for hexavalent chromium and methyl orange uptake from solutions. J. Mol. Liq. 2018, 259, 384–397. [Google Scholar] [CrossRef]
- Mobarak, M.; Ali, R.A.; Seliem, M.K. Chitosan/activated coal composite as an effective adsorbent for Mn (VII): Modeling and interpretation of physicochemical parameters. Int. J. Biol. Macromol. 2021, 186, 750–758. [Google Scholar] [CrossRef]
- Kamel, R.M.; Shahat, A.; Hegazy, W.H.; Khodier, E.M.; Awual, M.R. Efficient toxic nitrite monitoring and removal from aqueous media with ligand based conjugate materials. J. Mol. Liq. 2019, 285, 20–26. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Selim, A.Q.; Ahmed, S.A.; Sellaoui, L.; Bonilla-Petriciolet, A.; Erto, A.; Li, Z.; Li, Y.; Seliem, M.K. H2O2-activated anthracite impregnated with chitosan as a novel composite for Cr (VI) and methyl orange adsorption in single-compound and binary systems: Modeling and mechanism interpretation. Chem. Eng. J. 2020, 380, 122445. [Google Scholar] [CrossRef]
- Awual, M.R.; Yaita, T.; Kobayashi, T.; Shiwaku, H.; Suzuki, S. Improving cesium removal to clean-up the contaminated water using modified conjugate material. J. Environ. Chem. Eng. 2020, 8, 103684. [Google Scholar] [CrossRef]
- Mobarak, M.; Qaysi, S.; Ahmed, M.S.; Salama, Y.F.; Abbass, A.M.; Abd Elrahman, M.; Abdel-Gawwad, H.A.; Seliem, M.K. Insights into the adsorption performance and mechanism of Cr (VI) onto porous nanocomposite prepared from gossans and modified coal interface: Steric, energetic, and thermodynamic parameters interpretations. Chin. J. Chem. Eng. 2023, 61, 118–128. [Google Scholar] [CrossRef]
- Badawy, A.M.; Farghali, A.A.; Bonilla-Petriciolet, A.; Seliem, M.K.; Selim, A.Q.; Ali, M.A.; Al-Dossari, M.; Abd EL-Gawaad, N.; Mobarak, M.; Lima, E.C. Facile synthesis of a recyclable multifunctional magnetic adsorbent prepared from H2O2-modified carbon clay/rice flour polymer/Fe3O4 nanoparticles interface for effective removal of ibuprofen. J. Taiwan Inst. Chem. Eng. 2023, 152, 105177. [Google Scholar] [CrossRef]
- Seliem, M.K.; Komarneni, S. Equilibrium and kinetic studies for adsorption of iron from aqueous solution by synthetic Na-A zeolites: Statistical modeling and optimization. Microporous Mesoporous Mater. 2016, 228, 266–274. [Google Scholar] [CrossRef]
- Abukhadra, M.; Mohamed, A. Adsorption removal of safranin dye contaminants from water using various types of natural zeolite. Silicon 2019, 11, 1635–1647. [Google Scholar] [CrossRef]
- Ferri, B.B.; Wernke, G.; Resende, J.F.; Ribeiro, A.C.; Cusioli, L.F.; Bergamasco, R.; Vieira, M.F. Natural zeolite as adsorbent for metformin removal from aqueous solutions: Adsorption and regeneration properties. Desalination Water Treat. 2024, 320, 100602. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Mostafa, M.; Jumah, M.N.B.; Al-Khalawi, N.; Alruhaimi, R.S.; Salama, Y.F.; Allam, A.A. Insight into the adsorption properties of chitosan/zeolite-A hybrid structure for effective decontamination of toxic Cd (II) and As (V) ions from the aqueous environments. J. Polym. Environ. 2022, 30, 295–307. [Google Scholar] [CrossRef]
- Mohseni-Bandpi, A.; Al-Musawi, T.J.; Ghahramani, E.; Zarrabi, M.; Mohebi, S.; Vahed, S.A. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J. Mol. Liq. 2016, 218, 615–624. [Google Scholar] [CrossRef]
- Neolaka, Y.A.; Lawa, Y.; Naat, J.; Riwu, A.A.; Mango, A.W.; Darmokoesoemo, H.; Widyaningrum, B.A.; Iqbal, M.; Kusuma, H.S. Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr (VI) from wastewater. J. Mater. Res. Technol. 2022, 18, 2896–2909. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Parameswaranpillai, J.; Lee, J.; Siengchin, S. Ecofriendly and low-cost bio adsorbent for efficient removal of methylene blue from aqueous solution. Sci. Rep. 2022, 12, 20580. [Google Scholar] [CrossRef]
- Keyhanian, F.; Shariati, S.; Faraji, M.; Hesabi, M. Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arab. J. Chem. 2016, 9, S348–S354. [Google Scholar] [CrossRef]
- Ebrahimian Pirbazari, A.; Saberikhah, E.; Gholami Ahmad Gorabi, N. Fe3O4 nanoparticles loaded onto wheat straw: An efficient adsorbent for Basic Blue 9 adsorption from aqueous solution. Desalination Water Treat. 2016, 57, 4110–4121. [Google Scholar] [CrossRef]
- Chang, J.; Ma, J.; Ma, Q.; Zhang, D.; Qiao, N.; Hu, M.; Ma, H. Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Appl. Clay Sci. 2016, 119, 132–140. [Google Scholar] [CrossRef]
- Duman, O.; Tunç, S.; Polat, T.G.; Bozoğlan, B.K. Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohydr. Polym. 2016, 147, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Duman, O.; Özcan, C.; Polat, T.G.; Tunç, S. Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites. Environ. Pollut. 2019, 244, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Abu Sharib, A.S.A.; Bonilla-Petriciolet, A.; Selim, A.Q.; Mohamed, E.A.; Seliem, M.K. Utilizing modified weathered basalt as a novel approach in the preparation of Fe3O4 nanoparticles: Experimental and theoretical studies for crystal violet adsorption. J. Environ. Chem. Eng. 2021, 9, 106220. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H. Over the Adsorption in Solution. J. Phys. Chem. A 1906, 57, 385–470. [Google Scholar]
- Yosefi, L.; Haghighi, M.; Allahyari, S.; Ashkriz, S. Effect of ultrasound irradiation and Ni-loading on properties and performance of CeO2-doped Ni/clinoptilolite nanocatalyst used in polluted air treatment. Process Saf. Environ. Prot. 2015, 95, 26–37. [Google Scholar] [CrossRef]
- Cocean, I.; Cocean, A.; Postolachi, C.; Pohoata, V.; Cimpoesu, N.; Bulai, G.; Iacomi, F.; Gurlui, S. Alpha keratin amino acids BEHVIOR under high FLUENCE laser interaction. Medical applications. Appl. Surf. Sci. 2019, 488, 418–426. [Google Scholar] [CrossRef]
- Li, L.; Tian, F.; Qiu, L.; Wu, F.; Yang, W.; Yu, Y. Recent Progress on Ruthenium-Based Electrocatalysts towards the Hydrogen Evolution Reaction. Catalysts 2023, 13, 1497. [Google Scholar] [CrossRef]
- Li, L.; Tian, F.; Wu, F.; Qiu, L.; Geng, S.; Li, M.; Chen, Z.; Yang, W.; Liu, Y.; Yu, Y. Strong electronic metal-support interaction of Ni4Mo/N-SrMoO4 promotes alkaline hydrogen electrocatalysis. Appl. Catal. B Environ. Energy 2025, 361, 124660. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; Ahmed, I.M.; Bräse, S. Preparation and characterization of magnetite talc (Fe3O4@ Talc) nanocomposite as an effective adsorbent for Cr (VI) and alizarin red S dye. Materials 2022, 15, 3401. [Google Scholar] [CrossRef] [PubMed]
- Petrinic, I.; Stergar, J.; Bukšek, H.; Drofenik, M.; Gyergyek, S.; Hélix-Nielsen, C.; Ban, I. Superparamagnetic Fe3O4@ CA nanoparticles and their potential as draw solution agents in forward osmosis. Nanomaterials 2021, 11, 2965. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Huang, G.; Xu, C.; Lin, B. Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. J. Clean. Prod. 2020, 251, 119717. [Google Scholar] [CrossRef]
- Horie, M.; Fujita, K. Toxicity of metal oxides nanoparticles. In Advances in Molecular Toxicology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 5, pp. 145–178. [Google Scholar]
- Ramadan, H.; Mobarak, M.; Lima, E.C.; Bonilla-Petriciolet, A.; Li, Z.; Seliem, M.K. Cr (VI) adsorption onto a new composite prepared from Meidum black clay and pomegranate peel extract: Experiments and physicochemical interpretations. J. Environ. Chem. Eng. 2021, 9, 105352. [Google Scholar] [CrossRef]
- Li, Z.; Sellaoui, L.; Dotto, G.L.; Lamine, A.B.; Bonilla-Petriciolet, A.; Hanafy, H.; Belmabrouk, H.; Netto, M.S.; Erto, A. Interpretation of the adsorption mechanism of Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via advanced statistical physics model. J. Mol. Liq. 2019, 285, 165–170. [Google Scholar] [CrossRef]
- Cottet, L.; Almeida, C.; Naidek, N.; Viante, M.; Lopes, M.; Debacher, N. Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Appl. Clay Sci. 2014, 95, 25–31. [Google Scholar] [CrossRef]
- Rida, K.; Bouraoui, S.; Hadnine, S. Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl. Clay Sci. 2013, 83, 99–105. [Google Scholar] [CrossRef]
- Hajjaji, M.; Alami, A.; El Bouadili, A. Removal of methylene blue from aqueous solution by fibrous clay minerals. J. Hazard. Mater. 2006, 135, 188–192. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B. Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chem. Eng. J. 2012, 198, 219–227. [Google Scholar] [CrossRef]
Isotherm Model | Parameters | ||||
---|---|---|---|---|---|
Langmuir | T (°C) | ||||
25 | 268.67 | 0.018 | 0.9772 | 6.31 | |
40 | 290.28 | 0.019 | 0.9817 | 5.42 | |
55 | 307.73 | 0.028 | 0.9854 | 4.31 | |
Freundlich | KF | ||||
25 | 5.97 | 0.735 | 0.9914 | 5.81 | |
40 | 8.91 | 0.721 | 0.9974 | 4.72 | |
55 | 12.51 | 0.720 | 0.9986 | 3.64 |
Adsorbent | qmax (mg/g) | References |
---|---|---|
PVA/CMC/TUR film | 102 | [28] |
Montmorillonite (Mt) | 64.43 | [31] |
Fe2O3-Mt | 106.38 | [31] |
OMWCNT-Fe2O3 | 1.11 | [32] |
OMWCNT-κ-carrageenan-Fe3O4 | 1.24 | [32] |
Magnetic montmorillonite | 69 | [49] |
Zeolite | 8.67 | [50] |
SDBS-modified zeolite | 15.68 | [50] |
Fibrous clay minerals | 39–85 | [51] |
Fe3O4/serpentine composite | 201 | [12] |
Treated ball clay | 25 | [52] |
ANZ/TC/MNPs | 268.67 | Current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.A.; Badawy, A.M.; Seliem, A.Q.; Bendary, H.I.; Lima, E.C.; Al-Dossari, M.; Abd EL-Gawaad, N.S.; Reis, G.S.d.; Mobarak, M.; Hassan, A.M.; et al. Macroscopic and Microscopic Levels of Methylene Blue Adsorption on a Magnetic Bio-Based Adsorbent: In-Depth Study Using Experiments, Advanced Modeling, and Statistical Thermodynamic Analysis. Magnetochemistry 2024, 10, 91. https://doi.org/10.3390/magnetochemistry10110091
Ali MA, Badawy AM, Seliem AQ, Bendary HI, Lima EC, Al-Dossari M, Abd EL-Gawaad NS, Reis GSd, Mobarak M, Hassan AM, et al. Macroscopic and Microscopic Levels of Methylene Blue Adsorption on a Magnetic Bio-Based Adsorbent: In-Depth Study Using Experiments, Advanced Modeling, and Statistical Thermodynamic Analysis. Magnetochemistry. 2024; 10(11):91. https://doi.org/10.3390/magnetochemistry10110091
Chicago/Turabian StyleAli, Mohamed A., Aliaa M. Badawy, Ali Q. Seliem, Hazem I. Bendary, Eder C. Lima, M. Al-Dossari, N. S. Abd EL-Gawaad, Glaydson S. dos Reis, Mohamed Mobarak, Ali M. Hassan, and et al. 2024. "Macroscopic and Microscopic Levels of Methylene Blue Adsorption on a Magnetic Bio-Based Adsorbent: In-Depth Study Using Experiments, Advanced Modeling, and Statistical Thermodynamic Analysis" Magnetochemistry 10, no. 11: 91. https://doi.org/10.3390/magnetochemistry10110091
APA StyleAli, M. A., Badawy, A. M., Seliem, A. Q., Bendary, H. I., Lima, E. C., Al-Dossari, M., Abd EL-Gawaad, N. S., Reis, G. S. d., Mobarak, M., Hassan, A. M., & Seliem, M. K. (2024). Macroscopic and Microscopic Levels of Methylene Blue Adsorption on a Magnetic Bio-Based Adsorbent: In-Depth Study Using Experiments, Advanced Modeling, and Statistical Thermodynamic Analysis. Magnetochemistry, 10(11), 91. https://doi.org/10.3390/magnetochemistry10110091